Zoonotic and reverse zoonotic events of SARS-CoV-2 ar

Emerging Microbes and Infections 9, 2222-2235 DOI: 10.1080/22221751.2020.1827984

Citation Report

#	Article	IF	CITATIONS
2	A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerging Microbes and Infections, 2021, 10, 376-383.	3.0	74
3	Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota, USA. Virulence, 2021, 12, 1597-1609.	1.8	62
4	Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens, 2021, 10, 180.	1.2	33
5	Tracking SARS-CoV-2 RNA through the Wastewater Treatment Process. ACS ES&T Water, 2021, 1, 1161-1167.	2.3	32
6	Epidemiology, Zoonotic and Reverse Zoonotic Potential of COVID-19. , 0, , .		0
7	The contribution of veterinary public health to the management of the COVID-19 pandemic from a One Health perspective. One Health, 2021, 12, 100230.	1.5	21
8	Allosteric Activation of SARS-CoV-2 RNA-Dependent RNA Polymerase by Remdesivir Triphosphate and Other Phosphorylated Nucleotides. MBio, 2021, 12, e0142321.	1.8	20
10	Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes?. Frontiers in Microbiology, 2021, 12, 682603.	1.5	10
11	NMPylation and de-NMPylation of SARS-CoV-2 nsp9 by the NiRAN domain. Nucleic Acids Research, 2021, 49, 8822-8835.	6.5	30
12	No detection of SARS-CoV-2 in animals exposed to infected keepers: results ofÂa COVID-19 surveillance program. Future Science OA, 2021, 7, FSO711.	0.9	13
13	Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Research, 2021, 302, 198473.	1.1	44
14	Rescue of recombinant canine distemper virus that expresses S1 subunit of SARS-CoV-2 spike protein in vitro. Microbial Pathogenesis, 2021, 158, 105108.	1.3	3
15	Effect of selected wastewater characteristics on estimation of SARS-CoV-2 viral load in wastewater. Environmental Research, 2022, 203, 111877.	3.7	29
17	Internal treatment in traditional Chinese medicine for patients with COVID-19. Medicine (United) Tj ETQq1 1 0.7	84314 rgE 0.4	BT (Overlock
18	Understanding the prevalence of SARS-CoV-2 (COVID-19) exposure in companion, captive, wild, and farmed animals. Virulence, 2021, 12, 2777-2786.	1.8	32
19	The threat of the spread of SARS-CoV-2 variants in animals. Veterinary Quarterly, 2021, 41, 321-322.	3.0	6
21	SARS-CoV-2 Reverse Zoonoses to Pumas and Lions, South Africa. Viruses, 2022, 14, 120.	1.5	48
22	SARS-CoV-2 Serological and Biomolecular Analyses among Companion Animals in Campania Region (2020–2021). Microorganisms, 2022, 10, 263.	1.6	13

#	Article	IF	CITATIONS
23	Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Veterinary Pathology, 2022, , 030098582110736.	0.8	11
24	Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines, 2022, 10, 259.	2.1	1
26	Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. Sustainable Cities and Society, 2022, 81, 103840.	5.1	20
27	Omicron – The new SARS oVâ€⊋ challenge?. Reviews in Medical Virology, 2022, 32, e2358.	3.9	28
28	Strengthening Biorisk Management in Research Laboratories with Security-Sensitive Biological Agents Like SARS-CoV-2. Methods in Molecular Biology, 2022, 2452, 395-439.	0.4	1
29	Reverse-zoonotic transmission of SARS-CoV-2 lineage alpha (B.1.1.7) to great apes and exotic felids in a zoo in the Czech Republic. Archives of Virology, 2022, 167, 1681-1685.	0.9	16
30	Advances in Bovine Coronavirus Epidemiology. Viruses, 2022, 14, 1109.	1.5	19
31	Detection of SARS-CoV-2 in a free ranging leopard (Panthera pardus fusca) in India. European Journal of Wildlife Research, 2022, 68, .	0.7	13
32	GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses, 2022, 14, 2131.	1.5	8
33	SARS CoV-2 infections in animals, two years into the pandemic. Archives of Virology, 2022, 167, 2503-2517.	0.9	19
34	Glycosylation and the global virome. Molecular Ecology, 2023, 32, 37-44.	2.0	1
35	Serological evidence of SARS-CoV-2 infection in pets naturally exposed during the COVID-19 outbreak in Argentina. Veterinary Immunology and Immunopathology, 2022, 254, 110519.	0.5	3
36	Assessing the Prevalence of SARS-CoV-2 in Free-Living and Captive Animals. Pathogens, 2022, 11, 1405.	1.2	0
37	Tailored Multiplex Real-Time RT-PCR with Species-Specific Internal Positive Controls for Detecting SARS-CoV-2 in Canine and Feline Clinical Samples. Animals, 2023, 13, 602.	1.0	2
38	Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations. JAMA Network Open, 2023, 6, e230191.	2.8	0
40	Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. , 2023, , 1-63.		0
45	Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. , 2023, , 25-87.		0
48	Early Detection, Response, and Surveillance of the COVID-19 Pandemic Crisis. , 2024, , 6-30.		0

CITATION REPORT

ARTICLE

IF CITATIONS