Mapping Crop Types in Southeast India with Smartpho

Remote Sensing 12, 2957 DOI: 10.3390/rs12182957

Citation Report

#	Article	IF	CITATIONS
1	Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability, 2021, 13, 503.	3.2	49
2	Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sensing, 2021, 13, 700.	4.0	58
3	Using satellite imagery to understand and promote sustainable development. Science, 2021, 371, .	12.6	138
4	Biotic Yield Losses in the Southern Amazon, Brazil: Making Use of Smartphone-Assisted Plant Disease Diagnosis Data. Frontiers in Plant Science, 2021, 12, 621168.	3.6	12
5	Open-air grape classification and its application in parcel-level risk assessment of late frost in the eastern Helan Mountains. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174, 132-150.	11.1	6
6	Prediction Approaches for Smart Cultivation: A Comparative Study. Complexity, 2021, 2021, 1-16.	1.6	11
7	Using Sentinel-1, Sentinel-2, and Planet Imagery to Map Crop Type of Smallholder Farms. Remote Sensing, 2021, 13, 1870.	4.0	34
8	Mapping smallholder forest plantations in Andhra Pradesh, India using multitemporal harmonized landsat sentinelâ€⊋Â <scp>S10</scp> data. Land Degradation and Development, 2021, 32, 4212-4226.	3.9	3
9	Mapping Crop Types and Cropping Systems in Nigeria with Sentinel-2 Imagery. Remote Sensing, 2021, 13, 3523.	4.0	29
10	Do Digital Climate Services for Farmers Encourage Resilient Farming Practices? Pinpointing Gaps through the Responsible Research and Innovation Framework. Agriculture (Switzerland), 2021, 11, 953.	3.1	12
11	Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	29
12	Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sensing, 2021, 13, 4387.	4.0	58
13	Farm-n-Pedia: Expert mobile agricultural knowledge-based system for Indian Farmers. International Journal of Research in Business and Social Science, 2021, 10, 27-39.	0.3	0
14	Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environmental Research Letters, 2021, 16, 125002.	5.2	21
15	High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sensing, 2021, 13, 4609.	4.0	30
16	Assessing the Impact of Segmentation on Wheat Stripe Rust Disease Classification Using Computer Vision and Deep Learning. IEEE Access, 2021, 9, 164986-165004.	4.2	11
17	A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability. Remote Sensing, 2022, 14, 646.	4.0	36
18	Mapping Sugarcane in Central India with Smartphone Crowdsourcing. Remote Sensing, 2022, 14, 703.	4.0	9

TATION REDO

#	Article	IF	CITATIONS
19	Agricultural Information Needs and Research Priorities for Remote Sensing in South and Southeast Asian Countries. , 2022, , 1-29.		0
20	Optical Remote Sensing Image Understanding With Weak Supervision: Concepts, methods, and perspectives. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 250-269.	9.6	24
21	Data Fusion in Earth Observation and the Role of Citizen as a Sensor: A Scoping Review of Applications, Methods and Future Trends. Remote Sensing, 2022, 14, 1263.	4.0	6
22	Classifying surface fuel types based on forest stand photographs and satellite time series using deep learning. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102799.	1.9	2
23	A deep learning image segmentation model for agricultural irrigation system classification. Computers and Electronics in Agriculture, 2022, 198, 106977.	7.7	17
24	Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sensing, 2022, 14, 2404.	4.0	18
25	Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security. GIScience and Remote Sensing, 2022, 59, 1048-1077.	5.9	17
26	A new approach for crop type mapping in satellite images using hybrid deep capsule auto encoder. Knowledge-Based Systems, 2022, 256, 109881.	7.1	4
28	Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0. Applied Sciences (Switzerland), 2022, 12, 11828.	2.5	10
29	Assessing the severity of cotton Verticillium wilt disease from in situ canopy images and spectra using convolutional neural networks. Crop Journal, 2023, 11, 933-940.	5.2	2
30	A new method for classifying maize by combining the phenological information of multiple satellite-based spectral bands. Frontiers in Environmental Science, 0, 10, .	3.3	2
31	Secured MCDM Model for Crowdsource Business Intelligence. Applied Sciences (Switzerland), 2023, 13, 1511.	2.5	2
32	State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture (Switzerland), 2023, 13, 707.	3.1	21
33	Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sensing, 2023, 15, 2014.	4.0	20
34	Demonstration of large area land cover classification with a one dimensional convolutional neural network applied to single pixel temporal metric percentiles. Remote Sensing of Environment, 2023, 295, 113653.	11.0	7
35	Crop mapping using supervised machine learning and deep learning: a systematic literature review. International Journal of Remote Sensing, 2023, 44, 2717-2753.	2.9	5
36	An interactive and iterative method for crop mapping through crowdsourcing optimized field samples. International Journal of Applied Earth Observation and Geoinformation, 2023, 122, 103409.	1.9	0
37	Semantic segmentation of satellite images for crop type identification in smallholder farms. Journal of Supercomputing, 0, , .	3.6	0

CITATION REPORT

#	Article	IF	CITATIONS
38	Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information. Geographies, 2023, 3, 563-573.	1.5	0
39	Machine Learning-Driven Remote Sensing Applications for Agriculture in India—A Systematic Review. Agronomy, 2023, 13, 2302.	3.0	2
40	Annual Field-Scale Maps of Tall and Short Crops at the Global Scale Using GEDI and Sentinel-2. Remote Sensing, 2023, 15, 4123.	4.0	3
41	A Study on Food Classification and its Significance in Promoting Tourism and Boosting the Economy. , 2023, , .		0
42	Machine learning for food security: current status, challenges, and future perspectives. Artificial Intelligence Review, 2023, 56, 3853-3876.	15.7	0
43	Merging multiple sensing platforms and deep learning empowers individual tree mapping and species detection at the city scale. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 206, 201-221.	11.1	1
44	In-Season Wall-to-Wall Crop-Type Mapping Using Ensemble of Image Segmentation Models. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-11.	6.3	0
46	A Fast Generative Adversarial Network Combined With Transformer for Downscaling GRACE Terrestrial Water Storage Data in Southwestern China. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1-16.	6.3	0
47	Classifying raw irregular time series (CRIT) for large area land cover mapping by adapting transformer model. Science of Remote Sensing, 2024, 9, 100123.	4.8	0
48	Assessing and addressing the global state of food production data scarcity. Nature Reviews Earth & Environment, 2024, 5, 295-311.	29.7	0