Reference evapotranspiration time series forecasting w neural networks

Computers and Electronics in Agriculture 177, 105700 DOI: 10.1016/j.compag.2020.105700

Citation Report

#	Article	IF	CITATIONS
1	Forecasting in non-stationary environments with fuzzy time series. Applied Soft Computing Journal, 2020, 97, 106825.	4.1	20
2	Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access, 2021, 9, 19195-19207.	2.6	17
3	Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review. Applied Sciences (Switzerland), 2021, 11, 1403.	1.3	19
4	Modeling Soil Water Content and Reference Evapotranspiration from Climate Data Using Deep Learning Method. Applied Sciences (Switzerland), 2021, 11, 5029.	1.3	21
5	A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter. Environmental Processes, 2021, 8, 1567-1599.	1.7	32
6	Deep Multi-Stage Reference Evapotranspiration Forecasting Model: Multivariate Empirical Mode Decomposition Integrated With the Boruta-Random Forest Algorithm. IEEE Access, 2021, 9, 166695-166708.	2.6	17
7	A hybrid deep learning framework with physical process description for simulation of evapotranspiration. Journal of Hydrology, 2022, 606, 127422.	2.3	20
8	Development and evaluation of hybrid deep learning long short-term memory network model for pan evaporation estimation trained with satellite and ground-based data. Journal of Hydrology, 2022, 607, 127534.	2.3	10
9	Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal. Agricultural Water Management, 2022, 263, 107480.	2.4	20
10	AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy, 2022, 12, 656.	1.3	9
11	Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stochastic Environmental Research and Risk Assessment, 2022, 36, 4133-4155.	1.9	14
12	Comparison of On-Policy Deep Reinforcement Learning A2C with Off-Policy DQN in Irrigation Optimization: A Case Study at a Site in Portugal. Computers, 2022, 11, 104.	2.1	11
13	Forecasting weekly reference evapotranspiration using Auto Encoder Decoder Bidirectional LSTM model hybridized with a Boruta-CatBoost input optimizer. Computers and Electronics in Agriculture, 2022, 198, 107121.	3.7	39
14	Adaptive precipitation nowcasting using deep learning and ensemble modeling. Journal of Hydrology, 2022, 612, 128197.	2.3	18
15	Bayesian Network for Hydrological Model: an inference approach. , 2022, , .		0
16	A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences (Switzerland), 2022, 12, 8654.	1.3	67
17	Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN. Journal of Hydrology, 2022, 614, 128463.	2.3	41
18	Comparing three types of data-driven models for monthly evapotranspiration prediction under heterogeneous climatic conditions. Scientific Reports, 2022, 12, .	1.6	5

#	Article	IF	CITATIONS
19	Saturated Hydraulic Conductivity Estimation Using Artificial Intelligence Techniques: A Case Study for Calcareous Alluvial Soils in a Semi-Arid Region. Water (Switzerland), 2022, 14, 3875.	1.2	4
20	Finding Research Community Structures Based on Semantic Relations of Concepts. Lecture Notes in Networks and Systems, 2023, , 847-852.	0.5	0
21	Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review. Agriculture (Switzerland), 2023, 13, 357.	1.4	3
22	How Deep Learning Can Help in Regulating the Subscription Economy to Ensure Sustainable Consumption and Production Patterns (12th Goal of SDGs). Advanced Technologies and Societal Change, 2023, , 1-20.	0.8	3
23	Forecasting commodity prices: empirical evidence using deep learning tools. Annals of Operations Research, 0, , .	2.6	8
24	Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism. Expert Systems With Applications, 2023, 223, 119878.	4.4	11
25	Smart Farming Technologies for Sustainable Agriculture: From Food to Energy. , 2023, , 481-506.		4
26	Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model. PLoS ONE, 2023, 18, e0281478.	1.1	3
27	Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems. Sustainability, 2023, 15, 6973.	1.6	3
28	Estimated Daily Reference Evapotranspiration Using Machine Learning and Deep Learning Based on Various Combinations of Meteorological Data. Lecture Notes in Networks and Systems, 2023, , 128-135.	0.5	0
29	A bioinspired ensemble approach for multi-horizon reference evapotranspiration forecasting in Portugal. , 2023, , .		1
30	Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques. , 2023, , .		0
31	Machine Learning, Deep Learning Models for Agro-Meteorology Applications. , 2023, , .		1
32	Applications of Artificial Intelligence in Renewable Energy: a brief review. , 2023, , .		0

CITATION REPORT