Recent advances in porphyrin-based nanocomposites for therapy

Biomaterials

232, 119707

DOI: 10.1016/j.biomaterials.2019.119707

Citation Report

#	Article	IF	CITATIONS
1	Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug delivery and theranostics. International Journal of Pharmaceutics, 2020, 590, 119920.	5.2	7
2	Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. Advanced Powder Technology, 2020, 31, 4064-4071.	4.1	64
3	lonic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy. Dalton Transactions, 2020, 49, 17772-17778.	3.3	128
4	<p>Honokiol-mesoporous Silica Nanoparticles Inhibit Vascular Restenosis via the Suppression of TGF-Î ² Signaling Pathway</p>. International Journal of Nanomedicine, 2020, Volume 15, 5239-5252.	6.7	6
5	Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 116-126.	3.4	24
6	Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Development and Industrial Pharmacy, 2020, 46, 1535-1549.	2.0	32
7	<p>Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine</p> . International Journal of Nanomedicine, 2020, Volume 15, 4205-4224.	6.7	80
8	<p>Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4237-4256.	6.7	28
9	Green synthesis of CuO- and Cu $<$ sub $>$ 2 $<$ /sub $>$ O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. Nanotechnology, 2020, 31, 425101.	2.6	38
10	Biocompatible melanin based theranostic agent for <i>in vivo</i> detection and ablation of orthotopic micro-hepatocellular carcinoma. Biomaterials Science, 2020, 8, 4322-4333.	5.4	20
11	Photophysics of J-Aggregating Porphyrin-Lipid Photosensitizers in Liposomes: Impact of Lipid Saturation. Langmuir, 2020, 36, 5385-5393.	3.5	27
12	Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release, 2020, 322, 566-592.	9.9	107
13	Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. Journal of Drug Delivery Science and Technology, 2020, 57, 101715.	3.0	52
14	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	5.6	52
15	Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Advanced Therapeutics, 2021, 4, 2000076.	3.2	61
16	Versatile labeling of multiple radionuclides onto a nanoscale metal–organic framework for tumor imaging and radioisotope therapy. Biomaterials Science, 2021, 9, 2947-2954.	5.4	20
17	Recent advances in phase change material based nanoplatforms for cancer therapy. Nanoscale Advances, 2021, 3, 106-122.	4.6	24
18	Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals, 2021, 14, 101.	3.8	16

#	Article	IF	CITATIONS
19	Gold-based nanomaterials for the treatment of brain cancer. Cancer Biology and Medicine, 2021, 18, 372-387.	3.0	18
20	Controllable Drug Delivery by Na+/K+ ATPase $\hat{l}\pm 1$ Targeting Peptide Conjugated DSPE-PEG Nanocarriers for Breast Cancer. Technology in Cancer Research and Treatment, 2021, 20, 153303382110278.	1.9	4
21	Design of metal–organic framework composites in anti-cancer therapies. Nanoscale, 2021, 13, 12102-12118.	5.6	18
22	Water Solubilization and Thermal Stimuli-Triggered Release of Porphyrin Derivatives Using Thermoresponsive Polysaccharide Hydroxypropyl Cellulose for Mitochondria-Targeted Photodynamic Therapy. ACS Omega, 2021, 6, 3209-3217.	3.5	15
23	Zn-rich (GaN) $<$ sub $>$ 1â^'x $<$ /sub $>$ (ZnO) $<$ sub $>$ x $<$ /sub $>$: a biomedical friend?. New Journal of Chemistry, 2021, 45, 4077-4089.	2.8	26
24	Self-Assembly of Discrete Porphyrin/Calix[4]tube Complexes Promoted by Potassium Ion Encapsulation. Molecules, 2021, 26, 704.	3.8	9
25	Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. Biology, 2021, 10, 173.	2.8	53
26	Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Applied Nano Materials, 2021, 4, 911-948.	5.0	29
27	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	3.3	30
28	Polymer-Coated NH ₂ -UiO-66 for the Codelivery of DOX/pCRISPR. ACS Applied Materials & amp; Interfaces, 2021, 13, 10796-10811.	8.0	80
29	Ultrasound activated nanosensitizers for sonodynamic therapy and theranostics. Biomedical Materials (Bristol), 2021, 16, 022008.	3.3	21
30	Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Scientific Reports, 2021, 11, 6604.	3.3	28
31	Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake. ACS Nano, 2021, 15, 9495-9508.	14.6	13
32	Chlorophylls derivatives: Photophysical properties, assemblies, nanostructures and biomedical applications. Materials Today, 2021, 45, 77-92.	14.2	46
33	Targeted Drug Delivery: Trends and Perspectives. Current Drug Delivery, 2021, 18, 1435-1455.	1.6	38
34	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	4.6	57
35	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	18.8	82
36	Super Magnetic Niosomal Nanocarrier as a New Approach for Treatment of Breast Cancer: A Case Study on SK-BR-3 and MDA-MB-231 Cell Lines. International Journal of Molecular Sciences, 2021, 22, 7948.	4.1	36

#	ARTICLE	IF	CITATIONS
37	Recent advances in the development of near-infrared organic photothermal agents. Chemical Engineering Journal, 2021, 417, 128844.	12.7	86
38	Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. Nano-Micro Letters, 2021, 13, 182.	27.0	33
39	Dynamic nanoassembly-based drug delivery systems on the horizon. Journal of Controlled Release, 2021, 339, 547-552.	9.9	5
40	Green carbon-based nanocompositeÂbiomaterials through the lens of microscopes. Emergent Materials, 2022, 5, 665-671.	5.7	12
41	ROSâ€Catalytic Transitionâ€Metalâ€Based Enzymatic Nanoagents for Tumor and Bacterial Eradication. Advanced Functional Materials, 2022, 32, 2107530.	14.9	67
42	Effect of pH on lipid oxidation mediated by hemoglobin in washed chicken muscle. Food Chemistry, 2022, 372, 131253.	8.2	2
43	Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 679128.	4.1	10
44	2D MOF Periodontitis Photodynamic Ion Therapy. Journal of the American Chemical Society, 2021, 143, 15427-15439.	13.7	161
45	High-performance porphyrin-like graphene quantum dots for immuno-sensing of Salmonella typhi. Biosensors and Bioelectronics, 2021, 188, 113334.	10.1	22
46	Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer. Microporous and Mesoporous Materials, 2021, 325, 111337.	4.4	26
47	Non-symmetric porphyrins encapsulated in liposomes: Tumor cell destruction via non-photodynamic activity. Dyes and Pigments, 2021, 195, 109746.	3.7	0
48	Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coordination Chemistry Reviews, 2021, 447, 214155.	18.8	56
49	Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. Journal of Hazardous Materials, 2022, 423, 127130.	12.4	34
50	Recent advances in covalent organic frameworks for cancer diagnosis and therapy. Biomaterials Science, 2021, 9, 5745-5761.	5.4	33
51	A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 5547-5559.	5.8	14
52	Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomedical Physics and Engineering Express, 2020, 6, 055015.	1.2	9
53	Agâ€Coupled Polymeric Nanohybrids with Synergistic Photodynamic and Photothermal Activities for Advanced Antibacterial Therapy. ChemNanoMat, 2022, 8, .	2.8	2
54	Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications. Biomolecules, 2021, 11, 1714.	4.0	21

#	Article	IF	CITATIONS
55	Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials, 2021, 14, 7277.	2.9	44
56	Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Applied Bio Materials, 2021, 4, 8110-8128.	4.6	17
57	Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 2022, 335, 111670.	4.4	65
58	CHITOSAN-DERIVATIVES IN COMBINATIONS WITH SELECTED PORPHYRINOIDS AS NOVEL HYBRID MATERIALS FOR MEDICINE AND PHARMACY. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 63-78.	0.1	1
59	Evaluation and Characterization of Ultrathin Poly(3-hydroxybutyrate) Fibers Loaded with Tetraphenylporphyrin and Its Complexes with Fe(III) and Sn(IV). Polymers, 2022, 14, 610.	4.5	4
60	Water-Soluble Porphyrin-Based Nanoparticles Derived from Electrostatic Interaction for Enhanced Photodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 881-888.	4.6	7
61	Porphyrinâ€Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect, 2021, 6, 14082-14099.	1.5	16
62	Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. Journal of Bioresources and Bioproducts, 2021, 6, 215-222.	20.5	46
63	Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. Journal of Medicinal Chemistry, 2022, 65, 2-36.	6.4	31
64	Graphene quantum dot-porphyrin/phthalocyanine multifunctional hybrid systems: from interfacial dialogue to application. Biomaterials Science, 2022, 10, 1647-1679.	5.4	10
65	"Biomedical Applications of Porphyrin Nanohybrids― Materials Horizons, 2022, , 333-350.	0.6	0
66	Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS Applied Bio Materials, 2022, 5, 1305-1318.	4.6	65
67	Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. International Journal of Nanomedicine, 2022, Volume 17, 1035-1068.	6.7	25
68	Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews, 2022, 9, .	11.3	50
69	Photoacoustic Effect of Near-Infrared Absorbing Organic Molecules via Click Chemistry. Molecules, 2022, 27, 2329.	3.8	0
70	Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science and Technology, 2022, 123, 198-209.	15.1	69
71	Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of the Total Environment, 2022, 825, 153902.	8.0	31
72	Application of Phytotests to Study of Environmental Safety of Biologicaly Synthetised Au and Au/ZnO Nanoparticles Using Tanacetum parthenium Extract. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1354-1369.	3.7	3

#	ARTICLE	IF	CITATIONS
73	A Nano Approach to Formulate Photosensitizers for Photodynamic Therapy. Current Nanoscience, 2022, 18, 675-689.	1.2	11
74	Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomaterials Science, 2022, 10, 3006-3016.	5.4	10
75	Application of metalloporphyrin sensitizers for the treatment or diagnosis of tumors. Journal of Chemical Research, 2022, 46, 174751982210909.	1.3	2
76	New Cysteine-Containing PEG-Glycerolipid Increases the Bloodstream Circulation Time of Upconverting Nanoparticles. Molecules, 2022, 27, 2763.	3.8	1
77	Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules, 2022, 27, 3111.	3.8	5
78	Molecular imaging nanoprobes for theranostic applications. Advanced Drug Delivery Reviews, 2022, 186, 114320.	13.7	41
79	Porphyrin-based metal–organic frameworks: focus on diagnostic and therapeutic applications. Journal of Nanostructure in Chemistry, 2024, 14, 167-208.	9.1	0
80	Comparison of engineered cartilage based on <scp>BMSCs</scp> and chondrocytes seeded on <scp>PVA</scp> ― <scp>PPU</scp> scaffold in a sheep model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	3.4	0
81	Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coordination Chemistry Reviews, 2022, 467, 214599.	18.8	42
82	Porphyrins as Chelating Agents for Molecular Imaging in Nuclear Medicine. Molecules, 2022, 27, 3311.	3.8	5
83	Electrically conductive carbonâ€based (bio)â€nanomaterials for cardiac tissue engineering. Bioengineering and Translational Medicine, 2023, 8, .	7.1	29
84	Construction of D–A-Conjugated Covalent Organic Frameworks with Enhanced Photodynamic, Photothermal, and Nanozymatic Activities for Efficient Bacterial Inhibition. ACS Applied Materials & Amp; Interfaces, 2022, 14, 28289-28300.	8.0	32
85	Aggregation-Induced Emission Photosensitizer Synergizes Photodynamic Therapy and the Inhibition of the NF-κB Signaling Pathway to Overcome Hypoxia in Breast Cancer. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29613-29625.	8.0	8
86	Porphyrinoids coated silica nanoparticles capacitive sensors for COVID-19 detection from the analysis of blood serum volatolome. Sensors and Actuators B: Chemical, 2022, 369, 132329.	7.8	3
87	CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere, 2022, 306, 135578.	8.2	28
88	Interaction between meso-tetra-(4-hydroxyphenyl)porphyrin and SDS in aqueous solutions: Premicellar porphyrin-surfactant J-aggregate formation. Chemical Physics, 2022, 562, 111655.	1.9	1
89	Customizing nano-chitosan for sustainable drug delivery. Journal of Controlled Release, 2022, 350, 175-192.	9.9	94
90	Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Advances, 2022, 12, 22722-22747.	3.6	16

#	Article	IF	CITATIONS
91	Synthesis of conjugates of 5,15-disubstituted aminoporphyrins and terpyridine derivatives with potential chelating properties. Mendeleev Communications, 2022, 32, 675-677.	1.6	2
92	Synthesis of Carbon-Encapsulated Magnetic Iron Oxide Nanocomposites for Bioapplication. International Journal of Biomaterials, 2022, 2022, 1-5.	2.4	2
93	Enhanced photothermal heating and combination therapy of gold nanoparticles on a breast cell model. BMC Chemistry, 2022, 16 , .	3.8	8
94	Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	1.2	2
95	Chitosanâ€based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioengineering and Translational Medicine, 2023, 8, .	7.1	32
96	Highly efficient solar-absorber composite material based on tetrapyridylporphyrin for water evaporation and thermoelectric power generation. RSC Advances, 2022, 12, 28997-29002.	3.6	5
97	Porphysomes and Porphyrin-Based Nanomaterials for Drug Delivery System. Nanotechnology in the Life Sciences, 2022, , 281-312.	0.6	0
98	Imaging-Guided Synergistic Photo-Chemotherapy Using Doxorubicin-Loaded Gadolinium Porphyrin-Based Metal–Organic Framework Nanosheets. ACS Applied Nano Materials, 2022, 5, 15318-15327.	5.0	5
99	High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. Chinese Chemical Letters, 2023, 34, 107945.	9.0	3
100	Engineered Biomimetic Membranes for Organ-on-a-Chip. ACS Biomaterials Science and Engineering, 2022, 8, 5038-5059.	5.2	15
101	Enhanced cytotoxic effect of doxorubicin conjugated gold nanoparticles on breast cancer model. BMC Chemistry, 2022, 16, .	3.8	8
102	In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. Advanced Materials, 2023, 35, .	21.0	21
103	Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Delivery and Translational Research, 2023, 13, 716-737.	5.8	26
104	Self-assembly of monomeric porphyrin molecules into nanostructures: Self-assembly pathways and applications for sensing and environmental treatment. Environmental Technology and Innovation, 2023, 29, 103019.	6.1	5
105	Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. Inorganic Chemistry Communication, 2023, 149, 110359.	3.9	2
106	Recent Advances in Tetrakis (4 arboxyphenyl) Porphyrinâ€Based Nanocomposites for Tumor Therapy. Advanced NanoBiomed Research, 2023, 3, .	3.6	2
107	Ultrasound assisted based solid phase extraction for the preconcentration and spectrophotometric determination of malachite green and methylene blue in water samples. Arabian Journal of Chemistry, 2023, 16, 104868.	4.9	6
108	Organization of the Interfacial Film of Nanoemulsions Stabilized by Porphyrin Derivatives. Langmuir, 2023, 39, 1364-1372.	3.5	0

#	Article	IF	CITATIONS
109	Acceptor substitution engineering of BODIPY-based organic photosensitizers with aggregation-induced emission for organelle localization and photodynamic anticancer therapy. Materials and Design, 2023, 228, 111838.	7.0	8
110	Glycopolymeric Photosensitizers with Cholic Acid for HepG2-Targeted Chemo-Photodynamic Synergistic Therapy. Biomacromolecules, 2023, 24, 2301-2313.	5.4	2
111	3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. International Journal of Biological Macromolecules, 2023, 242, 124697.	7.5	7
112	Metal-organic framework nanoshell structures: Preparation and biomedical applications. Coordination Chemistry Reviews, 2023, 490, 215211.	18.8	22
114	Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Frontiers in Oncology, $0,13,\ldots$	2.8	3
115	Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Military Medical Research, 2023, 10, .	3.4	5
116	Research development of porphyrin-based metal–organic frameworks: targeting modalities and cancer therapeutic applications. Journal of Materials Chemistry B, 2023, 11, 6172-6200.	5.8	5
117	Nanomaterials for photothermal cancer therapy. RSC Advances, 2023, 13, 14443-14460.	3.6	11
118	A Novel Zâ€Scheme Heterostructured Bi ₂ S ₃ /Cuâ€TCPP Nanocomposite with Synergistically Enhanced Therapeutics against Bacterial Biofilm Infections in Periodontitis. Small, 2023, 19, .	10.0	9
119	Preparation of twoâ€dimensional porphyrinâ€based MOFs/derivatives and their potential in sensing and biomedical applications. , 2023, 1, .		2
120	Porphyrins Embedded in Translucent Polymeric Substrates: Fluorescence Preservation and Molecular Docking Studies. Journal of Fluorescence, 0, , .	2.5	0
121	Supramolecular Strategy for the Design of Nanocarriers for Drugs and Natural Bioactives: Current State of the Art (A Review). Russian Journal of General Chemistry, 2023, 93, 1867-1899.	0.8	0
122	Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2023, 248, 112796.	3.8	4
123	Advancement in Biopolymer Assisted Cancer Theranostics. ACS Applied Bio Materials, 2023, 6, 3959-3983.	4.6	4
124	Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomaterials Science, 2023, 11, 7489-7511.	5.4	0
125	Electrochemical Immunosensor Based on Al-TCPP Nanomaterial Adsorption Aggregation Signal Amplification for the Detection of Dengue Virus NS1 Protein. Electrocatalysis, 0, , .	3.0	0
126	Recent advances in surface-mounted metal–organic framework thin film coatings for biomaterials and medical applications: a review. Biomaterials Research, 2023, 27, .	6.9	3
127	Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjugate Chemistry, 2023, 34, 2155-2180.	3.6	2

#	Article	IF	CITATIONS
128	O ₂ -Generating Fluorescent Carbon Dot-Decorated MnO ₂ Nanosheets for "Off/On―MR/Fluorescence Imaging and Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 0, , .	8.0	1
129	Nitrogen vacancy-rich carbon nitride anchored with iron atoms for efficient redox dyshomeostasis under ultrasound actuation. Biomaterials, 2024, 305, 122446.	11.4	O
130	Porphyrinsâ€"valuable pigments of life. , 0, 2, .		0
131	Research progress of organic photothermal agents delivery and synergistic therapy systems. Colloids and Surfaces B: Biointerfaces, 2024, 234, 113743.	5.0	0
132	Self-healing of epoxy nanocomposites using Diels-Alder adduct grafted graphitic nanoplatelets. Results in Surfaces and Interfaces, 2024, 14, 100187.	2.4	1
133	Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives. Molecules, 2024, 29, 611.	3.8	0
134	From biomaterials to biotherapy: cuttlefish ink with protoporphyrin IX nanoconjugates for synergistic sonodynamic-photothermal therapy. Journal of Materials Chemistry B, 2024, 12, 1837-1845.	5.8	0
135	Encapsulation and functionalization strategies of organic phase change materials in medical applications. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	O
136	Exploring and leveraging aggregation effects on reactive oxygen species generation in photodynamic therapy. Aggregate, 0 , , .	9.9	0
137	Glycopolymeric Photoactive Micelles for Glucose Transporter-Targeted Synergistic Combination Therapy. ACS Applied Polymer Materials, 2024, 6, 4149-4163.	4.4	0
138	In Situ Synthesis of Porphyrin-Based Hyper-Cross-Linked Sub-nanometer Porous Polymer for Carbon Dioxide Adsorption Applications. ACS Applied Nano Materials, 2024, 7, 6785-6790.	5.0	0