CITATION REPORT List of articles citing

Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendst

DOI: 10.1073/pnas.1821684116 Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12576-12583.

Source: https://exaly.com/paper-pdf/75359101/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
21	Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries. <i>Environmental Science & Environmental Science & Environm</i>	8 16- 12	818
20	Synthesizing High-Volume Chemicals from CO without Direct H Input. <i>ChemSusChem</i> , 2020 , 13, 6066-60	1889.3	6
19	A colloquium on the status and challenges in science for decarbonizing our energy landscape. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12541-1254.	2 ^{11.5}	2
18	Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. <i>Advances in Applied Microbiology</i> , 2020 , 113, 111-161	4.9	8
17	Technoeconomic analysis for biofuels and bioproducts. <i>Current Opinion in Biotechnology</i> , 2021 , 67, 58-6	411.4	24
16	Biorefinery ethanol upgrading: Opportunities and challenges. <i>Joule</i> , 2021 , 5, 524-526	27.8	
15	Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	18
14	Microbial production of advanced biofuels. <i>Nature Reviews Microbiology</i> , 2021 , 19, 701-715	22.2	24
13	Selective Butene Formation in Direct Ethanol-to-C3+-Olefin Valorization over ZnM/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen. <i>ACS Catalysis</i> , 2021 , 11, 7193	3-7209	5
12	Conversion of High-Solids Hydrothermally Pretreated Bioenergy Sorghum to Lipids and Ethanol Using Yeast Cultures. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 8515-8525	8.3	3
11	Isolated Metal Sites in Cuิเกษิ/Beta for Direct and Selective Butene-Rich C3+ Olefin Formation from Ethanol. <i>ACS Catalysis</i> , 2021 , 11, 9885-9897	13.1	4
10	Biojet fuel production from oleaginous crop residues: thermoeconomic, life cycle and flight performance analysis. <i>Energy Conversion and Management</i> , 2021 , 244, 114534	10.6	1
9	Advanced fuels from ethanol has superstructure optimization approach. <i>Energy and Environmental Science</i> , 2021 , 14, 493-506	35.4	5
8	Versatile One-Pot Tandem Conversion of Biomass-Derived Light Oxygenates into High-Yield Jet Fuel Range Aromatics. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 15095-15105	3.9	О
7	Future landscape of renewable fuel resources: Current and future conservation and utilization of main biofuel crops in China. <i>Science of the Total Environment</i> , 2022 , 806, 150946	10.2	1
6	Multifunctional Catalysts for Direct Conversion of Alcohols to Long-Chain Hydrocarbons via Deoxygenative Olefination. ACS Sustainable Chemistry and Engineering,	8.3	0
5	Towards cost-competitive middle distillate fuels from ethanol within a market-flexible biorefinery concept. <i>Green Chemistry</i> ,	10	O

CITATION REPORT

4	Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation. 2022 , 331-361		O
3	Relationship between ZSM-5 pore modifications and gallium proximity and liquid hydrocarbon number distribution from ethanol oligomerization. <i>Catalysis Science and Technology</i> ,	5.5	1
2	A Critical Review on Prospects of Bio-refinery Products from Second and Third Generation Biomasses. <i>Chemical Engineering Journal</i> , 2022 , 137677	14.7	4
1	Growth-uncoupled propanediol production in a Thermoanaerobacterium thermosaccharolyticum strain engineered for high ethanol yield. 2023 , 13,		Ο