Oral SARS-CoV-2 Inoculation Establishes Subclinical Re Shedding in Golden Syrian Hamsters

Cell Reports Medicine 1, 100121

DOI: 10.1016/j.xcrm.2020.100121

Citation Report

#	Article	IF	CITATIONS
1	Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiology, 2021, 95, 103709.	2.1	18
2	Low-dose and oral exposure to SARS-CoV-2 may help us understand and prevent severe COVID-19. International Journal of Infectious Diseases, 2021, 103, 37-41.	1.5	8
3	COVID 19-Induced Smell and Taste Impairments: Putative Impact on Physiology. Frontiers in Physiology, 2020, 11, 625110.	1.3	42
4	Absence of Vaccine-enhanced Disease With Unexpected Positive Protection Against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by Inactivated Vaccine Given Within 3 Days of Virus Challenge in Syrian Hamster Model. Clinical Infectious Diseases, 2021, 73, e719-e734.	2.9	16
6	COVID-19â€"from mucosal immunology to IBD patients. Mucosal Immunology, 2021, 14, 566-573.	2.7	11
8	New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Frontiers in Medicine, 2021, 8, 640073.	1.2	45
10	Exposure Profile of Severe Acute Respiratory Syndrome Coronavirus 2 in Canadian Food Sources. Journal of Food Protection, 2021, 84, 1295-1303.	0.8	9
11	Mutations in Animal SARS-CoV-2 Induce Mismatches with the Diagnostic PCR Assays. Pathogens, 2021, 10, 371.	1.2	7
12	Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms, 2021, 9, 868.	1.6	38
15	In pursuit of the right tail for the COVID-19 incubation period. Public Health, 2021, 194, 149-155.	1.4	9
17	Repeated Exposure to Subinfectious Doses of SARS-CoV-2 May Promote T Cell Immunity and Protection against Severe COVID-19. Viruses, 2021, 13, 961.	1.5	11
18	Risk assessment of SARSâ€CoVâ€2 infection in freeâ€ranging wild animals in Belgium. Transboundary and Emerging Diseases, 2022, 69, 986-996.	1.3	9
21	Quantitative proteomics of hamster lung tissues infected with SARS oVâ€2 reveal host factors having implication in the disease pathogenesis and severity. FASEB Journal, 2021, 35, e21713.	0.2	22
22	Differential susceptibility of SARSâ€CoVâ€⊋ in animals: Evidence of ACE2 host receptor distribution in companion animals, livestock and wildlife by immunohistochemical characterisation. Transboundary and Emerging Diseases, 2022, 69, 2275-2286.	1.3	33
23	Shared Food, Meals and Drinks: 10 Arguments Suggesting an Oral Transmission Route of SARS-CoV-2. Infectious Disorders - Drug Targets, 2021, 21, .	0.4	1
24	Human Coronaviruses Do Not Transfer Efficiently between Surfaces in the Absence of Organic Materials. Viruses, 2021, 13, 1352.	1.5	19
25	SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity. MBio, 2021, 12, e0141521.	1.8	33
26	Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. MBio, 2021, 12, e0097421.	1.8	69

#	Article	IF	CITATIONS
28	Characterization of Virus Replication, Pathogenesis, and Cytokine Responses in Syrian Hamsters Inoculated with SARS-CoV-2. Journal of Inflammation Research, 2021, Volume 14, 3781-3795.	1.6	13
29	Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19. Nature Communications, 2021, 12, 4869.	5.8	68
30	SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nature Communications, 2021, 12, 4985.	5.8	94
33	Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiology, 2021, 98, 103780.	2.1	25
34	Low Environmental Temperature Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Golden Syrian Hamsters. Clinical Infectious Diseases, 2022, 75, e1101-e1111.	2.9	17
35	Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS ONE, 2021, 16, e0257191.	1.1	19
36	Animal models of SARS-CoV-2 transmission. Current Opinion in Virology, 2021, 50, 8-16.	2.6	21
37	Transmission of severe acute respiratory syndrome coronavirus 2 via fecal-oral: Current knowledge. World Journal of Clinical Cases, 2021, 9, 8280-8294.	0.3	4
38	Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology, 2021, 563, 98-106.	1.1	6
39	Hamsters as a Model of Severe Acute Respiratory Syndrome Coronavirus-2. Comparative Medicine, 2021, 71, 398-410.	0.4	13
41	Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes and Infections, 2021, 10, 507-535.	3.0	202
42	Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters. Clinical Infectious Diseases, 2021, 72, e978-e992.	2.9	84
45	SARS–CoV–2 and Food—How Confident Are We about Them?. Hygiene, 2021, 1, 80-98.	0.5	1
46	Infectious SARS-CoV-2 Is Emitted in Aerosol Particles. MBio, 2021, 12, e0252721.	1.8	36
47	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Dose, Infection, and Disease Outcomes for Coronavirus Disease 2019 (COVID-19): A Review. Clinical Infectious Diseases, 2022, 75, e1195-e1201.	2.9	13
48	Effect of Prophylactic Use of Intranasal Oil Formulations in the Hamster Model of COVID-19. Frontiers in Pharmacology, 2021, 12, 746729.	1.6	19
49	Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses, 2021, 13, 1993.	1.5	70
50	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	1.5	5

#	Article	IF	Citations
51	Using <i>in vivo</i> animal models for studying SARS-CoV-2. Expert Opinion on Drug Discovery, 2022, 17, 121-137.	2.5	5
52	Animal models for SARSâ€CoVâ€2 infection and pathology. MedComm, 2021, 2, 548-568.	3.1	19
53	Host parameters and mode of infection influence outcome in SARS-CoV-2 infected hamsters. IScience, 2021, 24, 103530.	1.9	12
54	Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. ELife, 2022, 11, .	2.8	41
55	Age-associated SARS-CoV-2 breakthrough infection and changes in immune response in a mouse model. Emerging Microbes and Infections, 2022, 11, 368-383.	3.0	33
57	In-vitro and In-vivo Experimental Models for MERS-CoV, SARS-CoV and SARS-CoV-2 Viral Infection: A Compendious Review. Recent Patents on Biotechnology, 2022, 16, .	0.4	1
59	Co-circulation of two SARS-CoV-2 variant strains within imported pet hamsters in Hong Kong. Emerging Microbes and Infections, 2022, 11, 689-698.	3.0	42
60	A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 811430.	2.2	8
61	A Thermostable Oral SARS-CoV-2 Vaccine Induces Mucosal and Protective Immunity. Frontiers in Immunology, 2022, 13, 837443.	2.2	4
62	Probable Animal-to-Human Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Delta Variant AY.127 Causing a Pet Shop-Related Coronavirus Disease 2019 (COVID-19) Outbreak in Hong Kong. Clinical Infectious Diseases, 2022, 75, e76-e81.	2.9	20
63	Coronaviruses are stable on glass, but are eliminated by manual dishwashing procedures. Food Microbiology, 2022, 106, 104036.	2.1	3
64	Lithium salts as a treatment for COVID-19: Pre-clinical outcomes. Biomedicine and Pharmacotherapy, 2022, 149, 112872.	2.5	4
65	Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes, 2022, 14, 2018900.	4.3	47
66	Persimmon-derived tannin has antiviral effects and reduces the severity of infection and transmission of SARS-CoV-2 in a Syrian hamster model. Scientific Reports, 2021, 11, 23695.	1.6	26
68	Protective Effect of Food Against Inactivation of Human Coronavirus OC43 by Gastrointestinal Fluids. Food and Environmental Virology, 2022, 14, 212-216.	1.5	5
69	Exposure Route Influences Disease Severity in the COVID-19 Cynomolgus Macaque Model. Viruses, 2022, 14, 1013.	1.5	10
70	Potential intestinal infection and faecalâ€oral transmission of human coronaviruses. Reviews in Medical Virology, 2022, 32, e2363.	3.9	3
72	A Single Dose of the Deactivated Rabies-Virus Vectored COVID-19 Vaccine, CORAVAX, Is Highly Efficacious and Alleviates Lung Inflammation in the Hamster Model. Viruses, 2022, 14, 1126.	1.5	2

#	Article	IF	CITATIONS
73	The Safety of Cold-Chain Food in Post-COVID-19 Pandemic: Precaution and Quarantine. Foods, 2022, 11, 1540.	1.9	3
74	SARS-CoV-2 remains infectious for at least a month on artificially-contaminated frozen berries. Food Microbiology, 2022, 107, 104084.	2.1	10
75	Oral SARS-CoV-2 Inoculation Causes Nasal Viral Infection Leading to Olfactory Bulb Infection: An Experimental Study. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	9
76	Efficacy of washing produce in removing human coronavirus OC43 and murine norovirus. Journal of Applied Microbiology, 2022, 133, 1800-1807.	1.4	2
77	Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Frontiers in Immunology, $0,13,.$	2.2	10
78	Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters. Science, 2022, 377, 428-433.	6.0	113
79	Investigating SARS-CoV-2 Susceptibility in Animal Species: A Scoping Review. Environmental Health Insights, 2022, 16, 117863022211077.	0.6	3
80	Experimental Models of SARS-COV-2 Infection in the Central Nervous System. Journal of Central Nervous System Disease, 2022, 14, 117957352211022.	0.7	O
81	Alteration of the gut microbiota's composition and metabolic output correlates with COVID-19-like severity in obese NASH hamsters. Gut Microbes, 2022, 14, .	4.3	8
82	Besides human booster doses: Could vaccinating highly susceptible animals to SARS-CoV-2 be the needed urgent strategic step?. International Journal of Surgery, 2022, 104, 106761.	1.1	4
83	Coronaviruses exploit a host cysteine-aspartic protease for replication. Nature, 0, , .	13.7	19
84	Second round of an interlaboratory comparison of SARS-CoV2 molecular detection assays used by 45 veterinary diagnostic laboratories in the United States. Journal of Veterinary Diagnostic Investigation, 2022, 34, 825-834.	0.5	3
85	Targeting ACLY efficiently inhibits SARS-CoV-2 replication. International Journal of Biological Sciences, 2022, 18, 4714-4730.	2.6	4
86	Great escape: how infectious SARS-CoV-2 avoids inactivation by gastric acidity and intestinal bile. Gut, 2023, 72, 808-810.	6.1	4
87	Taste disorders in disease., 2023,, 407-436.		0
88	A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection inAvivo. Cell Reports Medicine, 2022, 3, 100774.	3.3	14
90	Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Frontiers in Immunology, 0, 13 , .	2.2	4
91	Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. Journal of Clinical Medicine, 2022, 11, 5691.	1.0	10

#	Article	IF	CITATIONS
93	Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Research International, 2022, 162, 112014.	2.9	4
94	SARS CoV-2 infections in animals, two years into the pandemic. Archives of Virology, 2022, 167, 2503-2517.	0.9	19
95	Protection from COVID-19 with a VSV-based vaccine expressing the spike and nucleocapsid proteins. Frontiers in Immunology, 0, 13 , .	2.2	8
96	Evidence for the spread of SARS-CoV-2 and olfactory cell lineage impairment in close-contact infection Syrian hamster models. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
97	Intrinsic host susceptibility among multiple species to intranasal SARS-CoV-2 identifies diverse virological, biodistribution and pathological outcomes. Scientific Reports, 2022, 12, .	1.6	3
98	Therapeutic role of N-acetyl cysteine (NAC) for the treatment and/or management of SARS-CoV-2-induced lung damage in hamster model. European Journal of Pharmacology, 2023, 938, 175392.	1.7	1
99	SARS-CoV-2 variants of concerns in animals: An unmonitored rising health threat. VirusDisease, 2022, 33, 466-476.	1.0	7
100	Foodborne Viral Pathogen Big Data: Genomic Analysis. , 2023, , 47-63.		0
101	Induction of significant neutralizing antibodies against SARS-CoV-2 by a highly attenuated pangolin coronavirus variant with a 104nt deletion at the 3'-UTR. Emerging Microbes and Infections, 2023, 12, .	3.0	5
103	An Outlook on Dental Practices to Avoid the Oral Transmission of COVID-19. Microorganisms, 2023, 11 , 146 .	1.6	1
104	Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses, 2023, 15, 175.	1.5	33
105	Severe Acute Respiratory Syndrome Coronavirus-2 Delta Variant Study In Vitro and Vivo. Current Issues in Molecular Biology, 2023, 45, 249-267.	1.0	0
106	Novel pro-and eukaryotic expression plasmid expressing omicron antigens delivered via Salmonella elicited MHC class I and II based protective immunity. Journal of Controlled Release, 2023, 357, 404-416.	4.8	3
108	Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting. Frontiers in Immunology, $0,14,1$	2.2	4
109	SARS-CoV-2 Disease Severity in the Golden Syrian Hamster Model of Infection Is Related to the Volume of Intranasal Inoculum. Viruses, 2023, 15, 748.	1.5	1
110	G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters. Frontiers in Molecular Biosciences, 0, 10 , .	1.6	1