A comprehensive quantification of global nitrous oxide

Nature 586, 248-256 DOI: 10.1038/s41586-020-2780-0

Citation Report

#	Article	IF	Citations
1	Nitrogen Recovery from Swine Manure Using a Zeolite-Based Process. Processes, 2020, 8, 1515.	1.3	7
2	Assessment of Nitrate Hazards in Umbria Region (Italy) Using Field Datasets: Good Agriculture Practices and Farms Sustainability. Sustainability, 2020, 12, 9497.	1.6	7
3	Global N ₂ O Emissions From Cropland Driven by Nitrogen Addition and Environmental Factors: Comparison and Uncertainty Analysis. Global Biogeochemical Cycles, 2020, 34, e2020GB006698.	1.9	23
4	A Tale of Two Food Chains: The Duality of Practices on Wellâ€being. Production and Operations Management, 2021, 30, 783-801.	2.1	14
5	Temperature and oxygen level determine N ₂ O respiration activities of heterotrophic N ₂ Oâ€reducing bacteria: Biokinetic study. Biotechnology and Bioengineering, 2021, 118, 1330-1341.	1.7	13
6	Nitrous oxide emissions from cow urine patches in an intensively managed grassland: Influence of nitrogen loading under contrasting soil moisture. Science of the Total Environment, 2021, 757, 143790.	3.9	9
7	Photocatalytic deoxygenation of N–O bonds with rhenium complexes: from the reduction of nitrous oxide to pyridine <i>N</i> -oxides. Chemical Science, 2021, 12, 10266-10272.	3.7	10
8	Remote sensing using open-path dual-comb spectroscopy. , 2021, , 27-93.		5
9	A future perspective of historical contributions to climate change. Climatic Change, 2021, 164, 1.	1.7	6
10	Conclusion: Do You Want to Eat, Drink, orÂDrive?. Lecture Notes in Energy, 2021, , 191-200.	0.2	0
11	An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	11
12	Machine learning improves predictions of agricultural nitrous oxide (N ₂ O) emissions from intensively managed cropping systems. Environmental Research Letters, 2021, 16, 024004.	2.2	46
13	The Progress of Sustainable Management of Ammonia Emissions from Agriculture in European Union States Including Poland—Variation, Trends, and Economic Conditions. Sustainability, 2021, 13, 1035.	1.6	14
14	Ecosystem Collapse and Climate Change: An Introduction. Ecological Studies, 2021, , 1-9.	0.4	4
15	Global gases. , 2021, , 557-579.		0
16	From South Asia to the world: embracing the challenge of global sustainable nitrogen management. One Earth, 2021, 4, 22-27.	3.6	21
17	Bioelectrochemical Greywater Treatment for Non-Potable Reuse and Energy Recovery. Water (Switzerland), 2021, 13, 295.	1.2	8
18	Unmanned aerial systems for trace gases. , 2021, , 321-343.		1

ITATION REDOD

#	Article	IF	Citations
19	Canola straw biochars produced under different pyrolysis temperatures and nitrapyrin independently affected cropland soil nitrous oxide emissions. Biology and Fertility of Soils, 2021, 57, 319-328.	2.3	6
20	Production and application of manure nitrogen and phosphorus in the United States since 1860. Earth System Science Data, 2021, 13, 515-527.	3.7	13
21	Retrieval of Metop-A/IASI N2O Profiles and Validation with NDACC FTIR Data. Atmosphere, 2021, 12, 219.	1.0	7
22	Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 2021, 4, 518039.	1.8	139
23	Nitrous Oxide Emission from Grazing Is Low across a Gradient of Plant Functional Diversity and Soil Conditions. Atmosphere, 2021, 12, 223.	1.0	9
24	Competition for electrons favours <scp>N₂O</scp> reduction in denitrifying <i>Bradyrhizobium</i> isolates. Environmental Microbiology, 2021, 23, 2244-2259.	1.8	24
25	Denitrification in soil as a function of oxygen availability at the microscale. Biogeosciences, 2021, 18, 1185-1201.	1.3	43
26	Methane and Nitrous Oxide Emissions Complicate Coastal Blue Carbon Assessments. Global Biogeochemical Cycles, 2021, 35, e2020GB006858.	1.9	86
27	A review of indirect N ₂ O emission factors from artificial agricultural waters. Environmental Research Letters, 2021, 16, 043005.	2.2	24
28	Soil Nitrous Oxide Emissions by Atmospheric Nitrogen Deposition over Global Agricultural Systems. Environmental Science & Technology, 2021, 55, 4420-4429.	4.6	39
29	Quantifying Nitrous Oxide Emissions in the U.S. Midwest: A Topâ€Down Study Using High Resolution Airborne Inâ€Situ Observations. Geophysical Research Letters, 2021, 48, e2020GL091266.	1.5	8
30	Spatio-Temporal Variability of Peat CH4 and N2O Fluxes and Their Contribution to Peat GHG Budgets in Indonesian Forests and Oil Palm Plantations. Frontiers in Environmental Science, 2021, 9, .	1.5	15
31	Temporal Patterns of N2O Fluxes From a Rainfed Maize Field in Northeast China. Frontiers in Environmental Science, 2021, 9, .	1.5	6
32	Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis. Catena, 2021, 199, 105105.	2.2	34
33	Juxtaposing the spatiotemporal drivers of sediment CO2, CH4, and N2O effluxes along ecoregional, wet-dry, and diurnal gradients. Atmospheric Pollution Research, 2021, 12, 160-171.	1.8	2
34	Contrasting Considerations among Agricultural Stakeholders in Japan on Sustainable Nitrogen Management. Sustainability, 2021, 13, 4866.	1.6	0
36	Using precision phenotyping to inform de novo domestication. Plant Physiology, 2021, 186, 1397-1411.	2.3	7
37	A global metaâ€analysis of nitrous oxide emission from dripâ€irrigated cropping system. Global Change Biology, 2021, 27, 3244-3256.	4.2	47

#	Article	IF	CITATIONS
38	How Atmospheric Chemistry and Transport Drive Surface Variability of N 2 O and CFCâ€l 1. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033979.	1.2	11
39	Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology, 2021, 27, 2807-2821.	4.2	74
40	Short communication: climate impact of Australian livestock production assessed using the GWP* climate metric. Livestock Science, 2021, 246, 104459.	0.6	23
41	Distinctive Patterns and Controls of Nitrous Oxide Concentrations and Fluxes from Urban Inland Waters. Environmental Science & Technology, 2021, 55, 8422-8431.	4.6	26
43	Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability, 2021, 13, 5625.	1.6	73
44	Differential responses of soil nitrogenâ€oxide emissions to organic substitution for synthetic fertilizer and biochar amendment in a subtropical tea plantation. GCB Bioenergy, 2021, 13, 1260-1274.	2.5	32
45	Tidal rewetting in salt marshes triggers pulses of nitrous oxide emissions but slows carbon dioxide emission. Soil Biology and Biochemistry, 2021, 156, 108197.	4.2	6
46	Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. Journal of Environmental Management, 2021, 285, 112170.	3.8	76
47	Biogeography of global drylands. New Phytologist, 2021, 231, 540-558.	3.5	145
48	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	3.7	16
49	Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines. Environmental Research Letters, 2021, 16, 075001.	2.2	18
50	Rainfall frequency and soil water availability regulate soil methane and nitrous oxide fluxes from a native forest exposed to elevated carbon dioxide. Functional Ecology, 2021, 35, 1833-1847.	1.7	6
51	Exploring the Global Importance of Atmospheric Ammonia Oxidation. ACS Earth and Space Chemistry, 2021, 5, 1674-1685.	1.2	11
52	Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
53	Precipitation and nitrogen application stimulate soil nitrous oxide emission. Nutrient Cycling in Agroecosystems, 2021, 120, 363-378.	1.1	10
54	A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 2021, 16, 073005.	2.2	421
55	Openâ€Path Dualâ€Comb Spectroscopy for Multispecies Trace Gas Detection in the 4.5–5µm Spectral Region. Laser and Photonics Reviews, 2021, 15, 2000583.	4.4	19
56	Long-Term Fertilization Alters Nitrous Oxide Cycling Dynamics in Salt Marsh Sediments. Environmental Science & Technology, 2021, 55, 10832-10842.	4.6	8

# 57	ARTICLE Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N2O emissions and nitrite accumulation in soil. ISME Journal, 2022, 16, 26-37.	IF 4.4	CITATIONS
58	Global riverine nitrous oxide emissions: The role of small streams and large rivers. Science of the Total Environment, 2021, 776, 145148.	3.9	45
59	Bioenergy Crops for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use. Environmental Science & Technology, 2021, 55, 10654-10661.	4.6	14
60	Ammonia and nitrous oxide emission factors for excreta deposited by livestock and landâ€applied manure. Journal of Environmental Quality, 2021, 50, 1005-1023.	1.0	15
61	Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018. Atmospheric Chemistry and Physics, 2021, 21, 10643-10669.	1.9	13
62	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	1.9	5
63	Organic Wastes Amended with Sorbents Reduce N2O Emissions from Sugarcane Cropping. Environments - MDPI, 2021, 8, 78.	1.5	3
64	Canopy Exchange and Modification of Nitrogen Fluxes in Forest Ecosystems. Current Forestry Reports, 2021, 7, 115-137.	3.4	10
65	The role of soils in habitat creation, maintenance and restoration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200170.	1.8	23
66	The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nature Communications, 2021, 12, 5021.	5.8	98
67	Aboveground and belowground responses to cyanobacterial biofertilizer supplement in a semiâ€arid, perennial bioenergy cropping system. GCB Bioenergy, 2021, 13, 1908-1923.	2.5	4
68	Spatial Distribution of CO ₂ , CH ₄ , and N ₂ O in the Great Barrier Reef Revealed Through High Resolution Sampling and Isotopic Analysis. Geophysical Research Letters, 2021, 48, e2021GL092534.	1.5	8
69	Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute?. Environmental Science and Policy, 2021, 122, 116-126.	2.4	23
70	Nitrate Reduction at Tin-modified Noble Metal Single Crystalline Electrodes. Vacuum and Surface Science, 2021, 64, 364-368.	0.0	0
71	Global analysis of nitrification inhibitors on grasslands nitrous oxide emission rates. Biochemical Systematics and Ecology, 2021, 97, 104289.	0.6	4
72	Historical trends of riverine nitrogen loading from land to the East China Sea: a model-based evaluation. Environmental Research Communications, 2021, 3, 085005.	0.9	1
73	Ammonium-Based Compound Fertilisers Mitigate Nitrous Oxide Emissions in Temperate Grassland. Agronomy, 2021, 11, 1712.	1.3	7
74	Reducing Global Greenhouse Gas Emissions to Meet Climate Targets—A Comprehensive Quantification and Reasonable Options. Energies, 2021, 14, 5260.	1.6	10

#	Article	IF	CITATIONS
75	Influence of ZCuOH, Z ₂ Cu, and Extraframework Cu <i>_x</i> O <i>_y</i> Species in Cu-SSZ-13 on N ₂ O Formation during the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Catalysis, 2021, 11, 10362-10376.	5.5	18
76	An improved microelectrode method reveals significant emission of nitrous oxide from the rhizosphere of a long-term fertilized soil in the North China Plain. Science of the Total Environment, 2021, 783, 147011.	3.9	6
77	Nonlinear pattern and algal dual-impact in N2O emission with increasing trophic levels in shallow lakes. Water Research, 2021, 203, 117489.	5.3	38
78	Stimulation of N ₂ O emission via bacterial denitrification driven by acidification in estuarine sediments. Global Change Biology, 2021, 27, 5564-5579.	4.2	34
79	Reaction between a NO ₂ Dimer and Dissolved SO ₂ : A New Mechanism for ONSO ₃ [–] Formation and its Fate in Aerosol. Journal of Physical Chemistry A, 2021, 125, 8468-8475.	1.1	2
80	Long-term no-till increases soil nitrogen mineralization but does not affect optimal corn nitrogen fertilization practices relative to inversion tillage. Soil and Tillage Research, 2021, 213, 105080.	2.6	11
81	Evaluation of variation in background nitrous oxide emissions: A new global synthesis integrating the impacts of climate, soil, and management conditions. Global Change Biology, 2022, 28, 480-492.	4.2	20
82	Nitrogen contamination and bioremediation in groundwater and the environment: A review. Earth-Science Reviews, 2021, 222, 103816.	4.0	29
83	Nonlinear dependency of N2O emissions on nitrogen input in dry farming systems may facilitate green development in China. Agriculture, Ecosystems and Environment, 2021, 317, 107456.	2.5	18
84	Divergent Gas Transfer Velocities of CO ₂ , CH ₄ , and N ₂ O Over Spatial and Temporal Gradients in a Subtropical Estuary. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006270.	1.3	5
85	Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N ₂ O emissions from nitrogen inputs to managed soils. Global Change Biology, 2021, 27, 6536-6550.	4.2	24
87	Electrocatalytic activity and volatile product selectivity for nitrate reduction at tin-modified Pt(100), Pd(100) and Pd–Pt(100) single crystal electrodes in acidic media. Electrochimica Acta, 2021, 398, 139281.	2.6	9
88	Mitigation of Climate Change by Nitrogen Managements in Agriculture. , 0, , .		2
89	Identifying hotspots and representative monitoring locations of field scale N2O emissions from agricultural soils: A time stability analysis. Science of the Total Environment, 2021, 788, 147955.	3.9	5
91	Spatial-temporal variability of indirect nitrous oxide emissions and emission factors from a subtropical river draining a rice paddy watershed in China. Agricultural and Forest Meteorology, 2021, 307, 108519.	1.9	7
92	The Nexus between Environmental Impact and Agricultural Sector Linkages: A Case Study of Pakistan. Atmosphere, 2021, 12, 1200.	1.0	7
93	Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200454.	1.6	44
94	Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. Journal of Environmental Management, 2021, 293, 112856.	3.8	38

#	ARTICLE	IF	Citations
95	N ₂ O Production and Consumption Processes in a Salinityâ€Impacted Hyporheic Zone. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006512.	1.3	10
96	Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200457.	1.6	16
97	Nitrous oxide respiring bacteria in biogas digestates for reduced agricultural emissions. ISME Journal, 2022, 16, 580-590.	4.4	16
98	Selective aqueous ammonia sensors using electrochemical stripping and capacitive detection. AICHE Journal, 2021, 67, e17465.	1.8	4
99	Estimation of countrywide N2O emissions from wastewater treatment in Switzerland using long-term monitoring data. Water Research X, 2021, 13, 100122.	2.8	28
100	Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils. Environmental Pollution, 2021, 287, 117494.	3.7	10
101	Nitrogen budgets in Japan from 2000 to 2015: Decreasing trend of nitrogen loss to the environment and the challenge to further reduce nitrogen waste. Environmental Pollution, 2021, 286, 117559.	3.7	26
102	Oxidation mechanism of ammonia in water clusters. Molecular Physics, 0, , .	0.8	0
103	Improving the accuracy of nitrous oxide emission factors estimated for hotspots within dairy-grazed farms. Science of the Total Environment, 2022, 806, 150608.	3.9	5
104	Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. Chemosphere, 2021, 281, 130809.	4.2	13
105	Management and implications of using nitrification inhibitors to reduce nitrous oxide emissions from urine patches on grazed pasture soils $\hat{a} \in A$ review. Science of the Total Environment, 2021, 791, 148099.	3.9	14
106	Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. Journal of Environmental Management, 2021, 295, 113080.	3.8	22
107	Satellite-detected ammonia changes in the United States: Natural or anthropogenic impacts. Science of the Total Environment, 2021, 789, 147899.	3.9	6
108	A critical review of environmental and public health impacts from the activities of evaporation ponds. Science of the Total Environment, 2021, 796, 149065.	3.9	18
109	Influence of the shallow groundwater table on the groundwater N2O and direct N2O emissions in summer maize field in the North China Plain. Science of the Total Environment, 2021, 799, 149495.	3.9	9
110	New N2O emission factors for crop residues and fertiliser inputs to agricultural soils in Germany. Agriculture, Ecosystems and Environment, 2021, 322, 107640.	2.5	15
111	Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies. Agriculture, Ecosystems and Environment, 2021, 322, 107637.	2.5	10
112	Nitrogen stock and farmer behaviour under rice policy change in Japan. Journal of Environmental Management, 2021, 299, 113438.	3.8	2

#	Article	IF	CITATIONS
113	The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project. Remote Sensing of Environment, 2021, 266, 112688.	4.6	8
114	Modeling nitrous oxide mitigation potential of enhanced efficiency nitrogen fertilizers from agricultural systems. Science of the Total Environment, 2021, 801, 149342.	3.9	10
115	Restoring wetlands on intensive agricultural lands modifies nitrogen cycling microbial communities and reduces N2O production potential. Journal of Environmental Management, 2021, 299, 113562.	3.8	6
116	Nitrous oxide-sink capability of denitrifying bacteria impacted by nitrite and pH. Chemical Engineering Journal, 2022, 428, 132402.	6.6	23
117	Plants are a natural source of nitrous oxide even in field conditions as explained by 15N site preference. Science of the Total Environment, 2022, 805, 150262.	3.9	9
118	The catalytic decomposition of nitrous oxide and the NO + CO reaction over Ni/Cu dilute and single atom alloy surfaces: first-principles microkinetic modelling. Catalysis Science and Technology, 2021, 11, 3681-3696.	2.1	12
119	Highly reflective algae for enhancing climate change resilience in rice production. Food and Energy Security, 2021, 10, e272.	2.0	0
120	Abiotic reduction of nitrite by Fe(<scp>ii</scp>): a comparison of rates and N ₂ O production. Environmental Sciences: Processes and Impacts, 2021, 23, 1531-1541.	1.7	6
121	Microbial N2O consumption in and above marine N2O production hotspots. ISME Journal, 2021, 15, 1434-1444.	4.4	24
125	Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 2020, 17, 5809-5828.	1.3	16
126	Nitrous oxide as a diazo transfer reagent: the synthesis of triazolopyridines. Chemical Communications, 2021, 57, 11537-11540.	2.2	11
127	Enrichment of <scp><i>nosZ</i></scp> â€ŧype denitrifiers by arbuscular mycorrhizal fungi mitigates <scp>N₂O</scp> emissions from soybean stubbles. Environmental Microbiology, 2021, 23, 6587-6602.	1.8	13
128	A Declining Trend in China's Future Cropland-N ₂ O Emissions Due to Reduced Cropland Area. Environmental Science & Technology, 2021, 55, 14546-14555.	4.6	9
130	Nitrous oxide and methane in a changing Arctic Ocean. Ambio, 2022, 51, 398-410.	2.8	6
131	Quantifying non-CO2 contributions to remaining carbon budgets. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	10
132	Nitrogen and carbon addition changed nitrous oxide emissions from soil aggregates in straw-incorporated soil. Journal of Soils and Sediments, 2022, 22, 617-629.	1.5	3
134	Stream Transport and Substrate Controls on Nitrous Oxide Yields From Hyporheic Zone Denitrification. AGU Advances, 2021, 2, e2021AV000517.	2.3	8
135	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	1.6	26

#	Article	IF	CITATIONS
136	Clobal mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	6.2	68
137	Effect of nitrogen deposition on centennial forest water-use efficiency. Environmental Research Letters, 2021, 16, 114036.	2.2	11
138	GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach. Energies, 2021, 14, 6495.	1.6	6
139	Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration. Global Change Biology, 2022, 28, 899-917.	4.2	40
140	Four decades of nitrous oxide emission from Chinese aquaculture underscores the urgency and opportunity for climate change mitigation. Environmental Research Letters, 2021, 16, 114038.	2.2	8
141	Combined biochar and double inhibitor application offsets NH3 and N2O emissions and mitigates N leaching in paddy fields. Environmental Pollution, 2022, 292, 118344.	3.7	13
142	Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation. Sensors and Actuators B: Chemical, 2022, 352, 130995.	4.0	15
144	Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
145	Nitrous oxide in diesel aftertreatment systems including DOC, DPF and urea‧CR. Fuel, 2022, 310, 122453.	3.4	18
146	Longâ€īerm Mississippi River Trends Expose Shifts in the River Load Response to Watershed Nutrient Balances Between 1975 and 2017. Water Resources Research, 2021, 57, e2021WR030318.	1.7	25
148	Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky. Systems Research and Behavioral Science, 2020, 37, 928-935.	0.9	0
149	Nitrogen sinks in the agro-food system of Pakistan. , 2022, , 29-51.		2
150	Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. Water Research, 2022, 209, 117910.	5.3	19
151	N2O emission dynamics along an intertidal elevation gradient in a subtropical estuary: Importance of N2O consumption. Environmental Research, 2022, 205, 112432.	3.7	12
152	Estimated climate impact of replacing agriculture as the primary food production system. Environmental Research Letters, 0, , .	2.2	1
153	Improving the social cost of nitrous oxide. Nature Climate Change, 2021, 11, 1008-1010.	8.1	16
154	A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data, 2021, 13, 5213-5252.	3.7	68
155	Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland. Agriculture (Switzerland), 2021, 11, 1141.	1.4	13

#	Article	IF	CITATIONS
156	Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes?. Global Change Biology, 2022, 28, 711-726.	4.2	32
157	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottomâ€Up and Topâ€Down Approaches: Informing Future Research and National Inventories. Geophysical Research Letters, 2021, 48, e2021GL095264.	1.5	7
158	Regional distribution and environmental regulation mechanism of nitrous oxide in the Bohai Sea and North Yellow Sea: A preliminary study. Science of the Total Environment, 2022, 818, 151718.	3.9	5
159	The combined effect of short-term hydrological and N-fertilization manipulation of wetlands on CO2, CH4, and N2O emissions. Environmental Pollution, 2022, 294, 118637.	3.7	11
160	Spatiotemporal Dynamics of the Carbon Budget and the Response to Grazing in Qinghai Grasslands. Frontiers in Plant Science, 2021, 12, 775015.	1.7	8
161	Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022, 4, 100110.	1.7	3
162	Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions. Journal of the American Chemical Society, 2022, 144, 1258-1266.	6.6	110
163	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental Research Letters, 2022, 17, 013004.	2.2	29
164	Environmental drivers of nitrous oxide emission factor for a coastal reservoir and its catchment areas in southeastern China. Environmental Pollution, 2022, 294, 118568.	3.7	6
165	Submerged macrophytes regulate diurnal nitrous oxide emissions from a shallow eutrophic lake: A case study of Lake Wuliangsuhai in the temperate arid region of China. Science of the Total Environment, 2022, 811, 152451.	3.9	4
166	Effects of biochar and N-stabilizers on greenhouse gas emissions from a subtropical pasture field applied with organic and inorganic nitrogen fertilizers. Journal of Environmental Management, 2022, 306, 114423.	3.8	4
167	Nitrous oxide flux observed with tall-tower eddy covariance over a heterogeneous rice cultivation landscape. Science of the Total Environment, 2022, 810, 152210.	3.9	3
168	Fertilizer-induced nitrous oxide emissions from global orchards and its estimate of China. Agriculture, Ecosystems and Environment, 2022, 328, 107854.	2.5	15
169	Soil moisture determines nitrous oxide emission and uptake. Science of the Total Environment, 2022, 822, 153566.	3.9	24
170	Understanding Temporal Variations of Atmospheric Radon-222 around Japan Using Model Simulations. Journal of the Meteorological Society of Japan, 2022, 100, 343-359.	0.7	2
172	Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 2022, 13, 330.	5.8	17
173	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	4.2	51
174	Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0,) Tj ETQq1 1 0.78	34314 rgB⁻	[/Qyerlock]

#	ARTICLE	IF	CITATIONS
175	Dynamics of Nitrogen Gaseous Losses Following the Application of Foliar Nanoformulations to Grasslands. Journal of Soil Science and Plant Nutrition, 2022, 22, 1758-1767.	1.7	1
176	Crystal Structure and Guest Distribution of N2O Hydrate Determined by Powder X-ray Diffraction Measurements. Crystal Growth and Design, 2022, 22, 1345-1351.	1.4	3
177	Distribution and Driving Mechanism of N2O in Sea Ice and Its Underlying Seawater during Arctic Melt Season. Water (Switzerland), 2022, 14, 145.	1.2	0
178	Responses of nitrous oxide fluxes to autumn freeze–thaw cycles in permafrost peatlands of the Da Xing'an Mountains, Northeast China. Environmental Science and Pollution Research, 2022, 29, 31700-31712.	2.7	5
179	Quality of Sediment Organic Matter Determines the Intertidal N ₂ O Response to Global Warming. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
180	N ₂ 0 Adsorption and Photochemistry on Ceria Surfaces. Journal of Physical Chemistry C, 2022, 126, 2253-2263.	1.5	1
181	Forward and Inverse Modelling of Atmospheric Nitrous Oxide Using MIROC4-Atmospheric Chemistry-Transport Model. Journal of the Meteorological Society of Japan, 2022, 100, 361-386.	0.7	8
183	Pathways of soil N2O uptake, consumption, and its driving factors: a review. Environmental Science and Pollution Research, 2022, 29, 30850-30864.	2.7	12
184	Centuryâ€long changes and drivers of soil nitrous oxide (N ₂ O) emissions across the contiguous United States. Global Change Biology, 2022, 28, 2505-2524.	4.2	23
185	Emissions of atmospherically reactive gases nitrous acid and nitric oxide from Arctic permafrost peatlands. Environmental Research Letters, 2022, 17, 024034.	2.2	5
186	The <i>Fires, Asian, and Stratospheric Transport</i> –Las Vegas Ozone Study (<i>FAST</i> -LVOS). Atmospheric Chemistry and Physics, 2022, 22, 1707-1737.	1.9	7
187	An ensemble approach to the structure-function problem in microbial communities. IScience, 2022, 25, 103761.	1.9	14
188	Automatic modeling of socioeconomic drivers of energy consumption and pollution using Bayesian symbolic regression. Sustainable Production and Consumption, 2022, 30, 596-607.	5.7	10
189	Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis. Science of the Total Environment, 2022, 820, 153288.	3.9	21
190	The marine nitrogen cycle: new developments and global change. Nature Reviews Microbiology, 2022, 20, 401-414.	13.6	84
191	Optimum fertilizer application rate to ensure yield and decrease greenhouse gas emissions in rain-fed agriculture system of the Loess Plateau. Science of the Total Environment, 2022, 823, 153762.	3.9	16
192	Precision Nitrogen Management in Bt Cotton (Gossypium hirsutum) Improves Seed Cotton Yield and Nitrogen Use Efficiency, and Reduces Nitrous Oxide Emissions. Sustainability, 2022, 14, 2007.	1.6	1
193	Dynamics in Diffusive Emissions of Dissolved Gases from Groundwater Induced by Fluctuated Ground Surface Temperature. Environmental Science & Technology, 2022, 56, 2355-2365.	4.6	3

#	Article	IF	CITATIONS
194	Conservation programs to reduce greenhouse gases. Journal of Soils and Water Conservation, 2022, 77, 30A-32A.	0.8	2
195	N2o and No Emissions from Beijing's Campus Urban Lawn Soil: Rain-Induced Pulse Fluxes. SSRN Electronic Journal, 0, , .	0.4	Ο
196	Electrocatalytic Nitrate and Nitrous Oxide Reduction at Interfaces between Pt-Pd Nanoparticles and Fluorine-Doped Tin Oxide. SSRN Electronic Journal, 0, , .	0.4	0
197	Biotic and Abiotic Predictors of Potential N2o Emissions from Denitrification in Irish Grasslands Soils: A National-Scale Field Study. SSRN Electronic Journal, 0, , .	0.4	0
199	Saltwater incursion regulates N2O emission pathways and potential nitrification and denitrification in intertidal wetland. Biology and Fertility of Soils, 2023, 59, 541-553.	2.3	12
201	Long-Term Variation of Greenhouse Gas N2O Observed by MLS during 2005–2020. Remote Sensing, 2022, 14, 955.	1.8	1
202	From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone. Atmospheric Chemistry and Physics, 2022, 22, 2079-2093.	1.9	9
203	Plants Mitigate Nitrous Oxide Emissions from Antibiotic-Contaminated Agricultural Soils. Environmental Science & Technology, 2022, 56, 4950-4960.	4.6	18
204	Agricultural managed aquifer recharge (Ag-MAR)—a method for sustainable groundwater management: A review. Critical Reviews in Environmental Science and Technology, 2023, 53, 291-314.	6.6	29
205	Nitrous oxide in the central Bay of Bengal during the summer monsoon. Regional Studies in Marine Science, 2022, 52, 102314.	0.4	0
206	Variable Inhibition of Nitrous Oxide Reduction in Denitrifying Bacteria by Different Forms of Methanobactin. Applied and Environmental Microbiology, 2022, , e0234621.	1.4	3
207	Evaluation and Global-Scale Observation of Nitrous Oxide from IASI on Metop-A. Remote Sensing, 2022, 14, 1403.	1.8	1
208	Theoretical Analysis of Engineered Plants for Control of Atmospheric Nitrous Oxide and Methane by Modification of the Mitochondrial Proteome. ACS Sustainable Chemistry and Engineering, 2022, 10, 5441-5452.	3.2	4
209	Structural Characterization of Cytochrome c′βâ€Met from an Ammonia-Oxidizing Bacterium. Biochemistry, 2022, 61, 563-574.	1.2	4
210	Reactive nitrogen restructures and weakens microbial controls of soil N2O emissions. Communications Biology, 2022, 5, 273.	2.0	11
211	Accelerating the development of biological nitrification inhibition as a viable nitrous oxide mitigation strategy in grazed livestock systems. Biology and Fertility of Soils, 2022, 58, 235-240.	2.3	6
212	Quantifying biological processes producing nitrous oxide in soil using a mechanistic model. Biogeochemistry, 2022, 159, 1-14.	1.7	7
213	Quantifying and Mapping Human Appropriation of Net Primary Productivity in Qinghai Grasslands in China. Agriculture (Switzerland), 2022, 12, 483.	1.4	3

#	Article	IF	CITATIONS
214	Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 2022, 13, 1430.	5.8	72
216	Deceleration of Cropland-N ₂ O Emissions in China and Future Mitigation Potentials. Environmental Science & Technology, 2022, 56, 4665-4675.	4.6	22
217	Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	2
218	Response of nitrous oxide emissions to individual rain events and future changes in precipitation. Journal of Environmental Quality, 2022, 51, 312-324.	1.0	8
219	Greenhouse Gas Emission Reduction Potentials in Europe by Sector: A Bootstrap-Based Nonparametric Efficiency Analysis. Environmental and Resource Economics, 2022, 81, 867-898.	1.5	4
220	Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. Remote Sensing, 2022, 14, 1810.	1.8	0
221	KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N ₂ O emission using data from mesocosm experiments. Geoscientific Model Development, 2022, 15, 2839-2858.	1.3	13
222	Using isotope pool dilution to understand how organic carbon additions affect N ₂ O consumption in diverse soils. Global Change Biology, 2022, 28, 4163-4179.	4.2	9
223	Long-term trends of direct nitrous oxide emission from fuel combustion in South Asia. Environmental Research Letters, 2022, 17, 045028.	2.2	3
224	Effects of nitrogen and phosphorus enrichment on soil N2O emission from natural ecosystems: A global meta-analysis. Environmental Pollution, 2022, 301, 118993.	3.7	13
225	Nitrogen fertilizer consumption and nitrous oxide emissions associated with ethanol production – A national-scale comparison between Brazilian sugarcane and corn in the United States. Journal of Cleaner Production, 2022, 350, 131482.	4.6	9
226	Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: A national-scale field study. Soil Biology and Biochemistry, 2022, 168, 108637.	4.2	18
227	Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands. Environmental Pollution, 2022, 301, 119041.	3.7	8
228	Isotopic assessment of soil N2O emission from a sub-tropical agricultural soil under varying N-inputs. Science of the Total Environment, 2022, 827, 154311.	3.9	3
229	Reference for different sensitivities of greenhouse gases effluxes to warming climate among types of desert biological soil crust. Science of the Total Environment, 2022, 830, 154805.	3.9	3
230	Response of soil greenhouse gas fluxes to warming: A global metaâ€analysis of field studies. Geoderma, 2022, 419, 115865.	2.3	22
231	Thawing Yedoma permafrost is a neglected nitrous oxide source. Nature Communications, 2021, 12, 7107.	5.8	24
232	N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model. Atmosphere, 2022, 13, 50.	1.0	2

#	Article	IF	CITATIONS
233	Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N ₂ O emission. Global Change Biology, 2022, 28, 2158-2168.	4.2	54
234	The CGIAR–JIRCAS Partnerships for Sustainable Food Systems: Rice Blast Differential Systems and Biological Nitrification Inhibition as Examples. Japan Agricultural Research Quarterly, 2021, 55, 501-509.	0.1	1
235	Modeling Nitrous Oxide Emissions From Large-Scale Intensive Cropping Systems in the Southern Amazon. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	1
236	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	2.8	51
237	Dissolved Nitrous Oxide and Hydroxylamine in the South Yellow Sea and the East China Sea During Early Spring: Distribution, Production, and Emissions. Frontiers in Marine Science, 2021, 8, .	1.2	2
238	N ₂ O Reduction by <i>Gemmatimonas aurantiaca</i> and Potential Involvement of <i>Gemmatimonadetes</i> Bacteria in N ₂ O Reduction in Agricultural Soils. Microbes and Environments, 2022, 37, n/a.	0.7	10
239	Devoting Attention to China's Burgeoning Industrial N ₂ O Emissions. Environmental Science & Technology, 2022, 56, 5299-5301.	4.6	7
240	Cryptic Sulfur and Oxygen Cycling Potentially Reduces N ₂ O-Driven Greenhouse Warming: Underlying Revision Need of the Nitrogen Cycle. Environmental Science & Technology, 2022, 56, 5960-5972.	4.6	7
241	Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data, 2022, 14, 1639-1675.	3.7	58
242	Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Science of the Total Environment, 2022, 836, 154932.	3.9	17
243	Suspended particulate matter drives the spatial segregation of nitrogen turnover along the hyper-turbid Ems estuary. Biogeosciences, 2022, 19, 2007-2024.	1.3	5
244	Using nitrification inhibitors and deep placement to tackle the tradeâ€offs between NH ₃ and N ₂ O emissions in global croplands. Global Change Biology, 2022, 28, 4409-4422.	4.2	26
245	Higher than expected N2O emissions from soybean crops in the Pampas Region of Argentina: Estimates from DayCent simulations and field measurements. Science of the Total Environment, 2022, 835, 155408.	3.9	5
246	The effects of adequate and excessive application of mineral fertilizers on the soil. , 2023, , 369-381.		5
247	Low N2o Emissions Associated with Sheep Excreta Deposition in Temperate Managed Lowland Grassland and Extensively Grazed Hill Pasture. SSRN Electronic Journal, 0, , .	0.4	0
248	Combined Application of Lime and a Nitrification Inhibitor (3,4-Dimethylpyrazole Phosphate) Markedly Decreased Nitrous Oxide Emissions from an Acid Soil. Agronomy, 2022, 12, 1040.	1.3	4
249	The interaction between vegetation types and intensities of freeze-thaw cycles during the autumn freezing affected in-situ soil N2O emissions in the permafrost peatlands of the Great Hinggan Mountains, Northeastern China. Atmospheric Environment: X, 2022, 14, 100175.	0.8	1
250	A Synthesis of Viral Contribution to Marine Nitrogen Cycling. Frontiers in Microbiology, 2022, 13, 834581.	1.5	9

"		15	Circum
#	ARTICLE Potential of Nitrification Inhibition and Change of Soil Bacterial Community Structure by Biofumigation of <i>Brassica juncea</i> Green Manure in Succeeding Sweet Corn	IF	CITATIONS
251	Cultivation under Gray Lowland Soil Conditions. Japan Agricultural Research Quarterly, 2022, 56, 137-146.	0.1	0
252	Disruption of a Planetary Nitrogen Cycle as Evidence of Extraterrestrial Agriculture. Astrophysical Journal Letters, 2022, 929, L28.	3.0	7
253	Catalytic synthesis of phenols with nitrous oxide. Nature, 2022, 604, 677-683.	13.7	45
254	Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production– a modelling study in eastern Africa. Biogeosciences, 2022, 19, 2145-2169.	1.3	2
255	Emerging weed resistance increases tillage intensity and greenhouse gas emissions in the US corn–soybean cropping system. Nature Food, 2022, 3, 266-274.	6.2	10
256	Dynamic Responses of Trace Metal Bioaccessibility to Fluctuating Redox Conditions in Wetland Soils and Stream Sediments. ACS Earth and Space Chemistry, 2022, 6, 1331-1344.	1.2	7
257	Estimating field N2 emissions based on laboratory-quantified N2O/(N2O + N2) ratios and field-quantified N2O emissions. Journal of Soils and Sediments, 2022, 22, 2196-2208.	1.5	6
258	Copper availability governs nitrous oxide accumulation in wetland soils and stream sediments. Geochimica Et Cosmochimica Acta, 2022, 327, 96-115.	1.6	5
259	Prairie wetlands as sources or sinks of nitrous oxide: Effects of land use and hydrology. Agricultural and Forest Meteorology, 2022, 320, 108968.	1.9	6
260	China's pathways to synchronize the emission reductions of air pollutants and greenhouse gases: Pros and cons. Resources, Conservation and Recycling, 2022, 184, 106392.	5.3	13
261	Economy-environment nexus in developed European countries: Evidence from multifractal and wavelet analysis. Chaos, Solitons and Fractals, 2022, 160, 112189.	2.5	9
262	Temporal and Spatial Dynamics of Carbon Storage in Qinghai Grasslands. Agronomy, 2022, 12, 1201.	1.3	2
263	Effects of Nitrogen and Phosphorus Additions on Soil N2O Emissions and CH4 Uptake in a Phosphorus-Limited Subtropical Chinese Fir Plantation. Forests, 2022, 13, 772.	0.9	4
264	Impact of anaerobic digestion on reactive nitrogen gas emissions from dairy slurry storage. Journal of Environmental Management, 2022, 316, 115306.	3.8	6
265	Ocean systems. , 2022, , 427-452.		1
266	Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods. , 2022, , 59-85.		Ο
267	Balancing greenhouse gas sources and sinks: Inventories, budgets, and climate policy. , 2022, , 3-28.		0
268	Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nature Food, 2022, 3, 356-366.	6.2	20

#	Article	IF	CITATIONS
269	Utilizing Novel Field and Data Exploration Methods to Explore Hot Moments in High-Frequency Soil Nitrous Oxide Emissions Data: Opportunities and Challenges. Frontiers in Forests and Global Change, 2022, 5, .	1.0	2
270	Electrocatalytic nitrate and nitrous oxide reduction at interfaces between Pt-Pd nanoparticles and fluorine-doped tin oxide. Electrochimica Acta, 2022, 425, 140628.	2.6	2
271	Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil. Soil Biology and Biochemistry, 2022, 171, 108720.	4.2	16
272	Cover crop composition drives changes in the abundance and diversity of nitrifiers and denitrifiers in citrus orchards with critical effects on N2O emissions. Geoderma, 2022, 422, 115952.	2.3	7
273	The Thermal Effect of Flame-Wall Interaction on the Nox Emission Characteristics of Ammonia Swirling Flames in a Model Combustor. SSRN Electronic Journal, 0, , .	0.4	0
274	Soil Available Nitrogen and Aoa Regulated N 2 O ÂEmissionÂRegardless of Rice PlantingÂUnder a Double RiceÂCropping-Fallow System. SSRN Electronic Journal, 0, , .	0.4	0
275	Applying Struvite as a N-Fertilizer to Mitigate N2o Emissions in Agriculture: Feasibility and Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
276	A Dual Enrichment Strategy Provides Soil- and Digestate-Competent Nitrous Oxide-Respiring Bacteria for Mitigating Climate Forcing in Agriculture. MBio, 2022, 13, .	1.8	5
277	Addressing nitrogenous gases from croplands toward low-emission agriculture. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	32
278	Aggravation of nitrous oxide emissions driven by burrowing crab activities in intertidal marsh soils: Mechanisms and environmental implications. Soil Biology and Biochemistry, 2022, 171, 108732.	4.2	9
279	Effects of nitrogen and water addition on N2O emissions in temperate grasslands, northern China. Applied Soil Ecology, 2022, 177, 104548.	2.1	5
280	Intensive forest harvest increases N2O emission from soil: A meta-analysis. Soil Biology and Biochemistry, 2022, 172, 108712.	4.2	7
281	Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions. Agriculture (Switzerland), 2022, 12, 907.	1.4	4
282	The application of N-butyl Phosphorothioate Triamine and Dicyandiamide changes the soil N ₂ O production path. Archives of Agronomy and Soil Science, 2023, 69, 1359-1375.	1.3	1
283	Nitrous oxide and carbon dioxide emissions from two types of soil amended with manure compost at different ammonium nitrogen rates. Soil Science and Plant Nutrition, 2022, 68, 473-490.	0.8	2
284	Distribution and Production of N2O in the Subtropical Western North Pacific Ocean During the Spring of 2020. Frontiers in Marine Science, 0, 9, .	1.2	Ο
285	Integrated Modeling of U.S. Agricultural Soil Emissions of Reactive Nitrogen and Associated Impacts on Air Pollution, Health, and Climate. Environmental Science & amp; Technology, 2022, 56, 9265-9276.	4.6	7
286	The Dominant Role of the Water Column in Nitrogen Removal and N ₂ O Emissions in Large Rivers. Geophysical Research Letters, 2022, 49, .	1.5	9

#	Article	IF	CITATIONS
287	lsotopic signatures of biotic and abiotic <scp>N₂O</scp> production and consumption in the water column of meromictic, ferruginous Lake La Cruz (Spain). Limnology and Oceanography, 2022, 67, 1760-1775.	1.6	1
288	Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage. Biogeosciences, 2022, 19, 3021-3050.	1.3	6
289	Integrating major agricultural practices into the TRIPLEX-GHG model v2.0 for simulating global cropland nitrous oxide emissions: Development, sensitivity analysis and site evaluation. Science of the Total Environment, 2022, 843, 156945.	3.9	1
290	Predicting nitrous oxide emissions through riverine networks. Science of the Total Environment, 2022, 843, 156844.	3.9	1
291	Impacts of slurry application methods and inhibitors on gaseous emissions and N2O pathways in meadow-cinnamon soil. Journal of Environmental Management, 2022, 318, 115560.	3.8	2
292	Identification of temporary livestock enclosures in Kenya from multi-temporal PlanetScope imagery. Remote Sensing of Environment, 2022, 279, 113110.	4.6	3
293	The Asymmetric Effect of Agriculturalization Toward Climate Neutrality Targets. SSRN Electronic Journal, 0, , .	0.4	0
294	In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environmental Microbiomes, 2022, 17, .	2.2	25
295	Risks to biodiversity from temperature overshoot pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	9
296	Nitrous oxide and carbon dioxide emissions from two soils amended with different manure composts in aerobic incubation tests. Soil Science and Plant Nutrition, 0, , 1-14.	0.8	1
297	Detection and Attribution of Human Influence on the Global Diurnal Temperature Range Decline. Geophysical Research Letters, 2022, 49, .	1.5	3
298	Contribution from a eutrophic temperate estuary to the landscape flux of nitrous oxide. Water Research, 2022, 222, 118874.	5.3	3
299	3â€Ð Atmospheric Modeling of the Global Budget of N ₂ O and Its Isotopologues for 1980–2019: The Impact of Anthropogenic Emissions. Global Biogeochemical Cycles, 2022, 36, .	1.9	1
300	Novel cobaltâ€doped ZrSnO ₄ catalysts for direct nitrous oxide decomposition. International Journal of Applied Ceramic Technology, 0, , .	1.1	0
301	Performance of a Mid-Infrared Sensor for Simultaneous Trace Detection of Atmospheric CO and N2O Based on PSO-KELM. Frontiers in Chemistry, 0, 10, .	1.8	5
302	Landâ€Use Intensity Increases Benthic N ₂ O Emissions Across Three Subâ€Tropical Estuaries. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
303	Improvement of resource use efficiency versus mitigation of environmental impacts in rice production of Fujian Province, China. Journal of Cleaner Production, 2022, 368, 133154.	4.6	4
304	Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions. Agriculture (Switzerland), 2022, 12, 1021.	1.4	1

#	Article	IF	CITATIONS
305	Nitrogen Fertilization of Lawns Enhanced Soil Nitrous Oxide Emissions by Increasing Autotrophic Nitrification. Frontiers in Environmental Science, 0, 10, .	1.5	5
306	A novel method to measure air-immobile regions of the composting pile by inverse calculation combined with gas tracer test. Waste Management, 2022, 150, 131-140.	3.7	2
307	Net ecosystem exchange of carbon dioxide fluxes and its driving mechanism in the forests on the Tibetan Plateau. Biochemical Systematics and Ecology, 2022, 103, 104451.	0.6	1
308	Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 2022, 185, 106501.	5.3	13
309	Liming decreases the emission and temperature sensitivity of N2O following labile carbon addition. Geoderma, 2022, 425, 116032.	2.3	6
310	Responses of Soil N2O Emission and CH4 Uptake to N Input in Chinese Forests across Climatic Zones: A Meta-Study. Atmosphere, 2022, 13, 1145.	1.0	2
311	A gap in nitrous oxide emission reporting complicates long-term climate mitigation. Proceedings of the United States of America, 2022, 119, .	3.3	14
312	A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems. Journal of Cleaner Production, 2022, 368, 133155.	4.6	40
313	Phosphorus control and dredging decrease methane emissions from shallow lakes. Science of the Total Environment, 2022, 847, 157584.	3.9	5
314	Greenhouse gas fluxes (CO2, N2O and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide. Science of the Total Environment, 2022, 849, 157541.	3.9	11
315	The Effects of Pandemic Restrictions on Public Health—Improvements in Urban Air Quality. International Journal of Environmental Research and Public Health, 2022, 19, 9022.	1.2	1
316	Nitrous oxide production in the Chesapeake Bay. Limnology and Oceanography, 2022, 67, 2101-2116.	1.6	9
317	Missing flux from the ocean: isotope revealed an important NOx flux mediated by microbial processes. National Science Review, 2022, 9, .	4.6	1
318	Dynamics of nitrous oxide emissions from two cropping systems in southwestern France over 5 years: Cross impact analysis of heterogeneous agricultural practices and local climate variability. Agricultural and Forest Meteorology, 2022, 323, 109093.	1.9	1
319	Effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions during pig manure composting. Science of the Total Environment, 2022, 846, 157487.	3.9	14
320	Feasibility of Using Biologically-based Processes in the Open Ocean and Coastal Seas for Atmospheric CO2 Removal. RSC Energy and Environment Series, 2022, , 291-350.	0.2	2
321	Impacts of Soil Moisture and Fertilizer on N2O Emissions from Cornfield Soil in a Karst Watershed, SW China. Atmosphere, 2022, 13, 1200.	1.0	4
322	Nitrous Oxide: Oxidizer and Promoter of Hydrogen and Hydrocarbon Combustion. Industrial & Engineering Chemistry Research, 2022, 61, 11329-11346.	1.8	7

		CITATION REPORT		
#	Article		IF	CITATIONS
323	Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature, 2022,	608, 626-631.	13.7	14
324	Quantitative Evaluation of Noncovalent Interactions between 3,4-Dimethyl-1 <i>H</i> -py Dissolved Humic Substances by NMR Spectroscopy. Environmental Science & amp; Techn 11771-11779.		4.6	4
325	Topography-driven soil properties modulate effects of nitrogen deposition on soil nitrous sources in a subtropical forest. Biology and Fertility of Soils, 2022, 58, 707-720.	oxide	2.3	6
326	Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxid factor. Nature Communications, 2022, 13, .	e emission	5.8	20
327	Denitrifiers and Nitrous Oxide Emissions from a Subtropical Vegetable Cropland. ACS Ear Chemistry, 2022, 6, 2024-2031.	th and Space	1.2	0
328	Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nature C 2022, 15, 627-632.	ieoscience,	5.4	42
329	Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactor Angewandte Chemie, 0, , .	s.	1.6	0
331	Soil moisture–atmosphere feedback dominates land <scp>N₂O</scp> nit emissions and denitrification reduction. Global Change Biology, 2022, 28, 6404-6418.	rification	4.2	12
332	Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactor Angewandte Chemie - International Edition, 2022, 61, .	S.	7.2	3
333	Suppression of AMF accelerates N2O emission by altering soil bacterial community and g abundance under varied precipitation conditions in a semiarid grassland. Frontiers in Mic 13, .		1.5	1
334	Effects of Heavy Degradation on Alpine Meadows: Soil N2O Emission Rates and Meta-Ana Tibetan Plateau. Land, 2022, 11, 1255.	alysis in the	1.2	2
335	Deciphering the Inhibition of Ethane on Anaerobic Ammonium Oxidation. Environmental Technology, 2022, 56, 13419-13427.	Science &	4.6	6
336	Coupling the environmental impacts of reactive nitrogen losses and yield responses of st China. Frontiers in Plant Science, 0, 13, .	aple crops in	1.7	1
337	Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the N Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 2022, 23, 9412.	licroalga	1.8	7
338	Greenhouse gas emissions from global production and use of nitrogen synthetic fertiliser agriculture. Scientific Reports, 2022, 12, .	s in	1.6	71
339	Emissions of Greenhouse Gases and NO from Rice Fields and a Peach Orchard as Affected and Land-Use Conversion. Agronomy, 2022, 12, 1850.	l by N Input	1.3	8
340	Draft Metagenome-Assembled Genome Sequences of Three Novel Ammonia-Oxidizing <i>Nitrososphaera</i> Strains Recovered from Agricultural Soils in Western Colorado. Mi Resource Announcements, 0, , .	crobiology	0.3	0
341	Atmospheric N Deposition Significantly Enhanced Soil N ₂ O Emission From E Forests. Global Biogeochemical Cycles, 2022, 36, .	astern China	1.9	5

#	Article	IF	CITATIONS
342	Exploring the Functions of Efficient Canonical Denitrifying Bacteria as N ₂ O Sinks: Implications from ¹⁵ N Tracer and Transcriptome Analyses. Environmental Science & Technology, 2022, 56, 11694-11706.	4.6	4
343	Anthroponumbers.org: A quantitative database of human impacts on Planet Earth. Patterns, 2022, 3, 100552.	3.1	1
344	Distinct driving mechanisms of non-growing season N2O emissions call for spatial-specific mitigation strategies in the US Midwest. Agricultural and Forest Meteorology, 2022, 324, 109108.	1.9	4
345	Nitrous oxide emission mitigation from biological wastewater treatment – A review. Bioresource Technology, 2022, 362, 127747.	4.8	10
346	Grazing amplifies the stimulating effects of N addition on N2O emissions in a temperate meadow steppe. Agriculture, Ecosystems and Environment, 2022, 339, 108143.	2.5	4
347	Differential response of N2O emissions, N2O-producing and N2O-reducing bacteria to varying tetracycline doses in fertilized soil. Environmental Research, 2022, 214, 114013.	3.7	3
348	Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resources, Conservation and Recycling, 2022, 186, 106576.	5.3	16
349	Litter-derived nitrogen reduces methane uptake in tropical rainforest soils. Science of the Total Environment, 2022, 849, 157891.	3.9	5
350	Low N2O emissions associated with sheep excreta deposition in temperate managed lowland grassland and extensively grazed hill pasture. Science of the Total Environment, 2022, 850, 158070.	3.9	1
351	Nitrogen cycling and management focusing on the central role of soils: a review. Soil Science and Plant Nutrition, 2022, 68, 514-525.	0.8	3
352	Resilience of organohalide-detoxifying microbial community to oxygen stress in sewage sludge. Water Research, 2022, 224, 119055.	5.3	12
353	Quantitatively deciphering the roles of sediment nitrogen removal in environmental and climatic feedbacks in two subtropical estuaries. Water Research, 2022, 224, 119121.	5.3	10
354	Incorporating dynamic crop growth processes and management practices into a terrestrial biosphere model for simulating crop production in the United States: Toward a unified modeling framework. Agricultural and Forest Meteorology, 2022, 325, 109144.	1.9	9
355	Effects of warming and nitrogen input on soil N2O emission from Qinghai-Tibetan Plateau: a synthesis. Agricultural and Forest Meteorology, 2022, 326, 109167.	1.9	6
356	Maintaining higher grain production with less reactive nitrogen losses in China: A meta-analysis study. Journal of Environmental Management, 2022, 322, 116018.	3.8	2
357	Available nitrogen and ammonia-oxidizing archaea in soil regulated N2O emissions regardless of rice planting under a double rice cropping-fallow system. Agriculture, Ecosystems and Environment, 2022, 340, 108166.	2.5	8
358	Measurement of recreational N2O emissions from an urban environment in Manchester, UK. Urban Climate, 2022, 46, 101282.	2.4	4
359	Development of a high surface area Cu electrocatalyst for effective nitrous oxide reduction reaction. Reaction Chemistry and Engineering, 2022, 8, 84-95.	1.9	1

#	Article	IF	CITATIONS
360	Agricultural Emissions Reduction Potential by Improving Technical Efficiency in Crop Production. SSRN Electronic Journal, 0, , .	0.4	0
361	Carbon Substrate Selects for Different Lineages of N2O Reducing Communities in Soils Under Anoxic Conditions. SSRN Electronic Journal, 0, , .	0.4	0
362	Nutrient Pollution. , 2022, , 1-21.		0
363	Increased Soil N2o Emission During Drainage is Mitigated by Inputs of Labile Carbon and Amplified by Nitrogen. SSRN Electronic Journal, 0, , .	0.4	0
364	Atmospheric Gases. , 2024, , 429-441.		0
365	Arbuscular Mycorrhizae Shift Community Composition of N-Cycling Microbes and Suppress Soil N ₂ O Emission. Environmental Science & Technology, 2022, 56, 13461-13472.	4.6	9
366	Sensitive control of N2O emissions and microbial community dynamics by organic fertilizer and soil interactions. Biology and Fertility of Soils, 2022, 58, 771-788.	2.3	10
367	Forest expansion dominates China's land carbon sink since 1980. Nature Communications, 2022, 13, .	5.8	71
368	Number of Chamber Measurement Locations for Accurate Quantification of Landscape cale Greenhouse Gas Fluxes: Importance of Land Use, Seasonality, and Greenhouse Gas Type. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
369	Numerical Investigation of Rich-Lean Staging in a SGT-750 Scaled Dry Low Emission Burner With Partially Decomposed Ammonia. Journal of Engineering for Gas Turbines and Power, 2023, 145, .	0.5	2
370	Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management and Research, 2023, 41, 701-712.	2.2	4
371	Anthropogenic land uses drive shifts in denitrificationâ€related microbiota in freshwater river ecosystems. Land Degradation and Development, 0, , .	1.8	1
372	Application of Life Cycle Assessment (LCA) to cereal production: an overview. IOP Conference Series: Earth and Environmental Science, 2022, 1077, 012004.	0.2	0
373	Ni-Catalyzed Oxygen Transfer from N ₂ O onto sp ³ -Hybridized Carbons. Journal of the American Chemical Society, 2022, 144, 18223-18228.	6.6	9
374	A modelâ€based estimate of nitrate leaching in Germany for GHG reporting. Journal of Plant Nutrition and Soil Science, 2022, 185, 850-863.	1.1	3
375	Ending the era of <scp>Haber–Bosch</scp> . Environmental Microbiology, 0, , .	1.8	0
376	Process-based modeling of soil nitrous oxide emissions from United States corn fields under different management and climate scenarios coupled with evaluation using regional estimates. Frontiers in Environmental Science, 0, 10, .	1.5	0
377	Changes in climate, grazing pressure and nutrient inputs affect the structural integrity and functioning of Andean shrublands. Plant Ecology and Diversity, 0, , 1-19.	1.0	1

#	Article	IF	CITATIONS
378	Agriculture-Induced N2O Emissions and Reduction Strategies in China. International Journal of Environmental Research and Public Health, 2022, 19, 12193.	1.2	3
379	Real-world wintertime CO, N ₂ O, and CO ₂ emissions of a central European village. Atmospheric Measurement Techniques, 2022, 15, 5019-5031.	1.2	0
380	Mitigation of China's carbon neutrality to global warming. Nature Communications, 2022, 13, .	5.8	32
381	Scientific diasporas and the advancement of science diplomacy: The InFEWS US-China program in the face of confrontational "America First―diplomacy. Frontiers in Research Metrics and Analytics, 0, 7, .	0.9	2
383	Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands. Nature Ecology and Evolution, 2022, 6, 1881-1890.	3.4	5
384	Evaluating the Plausible Range of N ₂ O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach. Astrophysical Journal, 2022, 937, 109.	1.6	5
385	Potassium isotopes of fertilizers as potential markers of anthropogenic input in ecosystems. Environmental Chemistry Letters, 2023, 21, 41-45.	8.3	25
386	On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2. Carbon Balance and Management, 2022, 17, .	1.4	9
387	Land use intensification significantly reduced CH4 emissions while increasing N2O emissions: Taihu Lake region, China. Agriculture, Ecosystems and Environment, 2022, 340, 108189.	2.5	6
388	Regenerative Agriculture for Sustainable Food Security and Livelihoods in Nepal: A Proposal for Multi-scalar Planning Framework. Sustainable Development Goals Series, 2022, , 177-194.	0.2	1
389	Optimization of Emission Reduction Target in the Beijing–Tianjin–Hebei Region: An Atmospheric Transfer Coefficient Matrix Perspective. International Journal of Environmental Research and Public Health, 2022, 19, 13512.	1.2	0
390	Modelling the growth of atmospheric nitrous oxide using a global hierarchical inversion. Atmospheric Chemistry and Physics, 2022, 22, 12945-12960.	1.9	7
391	Potential gross and net N2O production by the gut of different termite species are related to the abundance of nitrifier and denitrifier groups. , 0, 1, .		1
392	History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019. Earth System Science Data, 2022, 14, 4551-4568.	3.7	17
393	Lack of nitrogen fertilizer rate effects on soil carbon and nitrogen supply capacity: evidence from a 10-year trial. Plant and Soil, 2023, 483, 459-473.	1.8	1
394	Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems. Environmental Research Letters, 2022, 17, 114024.	2.2	12
395	Strong Electronic Orbit Coupling between Cobalt and Single-Atom Praseodymium for Boosted Nitrous Oxide Decomposition on Co ₃ O ₄ Catalyst. Environmental Science & Technology, 2022, 56, 16325-16335.	4.6	19
396	Significant Seasonal N ₂ O Dynamics Revealed by Multi‥ear Observations in the Northern South China Sea. Global Biogeochemical Cycles, 2022, 36, .	1.9	3

#	Article	IF	CITATIONS
397	Nitrous Oxide Consumption in Oxygenated and Anoxic Estuarine Waters. Geophysical Research Letters, 2022, 49, .	1.5	3
398	Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2. Nature Communications, 2022, 13, .	5.8	18
399	Review of Nonpoint Source Pollution Models: Current Status and Future Direction. Water (Switzerland), 2022, 14, 3217.	1.2	7
400	Two temperate seagrass meadows are negligible sources of methane and nitrous oxide. Limnology and Oceanography, 2022, 67, .	1.6	3
401	Organic Agriculture and Greenhouse Gas Emissions. , 2023, , 129-175.		0
402	Cropland nitrous oxide emissions exceed the emissions of RCP 2.6: A global spatial analysis. Science of the Total Environment, 2023, 858, 159738.	3.9	2
403	A dynamic model for assessing soil denitrification in large-scale natural wetlands driven by Earth Observations Environmental Modelling and Software, 2022, 158, 105557.	1.9	1
404	Evaluation of ammonia fueled engine for a bulk carrier in marine decarbonization pathways. Journal of Cleaner Production, 2022, 379, 134688.	4.6	20
405	Aquaculture farm largely increase indirect nitrous oxide emission factors of lake. Agriculture, Ecosystems and Environment, 2023, 341, 108212.	2.5	5
406	Bioaugmentation performances with a powerful strain for nitrogen removal without N2O accumulation. Journal of Environmental Management, 2023, 325, 116506.	3.8	0
407	Diffusive nitrous oxide (N2O) fluxes across the sediment-water-atmosphere interfaces in aquaculture shrimp ponds in a subtropical estuary: Implications for climate warming. Agriculture, Ecosystems and Environment, 2023, 341, 108218.	2.5	5
408	Combining reduced tillage and green manures minimized N2O emissions from organic cropping systems in a cool humid climate. Agriculture, Ecosystems and Environment, 2023, 341, 108205.	2.5	4
409	The Atmosphere. , 2023, , 317-478.		0
410	Simulations of nitrous oxide emissions and global warming potential in a C4 turfgrass system using process-based models. European Journal of Agronomy, 2023, 142, 126668.	1.9	2
411	Long-term tillage, residue management and crop rotation impacts on N2O and CH4 emissions from two contrasting soils in sub-humid Zimbabwe. Agriculture, Ecosystems and Environment, 2023, 341, 108207.	2.5	9
412	Simulated nitrogen deposition promotes the carbon assimilation of shrubs rather than tree species in an evergreen broad-leaved forest. Environmental Research, 2023, 216, 114497.	3.7	3
413	Magnesium is a nutritional tool for the yield and quality of oolong tea (Camellia sinensis L.) and reduces reactive nitrogen loss. Scientia Horticulturae, 2023, 308, 111590.	1.7	5
414	Climate change: food safety challenges in the near future. , 2023, , 1113-1124.		1

#	Article	IF	Citations
415	Melatonin regulates material transport to reduce carbon emissions and increase yield under different nitrogen in rice. Agriculture, Ecosystems and Environment, 2023, 342, 108235.	2.5	4
416	Understanding response of yield-scaled N2O emissions to nitrogen input: Data synthesis and introducing new concepts of background yield-scaled N2O emissions and N2O emission-yield curve. Field Crops Research, 2023, 290, 108737.	2.3	8
417	Similar strong impact of N fertilizer form and soil erosion state on N2O emissions from croplands. Geoderma, 2023, 429, 116243.	2.3	1
418	Low-energy ammonium recovery by a combined bio-electrochemical and electrochemical system. Chemical Engineering Journal, 2023, 454, 140196.	6.6	5
419	Nitrous Oxide Dynamics in the Southern Benguela Upwelling System. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	1
420	Increasing sensitivity of terrestrial nitrous oxide emissions to precipitation variations. , 2022, 1, 025010.		1
421	Mitigation of greenhouse gas emission by nitrogen-fixing bacteria. Bioscience, Biotechnology and Biochemistry, 2022, 87, 7-12.	0.6	6
422	Nitrification Regulates the Spatiotemporal Variability of N ₂ O Emissions in a Eutrophic Lake. Environmental Science & Technology, 2022, 56, 17430-17442.	4.6	12
423	Evaluation of the N ₂ O Rate of Change to Understand the Stratospheric Brewerâ€Dobson Circulation in a Chemistryâ€Climate Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
424	Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review. Processes, 2022, 10, 2361.	1.3	2
425	Native Rhizobia Improve Plant Growth, Fix N2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. Plants, 2022, 11, 3011.	1.6	1
426	Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radical Biology and Medicine, 2022, 193, 764-778.	1.3	15
427	Evaluation of the Environmental Performance of Cropping Systems under Different Nitrogen Management Scenarios Considering Regional Nitrogen Resilience. Sustainability, 2022, 14, 15286.	1.6	0
428	Factors affecting N2O fluxes from heavy metal-contaminated mangrove soils in a subtropical estuary. Marine Pollution Bulletin, 2023, 186, 114425.	2.3	0
429	Shifts in the spatiotemporal distribution and sources of nitrous oxide in sediment cores from the Bohai Sea and South Yellow Sea. Marine Pollution Bulletin, 2023, 186, 114390.	2.3	1
430	The asymmetric effect of agriculturalization toward climate neutrality targets. Journal of Environmental Management, 2023, 328, 116995.	3.8	48
431	Spatiotemporal variability and controlling factors of indirect N2O emission in a typical complex watershed. Water Research, 2023, 229, 119515.	5.3	9
432	Carbon substrate selects for different lineages of N2O reducing communities in soils under anoxic conditions. Soil Biology and Biochemistry, 2023, 177, 108909.	4.2	2

#	Article	IF	CITATIONS
433	Transient nitrite accumulation explains the variation of N2O emissions to N fertilization in upland agricultural soils. Soil Biology and Biochemistry, 2023, 177, 108917.	4.2	11
434	Deciphering nitrous oxide emissions from tropical soils of different land uses. Science of the Total Environment, 2023, 862, 160916.	3.9	2
435	Tradeoffs and synergies in wetland multifunctionality: A scaling issue. Science of the Total Environment, 2023, 862, 160746.	3.9	15
436	Efficacy of three nitrification inhibitors to reduce nitrous oxide emissions from pig slurry and mineral fertilizers applied to spring barley and winter wheat in Denmark. Geoderma Regional, 2023, 32, e00597.	0.9	3
437	Food, climate and biodiversity: a trilemma of mineral nitrogen use in European agriculture. Review of Agricultural Food and Environmental Studies, 2022, 103, 271-299.	0.2	5
438	Nitrogen cycling in aquatic environments of China: Progress and future challenges. Progress in Physical Geography, 2022, 46, 846-868.	1.4	3
439	Higher N2O production in sequencing batch reactors compared to continuous stirred tank reactors: effect of feast-famine cycles. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	0
440	Origin, evolution, and future of isoprene and nitric oxide interactions within leaves. Journal of Experimental Botany, 2023, 74, 688-706.	2.4	2
441	Materials Design for N2O Capture: Separation in Gas Mixtures. Catalysts, 2022, 12, 1539.	1.6	1
442	Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 2023, 4, 4-18.	12.2	151
443	Environmental impact assessment of vegetable production in West Java, Indonesia. Science of the Total Environment, 2023, 864, 160999.	3.9	1
444	Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump. Nature Geoscience, 2023, 16, 29-36.	5.4	7
445	High exogenous humus inhibits greenhouse gas emissions from steppe lakes. Environmental Pollution, 2023, 319, 120946.	3.7	5
446	Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiology Spectrum, 2022, 10, .	1.2	7
447	Global variations and drivers of nitrous oxide emissions from forests and grasslands. Frontiers in Soil Science, 0, 2, .	0.8	5
448	Are we underestimating the ecological and evolutionary effects of warming? Interactions with other environmental drivers may increase species vulnerability to high temperatures. Oikos, 2023, 2023, .	1.2	15
449	The influence of pulse modulated UV LEDs of different wavelengths on the photocatalytic degradation of atmospheric toluene and NO. Frontiers in Catalysis, 0, 2, .	1.8	0
450	Atmospheric Mixing Ratio of Greenhouse Gases and Radiative Forcing. , 2023, , 1-29.		1

#	Article	IF	CITATIONS
451	Adaptive emission reduction approach to reach any global warming target. Nature Climate Change, 2022, 12, 1136-1142.	8.1	16
452	Kinetics of nitrous oxide production from ammonia oxidation in the Eastern Tropical North Pacific. Limnology and Oceanography, 2023, 68, 424-438.	1.6	7
454	Ratio of non-growing season to growing season N ₂ O emissions in Canadian croplands: an update to national inventory methodology. Canadian Journal of Soil Science, 2023, 103, 344-352.	0.5	4
455	Effect of biochar and DMPP application alone or in combination on nitrous oxide emissions differed by soil types. Biology and Fertility of Soils, 2023, 59, 123-138.	2.3	5
456	Technological avenues and market mechanisms to accelerate methane and nitrous oxide emissions reductions. IScience, 2022, 25, 105661.	1.9	4
457	Nitrous oxide production and isotopomer composition by fungi isolated from salt marsh sediments. Frontiers in Marine Science, 0, 9, .	1.2	4
458	Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution. Chemosphere, 2023, 317, 137881.	4.2	8
459	Soil pH and long-term fertilization affect gross N transformation and N2O production pathways in Chinese and UK croplands. Biology and Fertility of Soils, 2023, 59, 527-539.	2.3	8
460	A New Paradigm for Plant Nutrition. , 2023, , 361-374.		0
461	Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Frontiers in Microbiology, 0, 13, .	1.5	17
462	The Limits of Vegetarianism. , 2023, , 57-83.		0
463	Editorial: Advances in estuarine and coastal nitrogen cycle. Frontiers in Marine Science, 0, 10, .	1.2	1
464	From liquid waste to mineral fertilizer: Recovery, recycle and reuse of high-value macro-nutrients from landfill leachate to contribute to circular economy, food security, and carbon neutrality. Chemical Engineering Research and Design, 2023, 170, 791-807.	2.7	21
465	Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: Feasibility and mechanism. Journal of Environmental Management, 2023, 330, 117143.	3.8	10
466	N2O emission factors for organic amendments in Japan from measurement campaign and systematic review. Science of the Total Environment, 2023, 864, 161088.	3.9	2
467	Strong N2O uptake capacity of paddy soil under different water conditions. Agricultural Water Management, 2023, 278, 108146.	2.4	1
468	Enhanced-Efficiency Fertilizers Impact on Nitrogen Use Efficiency and Nitrous Oxide Emissions from an Open-Field Vegetable System in North China. Plants, 2023, 12, 81.	1.6	4
469	Impact of Climate Change on Cassava Yield in Nigeria: An Autoregressive Distributed Lag Bound Approach. Agriculture (Switzerland), 2023, 13, 80.	1.4	3

#	Article	IF	CITATIONS
471	A Meta-Analysis Study on the Use of Biochar to Simultaneously Mitigate Emissions of Reactive Nitrogen Gases (N2O and NO) from Soils. Sustainability, 2023, 15, 2384.	1.6	1
472	GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques. Atmosphere, 2023, 14, 283.	1.0	3
473	Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific. Biogeosciences, 2023, 20, 325-347.	1.3	3
474	Microbial Interactions Related to N ₂ O Emissions and Temperature Sensitivity from Rice Paddy Fields. MBio, 2023, 14, .	1.8	4
475	The effect of upland crop planting on field N2O emission from rice-growing seasons: A case study comparing rice-wheat and rice-rapeseed rotations. Agriculture, Ecosystems and Environment, 2023, 347, 108365.	2.5	4
476	Diurnal oscillation in dissolved oxygen at sediment-water interface fuels denitrification-driven N removal in Ganga River. Journal of Hydrology, 2023, 619, 129301.	2.3	4
477	Earth as an Exoplanet. II. Earth's Time-variable Thermal Emission and Its Atmospheric Seasonality of Bioindicators. Astrophysical Journal, 2023, 946, 82.	1.6	2
478	Effective reduction of N2O emission via combined plasma catalysis. Catalysis Communications, 2023, 177, 106666.	1.6	1
479	Towards a roadmap for space-based observations of the land sector for the UNFCCC global stocktake. IScience, 2023, 26, 106489.	1.9	3
480	Magnitude and seasonal variation of N2O and CH4 emissions over a mixed agriculture-urban region. Agricultural and Forest Meteorology, 2023, 334, 109433.	1.9	0
481	Dissolved N2O concentrations in oil palm plantation drainage in a peat swamp of Malaysia. Science of the Total Environment, 2023, 872, 162062.	3.9	0
482	Water quality improvement and consequent N2O emission reduction in hypoxic freshwater utilizing green oxygen-carrying biochar. Science of the Total Environment, 2023, 872, 162251.	3.9	3
483	Effects of landscape modification on coastal sediment nitrogen availability, microbial functional gene abundances and N2O production potential across the tropical-subtropical gradient. Environmental Research, 2023, 227, 115829.	3.7	2
484	The distributional effects of a nitrogen tax: Evidence from Germany. Ecological Economics, 2023, 208, 107815.	2.9	2
485	Significant spatiotemporal variability of nitrous oxide emissions from a temperate reservoir experiencing intensive aquaculture disturbance. Agriculture, Ecosystems and Environment, 2023, 348, 108427.	2.5	2
486	Effect of antibiotic and/or heavy metal on nitrogen cycle of sediment-water interface in aquaculture system: Implications from sea cucumber culture. Environmental Pollution, 2023, 325, 121453.	3.7	4
487	Soil glomalin-related protein affects aggregate N2O fluxes by modulating denitrifier communities in a fertilized soil. Science of the Total Environment, 2023, 880, 163147.	3.9	2
489	Denitrification by Bradyrhizobia under Feast and Famine and the Role of the bc1 Complex in Securing Electrons for N ₂ O Reduction. Applied and Environmental Microbiology, 2023, 89, .	1.4	2

#	Article	IF	CITATIONS
490	Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biology and Biochemistry, 2023, 178, 108961.	4.2	13
491	Extreme temperature events reduced carbon uptake of a boreal forest ecosystem in Northeast China: Evidence from an 11-year eddy covariance observation. Frontiers in Plant Science, 0, 14, .	1.7	2
492	Temperature Changes Induced by Biogeochemical and Biophysical Effects of Bioenergy Crop Cultivation. Environmental Science & Technology, 2023, 57, 2474-2483.	4.6	6
493	Increased Nitrogen Loading Facilitates Nitrous Oxide Production through Fungal and Chemodenitrification in Estuarine and Coastal Sediments. Environmental Science & Technology, 2023, 57, 2660-2671.	4.6	12
494	Nitrous oxide (N ₂ O) synthesis by the freshwater cyanobacterium <i>Microcystis aeruginosa</i> . Biogeosciences, 2023, 20, 687-693.	1.3	4
495	Star-exoplanet interactions: A growing interdisciplinary field in heliophysics. Frontiers in Astronomy and Space Sciences, 0, 10, .	1.1	2
496	A call for immediate climate action in anesthesiology: routine use of minimal or metabolic fresh gas flow reduces our ecological footprint. Canadian Journal of Anaesthesia, 2023, 70, 301-312.	0.7	11
497	Responses of Nitrous Oxide Emissions and Bacterial Communities to Experimental Freeze–Thaw Cycles in Contrasting Soil Types. Microorganisms, 2023, 11, 593.	1.6	4
498	Evaluation of site position and tillage effects on global warming potential from furrow-irrigated rice in the mid-southern USA. Geoderma Regional, 2023, 32, e00625.	0.9	4
499	Soil profile N2O efflux from a cotton field in arid Northwestern China in response to irrigation and nitrogen management. Frontiers in Environmental Science, 0, 11, .	1.5	3
500	Quantifying patterns, sources and uncertainty of nitrous oxide emissions from global grazing lands: Nitrogen forms are the determinant factors for estimation and mitigation. Global and Planetary Change, 2023, 223, 104080.	1.6	2
501	Hot moment of N2O emissions in seasonally frozen peatlands. ISME Journal, 2023, 17, 792-802.	4.4	3
502	The role of rice farmers' attitude and trust in government in decision-making for participating in a climate-related agri-environmental scheme. Journal of Environmental Planning and Management, 0, , 1-22.	2.4	1
503	Interactions in Ammonia and Hydrogen Oxidation Examined in a Flow Reactor and a Shock Tube. Journal of Physical Chemistry A, 2023, 127, 2351-2366.	1.1	6
504	Modelling nitrous oxide emissions: comparing algorithms in six widely used agro-ecological models. Soil Research, 2023, 61, 523-541.	0.6	2
505	Increased N2O emission due to paddy soil drainage is regulated by carbon and nitrogen availability. Geoderma, 2023, 432, 116422.	2.3	8
506	Nonlinear response of N2OÂand N2 emissions to increasing soil nitrate availability in a tropical sugarcane soil. Journal of Soils and Sediments, 2023, 23, 2065-2071.	1.5	3
507	Spatio-Temporal Difference in Agricultural Eco-Efficiency and Its Influencing Factors Based on the SBM-Tobit Models in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 2023, 20, 4786.	1.2	1

#	Article	IF	Citations
508	Spatial and Seasonal Variability of Hydroxylamine Concentrations in a Humanâ€Impacted Estuary Off Southeast China. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1
509	Nitrous oxide emission and its influencing factors at the cyanobacteria-dominated lake. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 483-492.	0.3	0
510	Understanding the relative contributions of fungi and bacteria led nitrous oxide emissions in an acidic soil amended with industrial waste. Ecotoxicology and Environmental Safety, 2023, 255, 114727.	2.9	1
511	Agricultural emissions reduction potential by improving technical efficiency in crop production. Agricultural Systems, 2023, 207, 103620.	3.2	8
512	Impacts of extreme climate on nitrogen loss in different forms and pollution risk with the copula model. Journal of Hydrology, 2023, 620, 129412.	2.3	1
513	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2019. Earth System Science Data, 2023, 15, 1197-1268.	3.7	6
514	Reconstructing high-resolution in-situ vertical carbon dioxide profiles in the sparsely monitored Asian monsoon region. Communications Earth & Environment, 2023, 4, .	2.6	7
515	National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 2023, 10, .	2.4	46
516	Nutrient Pollution. , 2023, , 873-893.		0
517	Red clover root-associated microbiota is shaped by geographic location and choice of farming system. Journal of Applied Microbiology, 2023, 134, .	1.4	2
518	Response patterns of simulated corn yield and soil nitrous oxide emission to precipitation change. Ecological Processes, 2023, 12, .	1.6	0
519	Adding inhibitors to manure injections can mitigate nitrous oxide emissions from barley croplands. Nutrient Cycling in Agroecosystems, 2023, 126, 81-100.	1.1	0
522	Advantages and limitations of different electrochemical NH3 production methods under ambient conditions: A review. Current Opinion in Electrochemistry, 2023, 39, 101292.	2.5	2
523	How does the phytoplankton–light feedback affect the marine N ₂ O inventory?. Earth System Dynamics, 2023, 14, 399-412.	2.7	3
524	Nitrous oxide emissions from trees planted on a closed landfill site. AIMS Environmental Science, 2023, 10, 313-324.	0.7	0
525	Electrocatalytic Synthesis of Essential Amino Acids from Nitric Oxide Using Atomically Dispersed Fe on Nâ€doped Carbon. Angewandte Chemie - International Edition, 2023, 62, .	7.2	34
526	Electrocatalytic Synthesis of Essential Amino Acids from Nitric Oxide Using Atomically Dispersed Fe on Nâ€doped Carbon. Angewandte Chemie, 2023, 135, .	1.6	1
527	Sustainable agriculture for food and nutritional security. , 2023, , 25-90.		3

CITATION REPORT ARTICLE IF CITATIONS Co-designing Electrocatalytic Systems with Separations To Improve the Sustainability of Reactive 5.5 4 Nitrogen Management. ACS Catalysis, 2023, 13, 6268-6279. Recreational drug-use as an urban source of nitrous oxide. Environmental Science Atmospheres, 0, , . Improving nitrogen fertilizer use efficiency and minimizing losses and global warming potential by optimizing applications and using nitrogen synergists in a maize-wheat rotation. Agriculture, 2.5 6 Ecosystems and Environment, 2023, 353, 108538. Research Progress on the Effects of Droughts and Floods on Nitrogen in Soil–Plant Ecosystems. 0.3 Lecture Notes in Civil Engineering, 2023, , 431-441. Nitrification: Process, organisms and management., 2023, , 253-260. 0 Urgent abatement of industrial sources of nitrous oxide. Nature Climate Change, 2023, 13, 599-601. 8.1 Environmental impact of propulsion systems and green alternatives., 2023, , 513-551. 1 Investigation of Transport Pollutant Emissions and Their Associated Health Impacts in North Indian 0.3 Region. Lecture Notes in Civil Engineering, 2023, , 443-465. Atmospheric Mixing Ratio of Greenhouse Gases and Radiative Forcing., 2023, 967-995. 0 Dicke Luft – Feinstaub, NOx, CO2 & amp; Co. , 2023, , 113-138. Benefits and limitations of biochar for climate-smart agriculture: a review and case study from China. 7 6.2 Biochar, 2023, 5, . Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, . Biobased and Agricultural Transitions., 2023, , 122-138. 0 Impacts of nitrogen deposition on soil nitrous oxide emissions in global forests., 2024, 169-179. The potential environmental and climate impacts of stratospheric aerosol injection: a review. 0.9 0 Environmental Science Atmospheres, 2024, 4, 114-143. Agriculture's Contribution to the Emission of Greenhouse Gas Nitrous Oxide (N₂O) and Its Feasible Mitigation Strategies., 0,,.

801 Sustainable Farming through Precision Agriculture: Enhancing Nitrogen Use and Weed Management. , 0, , .

0

528

529

530

549

564

611

663

664

690

721