Highly efficient headâ€only magnetic field insert gradient high gradient amplitude and slew rate at 3.0T (MAGNUS

Magnetic Resonance in Medicine 83, 2356-2369 DOI: 10.1002/mrm.28087

Citation Report

#	Article	IF	CITATIONS
1	Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high-performance compact 3T scanner. Physics in Medicine and Biology, 2020, 65, 15NT02.	1.6	11
2	Oscillating diffusionâ€encoding with a high gradientâ€amplitude and high slewâ€rate headâ€only gradient for human brain imaging. Magnetic Resonance in Medicine, 2020, 84, 950-965.	1.9	22
3	Double diffusion encoding and applications for biomedical imaging. Journal of Neuroscience Methods, 2021, 348, 108989.	1.3	27
4	Optimization of MRI Gradient Coils With Explicit Peripheral Nerve Stimulation Constraints. IEEE Transactions on Medical Imaging, 2021, 40, 129-142.	5.4	23
5	Sensitive detection of extremely small iron oxide nanoparticles in living mice using MP2RAGE with advanced image co-registration. Scientific Reports, 2021, 11, 106.	1.6	8
6	PNS Estimation of a High Performance Head Gradient Coil by a Coupled Electromagnetic Neurodynamic Simulation Method. , 2021, , .		1
7	Time-dependent diffusion MRI probes cerebellar microstructural alterations in a mouse model of Down syndrome. Brain Communications, 2021, 3, fcab062.	1.5	8
8	PNS Analysis on Folded and Non-folded Gradient Coil Designs with a Coupled EM-Neurodynamic Simulation Method. , 2021, , .		0
10	A silent gradient axis for soundless spatial encoding to enable fast and quiet brain imaging. Magnetic Resonance in Medicine, 2022, 87, 1062-1073.	1.9	8
11	Scan-rescan repeatability of axonal imaging metrics using high-gradient diffusion MRI and statistical implications for study design. NeuroImage, 2021, 240, 118323.	2.1	8
12	Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. NeuroImage, 2021, 243, 118530.	2.1	58
13	The relationship between diffusion heterogeneity and microstructural changes in high-grade gliomas using Monte Carlo simulations. Magnetic Resonance Imaging, 2022, 85, 108-120.	1.0	2
14	MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. European Radiology Experimental, 2021, 5, 35.	1.7	5
15	MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. European Radiology Experimental, 2021, 5, 35.	1.7	33
16	Evaluating diffusion dispersion across an extended range of bâ€values and frequencies: Exploiting gapâ€filled OGSE shapes, strong gradients, and spiral readouts. Magnetic Resonance in Medicine, 2022, 87, 2710-2723.	1.9	5
17	What's new and what's next in diffusion MRI preprocessing. NeuroImage, 2022, 249, 118830.	2.1	43
18	Optimized multiâ€axis spiral projection <scp>MR</scp> fingerprinting with subspace reconstruction for rapid wholeâ€brain highâ€isotropicâ€resolution quantitative imaging. Magnetic Resonance in Medicine, 2022, 88, 133-150.	1.9	14
19	Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. NeuroImage, 2022, 254, 118958.	2.1	18

CITATION REPORT

#	Article	IF	CITATIONS
20	Integration of an RF coil and commercial field camera for ultrahighâ€field MRI. Magnetic Resonance in Medicine, 2022, 87, 2551-2565.	1.9	5
21	Physiological effects of human body imaging with 300 mT/m gradients. Magnetic Resonance in Medicine, 2022, 87, 2512-2520.	1.9	1
23	Systematic Dimensional Analysis of the Scaling Relationship for Gradient and Shim Coil Design Parameters. Magnetic Resonance in Medicine, 0, , .	1.9	4
25	Highâ€fidelity, highâ€spatialâ€resolution diffusion magnetic resonance imaging of ex vivo whole human brain at ultraâ€high gradient strength with structured lowâ€rank echoâ€planar imaging ghost correction. NMR in Biomedicine, 2023, 36, .	1.6	3
26	Gradient-Based Pulsed Excitation and Relaxation Encoding in Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 2022, 41, 3725-3733.	5.4	6
27	Multi-Channel, Actively Shielded, Power Efficient MRI Z-Gradient Cylindrical Coil Design Using Target-Field Method. IEEE Access, 2022, 10, 103840-103851.	2.6	2
28	Calibration of concomitant field offsets using phase contrast MRI for asymmetric gradient coils. Magnetic Resonance in Medicine, 0, , .	1.9	0
29	Advancements in Gradient System Performance for Clinical and Research <scp>MRI</scp> . Journal of Magnetic Resonance Imaging, 2023, 57, 57-70.	1.9	7
30	Tuned bipolar oscillating gradients for mapping frequency dispersion of diffusion kurtosis in the human brain. Magnetic Resonance in Medicine, 2023, 89, 756-766.	1.9	3
31	Peripheral Nerve Stimulation (PNS) Analysis of MRI Head Gradient Coils with Human Body Models. , 2023, , 39-57.		0
32	COnstrained Reference frame diffusion TEnsor Correlation Spectroscopic (CORTECS) MRI: A practical framework for high-resolution diffusion tensor distribution imaging. Frontiers in Neuroscience, 0, 16, .	1.4	4
33	Linear multiâ€scale modeling of diffusion <scp>MRI</scp> data: A framework for characterization of oriented structures across length scales. Human Brain Mapping, 0, , .	1.9	1
34	Commissioning of the Iseult CEA 11.7ÂT whole-body MRI: current status, gradient–magnet interaction tests and first imaging experience. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2023, 36, 175-189.	1.1	7
35	A novel framework for in-vivo diffusion tensor distribution MRI of the human brain. NeuroImage, 2023, 271, 120003.	2.1	3
36	Highâ€resolution motion―and phaseâ€corrected functional MRI at 7 T using shuttered multishot echoâ€planar imaging. Magnetic Resonance in Medicine, 2023, 89, 2227-2241.	1.9	0
38	Germany's journey toward 14 Tesla human magnetic resonance. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2023, 36, 191-210.	1.1	3
39	Peripheral nerve stimulation informed design of a highâ€performance asymmetric head gradient coil. Magnetic Resonance in Medicine, 2023, 90, 784-801.	1.9	5
51	Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms. Translational Psychiatry, 2023, 13, .	2.4	0

#	Article	IF	CITATIONS
54	B inhomogeneity: Causes and coping strategies. Advances in Magnetic Resonance Technology and Applications, 2023, , 75-96.	0.0	0