Approaching Practically Accessible Solid-State Batteries Electrolytes and Interfaces

Chemical Reviews 120, 6820-6877

DOI: 10.1021/acs.chemrev.9b00268

Citation Report

#	Article	IF	CITATIONS
1	Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries. Materials Today Chemistry, 2020, 18, 100368.	3.5	21
2	Macroscopic Displacement Reaction of Copper Sulfide in Lithium Solidâ€State Batteries. Advanced Energy Materials, 2020, 10, 2002394.	19.5	37
3	Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chemical Science, 2020, 11, 8686-8707.	7.4	82
4	Fast Charge Transfer across the Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte/LiCoO ₂ Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture. ACS Applied Materials & Interfaces, 2020, 12, 36196-36207.	8.0	67
5	Structure promoted electrochemical behavior and chemical stability of Aglâ€doped solid electrolyte in sulfide glass system. Journal of the American Ceramic Society, 2020, 103, 6348-6355.	3.8	3
6	Adhesive Sulfide Solid Electrolyte Interface for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54876-54883.	8.0	30
7	Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ in Quasi-Solid-State Lithium Batteries. Journal of the American Chemical Society, 2020, 142, 20752-20762.	13.7	58
8	Enhanced Performance of Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ Solid Electrolyte by the Regulation of Grain and Grain Boundary Phases. ACS Applied Materials & Interfaces, 2020, 12, 56118-56125.	8.0	54
9	Materials Design Principles for Airâ€Stable Lithium/Sodium Solid Electrolytes. Angewandte Chemie, 2020, 132, 17625-17629.	2.0	13
10	Digital Twinâ€Driven Allâ€Solidâ€State Battery: Unraveling the Physical and Electrochemical Behaviors. Advanced Energy Materials, 2020, 10, 2001563.	19.5	42
11	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	47.7	468
12	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	38.1	461
13	Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithiumâ€ion Batteries for Electric Vehicles. Energy Technology, 2020, 8, 2000580.	3.8	48
14	Structure Design of Cathode Electrodes for Solidâ€ S tate Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	12.0	73
15	Cathode–Sulfide Solid Electrolyte Interfacial Instability: Challenges and Solutions. Frontiers in Energy Research, 2020, 0, .	2.3	4
16	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy and Environmental Science, 2020, 13, 3780-3822.	30.8	96
17	Homogeneous and Fast Ion Conduction of PEOâ€Based Solidâ€State Electrolyte at Low Temperature. Advanced Functional Materials, 2020, 30, 2007172.	14.9	246
18	Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials, 2020, 10, 1606.	4.1	179

#	Article	IF	CITATIONS
19	Dense Sphene-type Solid Electrolyte Through Rapid Sintering for Solid-state Lithium Metal Battery. Chemical Research in Chinese Universities, 2020, 36, 439-446.	2.6	11
20	Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles. ACS Applied Energy Materials, 2020, 3, 5101-5106.	5.1	14
21	A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020, 49, 3806-3833.	38.1	323
22	The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium. Joule, 2020, 4, 812-821.	24.0	197
23	Origin of Superionic Li ₃ Y _{1–<i>x</i>} In _{<i>x</i>} Cl ₆ Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.	9.1	94
24	Highly Conducting Bombyx mori Silk Fibroin-Based Electrolytes Incorporating Glycerol, Dimethyl Sulfoxide and [Bmim]PF ₆ . Journal of the Electrochemical Society, 2020, 167, 070551.	2.9	10
25	A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy and Environmental Science, 2020, 13, 2056-2063.	30.8	148
26	LISICON-Based Amorphous Oxide for Bulk-Type All-Solid-State Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 3220-3229.	5.1	43
27	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	17.4	176
28	Materials Design Principles for Airâ€Stable Lithium/Sodium Solid Electrolytes. Angewandte Chemie - International Edition, 2020, 59, 17472-17476.	13.8	120
29	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. Angewandte Chemie - International Edition, 2020, 59, 18457-18462.	13.8	4
30	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. Angewandte Chemie, 2020, 132, 18615-18620.	2.0	2
31	PEO-NaPF ₆ Blended Polymer Electrolyte for Solid State Sodium Battery. Journal of the Electrochemical Society, 2020, 167, 070523.	2.9	37
32	A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020, 3, 2916-2924.	5.1	73
33	Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid. Journal of the Electrochemical Society, 2020, 167, 070524.	2.9	135
34	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832.	17.4	192
35	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	47.7	255
36	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical	38.1	1,326

#	Article	IF	CITATIONS
37	Mechanical <i>vs.</i> chemical stability of sulphide-based solid-state batteries. Which one is the biggest challenge to tackle? Overview of solid-state batteries and hybrid solid state batteries. Journal of Materials Chemistry A, 2020, 8, 10150-10167.	10.3	34
38	Interfacial properties in energy storage systems studied by soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering. Journal of Chemical Physics, 2020, 152, 140901.	3.0	13
39	A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636.	4.1	43
40	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	14.2	64
41	Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40, 1357-1365.	7.1	27
42	Interfacial Reactions in Inorganic All‧olid‧tate Lithium Batteries. Batteries and Supercaps, 2021, 4, 8-38.	4.7	39
43	History of Solid Polymer Electrolyteâ€Based Solidâ€State Lithium Metal Batteries: A Personal Account. Israel Journal of Chemistry, 2021, 61, 94-100.	2.3	33
44	A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34, 282-300.	18.0	233
45	Battery materials for low-cost electric transportation. Materials Today, 2021, 42, 57-72.	14.2	98
46	Insight into cathode surface to boost the performance of solid-state batteries. Energy Storage Materials, 2021, 35, 661-668.	18.0	59
47	A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 2021, 59, 83-99.	12.9	768
48	Mixed lithium fluoride-nitride ionic conducting interphase for dendrite-free lithium metal anode. Applied Surface Science, 2021, 541, 148294.	6.1	4
49	Artificial Solidâ€Electrolyte Interphase for Lithium Metal Batteries. Batteries and Supercaps, 2021, 4, 445-455.	4.7	56
50	Atomistic analysis of Li migration in Li1+AlTi2â^'(PO4)3 (LATP) solid electrolytes. Solid State Ionics, 2021, 359, 115521.	2.7	23
51	Inorganic Solid Electrolytes for All‧olid‧tate Sodium Batteries: Fundamentals and Strategies for Battery Optimization. Advanced Functional Materials, 2021, 31, 2008165.	14.9	55
52	All-Solid-State Batteries with LiCoO ₂ -Type Electrodes: Realization of an Impurity-Free Interface by Utilizing a Cosinterable Li _{3.5} Ge _{0.5} V _{0.5} O ₄ Electrolyte. ACS Applied Energy Materials, 2021, 4, 30-34.	5.1	15
53	High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes. ACS Energy Letters, 2021, 6, 201-207.	17.4	37
54	Toward the Scaleâ€Up of Solidâ€State Lithium Metal Batteries: The Gaps between Labâ€Level Cells and Practical Largeâ€Format Batteries. Advanced Energy Materials, 2021, 11, 2002360.	19.5	103

#	Article	IF	CITATIONS
55	Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities. Energy and Environmental Science, 2021, 14, 975-985.	30.8	69
56	Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries. Materials Chemistry Frontiers, 2021, 5, 3681-3691.	5.9	17
57	Elasticity-oriented design of solid-state batteries: challenges and perspectives. Journal of Materials Chemistry A, 2021, 9, 13804-13821.	10.3	12
58	The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 18701-18732.	10.3	47
59	Organoboron ontaining Polymer Electrolytes for Highâ€Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2008632.	14.9	28
60	New Costâ€Effective Halide Solid Electrolytes for Allâ€Solidâ€State Batteries: Mechanochemically Prepared Fe ³⁺ â€Substituted Li ₂ ZrCl ₆ . Advanced Energy Materials, 2021, 11, 2003190.	19.5	132
61	Amorphous Dualâ€Layer Coating: Enabling High Liâ€lon Conductivity of Nonâ€Sintered Garnetâ€Type Solid Electrolyte. Advanced Functional Materials, 2021, 31, 2009692.	14.9	42
62	Iron oxide encapsulated titanium niobate nanotubes as a high-performance lithium-free anode for solid-state batteries. Journal of Materials Chemistry A, 2021, 9, 4880-4889.	10.3	10
63	Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy and Environmental Science, 2021, 14, 643-671.	30.8	200
64	New insights into Li distribution in the superionic argyrodite Li ₆ PS ₅ Cl. Chemical Communications, 2021, 57, 10787-10790.	4.1	11
65	Constructing a stable interface between the sulfide electrolyte and the Li metal anode <i>via</i> a Li ⁺ -conductive gel polymer interlayer. Materials Chemistry Frontiers, 2021, 5, 5328-5335.	5.9	12
66	Interplay between Li3YX6 (X = Cl or Br) solid electrolytes and the Li metal anode. Science China Materials, 2021, 64, 1378-1385.	6.3	21
67	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	30.8	201
68	Liquid metal batteries for future energy storage. Energy and Environmental Science, 2021, 14, 4177-4202.	30.8	149
69	Fundamental air stability in solid-state electrolytes: principles and solutions. Materials Chemistry Frontiers, 2021, 5, 7452-7466.	5.9	22
70	A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Materials Chemistry Frontiers, 2021, 5, 6294-6314.	5.9	35
71	Peculiarly fast Li-ion conduction mechanism in a succinonitrile-based molecular crystal electrolyte: a molecular dynamics study. Journal of Materials Chemistry A, 2021, 9, 14897-14903.	10.3	12
72	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	5.4	27

#	Article	IF	CITATIONS
73	Metal Organic Framework in Batteries. , 2021, , 125-125.		0
74	Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13388-13401.	10.3	43
75	Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Liâ€Based Rechargeable Batteries. Advanced Science, 2021, 8, 2003675.	11.2	172
76	Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solidâ€State Batteries. Advanced Materials, 2021, 33, e2008081.	21.0	53
77	Flexible Nanowire Cathode Membrane with Gradient Interfaces and Rapid Electron/Ion Transport Channels for Solid‧tate Lithium Batteries. Advanced Energy Materials, 2021, 11, 2100026.	19.5	39
78	Tortuosity Modulation toward Highâ€Energy and Highâ€Power Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003663.	19.5	46
79	Enhanced Performance of High Energy Density Lithium Metal Battery with PVDF-HFP/LAGP Composite Separator. ACS Applied Energy Materials, 2021, 4, 2578-2585.	5.1	25
80	Ensemble Design of Electrode–Electrolyte Interfaces: Toward High-Performance Thin-Film All-Solid-State Li–Metal Batteries. ACS Nano, 2021, 15, 4561-4575.	14.6	38
81	Interface Aspects in All‧olid‧tate Liâ€Based Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2003939.	19.5	66
82	Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance. ACS Applied Materials & Interfaces, 2021, 13, 11018-11025.	8.0	25
83	Ultrathin and Nonâ€Flammable Dualâ€Salt Polymer Electrolyte for Highâ€Energyâ€Density Lithiumâ€Metal Battery. Advanced Functional Materials, 2021, 31, 2010261.	14.9	78
84	Critical Current Density in Solidâ€State Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials, 2021, 31, 2009925.	14.9	239
85	Physical Vapor Deposition in Solid‣tate Battery Development: From Materials to Devices. Advanced Science, 2021, 8, e2002044.	11.2	55
86	Garnet Electrolytes with Ultralow Interfacial Resistance by SnS ₂ Coating for Dendrite-Free all-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 2873-2880.	5.1	13
87	Enhancing the electrochemical performance of a flexible solid-state supercapacitor using a gel polymer electrolyte. Materials Today Communications, 2021, 26, 102102.	1.9	15
88	Uranyl Peroxide Nanocage Assemblies for Solid-State Electrolytes. ACS Applied Nano Materials, 2021, 4, 3597-3603.	5.0	7
89	Current Trends in Nanoscale Interfacial Electrode Engineering for Sulfideâ€Based Allâ€Solidâ€State Liâ€Ion Batteries. Energy Technology, 2021, 9, 2001096.	3.8	17
90	Spontaneous In Situ Surface Alloying of Li-Zn Derived from a Novel Zn2+-Containing Solid Polymer Electrolyte for Steady Cycling of Li Metal Battery. ACS Sustainable Chemistry and Engineering, 2021, 9,	6.7	4

#	Article	IF	CITATIONS
91	Functionalized gel polymer electrolyte membrane for high performance Li metal batteries. Solid State Ionics, 2021, 361, 115572.	2.7	10
92	A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. Batteries, 2021, 7, 18.	4.5	41
93	Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2021, 32, 2659-2678.	9.0	79
94	Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science China Chemistry, 2021, 64, 879-898.	8.2	28
95	Nanophase-Separated, Elastic Epoxy Composite Thin Film as an Electrolyte for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 3611-3618.	9.1	47
96	Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews, 2021, 121, 4903-4961.	47.7	147
97	Tailoring Slurries Using Cosolvents and Li Salt Targeting Practical Allâ€Solidâ€State Batteries Employing Sulfide Solid Electrolytes. Advanced Energy Materials, 2021, 11, 2003766.	19.5	41
98	The Working Principle of a Li ₂ CO ₃ /LiNbO ₃ Coating on NCM for Thiophosphate-Based All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 2110-2125.	6.7	116
99	Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. ACS Applied Materials & Interfaces, 2021, 13, 18743-18749.	8.0	29
100	Atomistic Insights into the Effects of Doping and Vacancy Clustering on Li-Ion Conduction in the Li ₃ OCI Antiperovskite Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 5094-5100.	5.1	24
101	Flexible Quasi-Solid-State Composite Electrolyte of Poly (Propylene Glycol)-co-Pentaerythritol Triacry-Late/Li1.5Al0.5Ge1.5(PO4)3 for High-Performance Lithium-Sulfur Battery. Materials, 2021, 14, 1979.	2.9	7
102	3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries. Ionics, 2021, 27, 2857-2865.	2.4	22
103	A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature, 2021, 592, 551-557.	27.8	306
104	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	18.0	82
105	A composite electrolyte with Na3Zr2Si2PO12 microtube for solid-state sodium-metal batteries. Ceramics International, 2021, 47, 11156-11168.	4.8	13
106	Single―or Polyâ€Crystalline Niâ€Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for Allâ€Solidâ€State Batteries?. Advanced Energy Materials, 2021, 11, 2100126.	19.5	148
107	Fluorinated Bifunctional Solid Polymer Electrolyte Synthesized under Visible Light for Stable Lithium Deposition and Dendriteâ€Free Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2021, 31, 2101736.	14.9	65
108	Dislocations in ceramic electrolytes for solid-state Li batteries. Scientific Reports, 2021, 11, 8949.	3.3	14

#	Article	IF	Citations
109	A Polar and Ordered-Channel Composite Separator Enables Antidendrite and Long-Cycle Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25890-25897.	8.0	7
110	Designing Polymerâ€inâ€Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie, 2021, 133, 13041-13050.	2.0	30
111	Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Accounts of Chemical Research, 2021, 54, 2717-2728.	15.6	121
112	Enabling the thermal stability of solid electrolyte interphase in Liâ€ion battery. InformaÄnÃ-Materiály, 2021, 3, 648-661.	17.3	70
113	Designing Polymerâ€inâ€Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2021, 60, 12931-12940.	13.8	202
114	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	19.5	63
115	Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy, 2021, 83, 105858.	16.0	140
116	Practical Considerations for Testing Polymer Electrolytes for High-Energy Solid-State Batteries. ACS Energy Letters, 2021, 6, 2240-2247.	17.4	40
117	Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nature Reviews Materials, 2021, 6, 1003-1019.	48.7	409
118	Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022, 60, 14-36.	3.6	57
119	On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries. Materials Today Physics, 2021, 18, 100397.	6.0	23
120	Robust Li ₆ PS ₅ I Interlayer to Stabilize the Tailored Electrolyte Li _{9.95} SnP ₂ S _{11.95} F _{0.05} /Li Metal Interface. ACS Applied Materials & Interfaces, 2021, 13, 30739-30745.	8.0	24
121	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	13.8	80
122	Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries. , 2021, 3, 930-938.		80
123	A Selfâ€Limited Freeâ€Standing Sulfide Electrolyte Thin Film for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101985.	14.9	77
124	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	19.5	129
125	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	2.0	12
126	Progress in thermal stability of <scp>allâ€solidâ€stateâ€Liâ€ionâ€batteries</scp> . InformaÄnÃ-Materiály, 2021, 3 827-853.	³ , 17.3	126

#	Article	IF	CITATIONS
127	Covalent Organic Framework-Based Electrolytes for Fast Li ⁺ Conduction and High-Temperature Solid-State Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 5058-5066.	6.7	45
128	Organosiliconâ€Based Functional Electrolytes for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101057.	19.5	26
129	A Reflection on Lithiumâ€lon Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062.	5.8	7
130	Developing "Polymerâ€inâ€Salt―High Voltage Electrolyte Based on Composite Lithium Salts for Solidâ€State Li Metal Batteries. Advanced Functional Materials, 2021, 31, 2103049.	14.9	44
131	Modification strategies of Li7La3Zr2O12 ceramic electrolyte for high-performance solid-state batteries. Tungsten, 2021, 3, 260-278.	4.8	17
132	In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. Journal of Power Sources, 2021, 496, 229861.	7.8	49
133	<i>In Situ</i> / <i>Operando</i> Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle. Journal of Physical Chemistry C, 2021, 125, 16921-16937.	3.1	9
134	Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials, 2021, 33, 6029-6040.	6.7	28
135	Stable Cycling of a 4 V Class Lithium Polymer Battery Enabled by In Situ Cross-Linked Ethylene Oxide/Propylene Oxide Copolymer Electrolytes with Controlled Molecular Structures. ACS Applied Materials & Interfaces, 2021, 13, 35664-35676.	8.0	7
136	Superior Allâ€Solidâ€State Batteries Enabled by a Gasâ€Phaseâ€Synthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. Advanced Materials, 2021, 33, e2100921.	21.0	110
137	Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels, 2021, 35, 11118-11140.	5.1	16
138	Highâ€Temperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solidâ€State Electrolyte Scaffolds. Advanced Materials, 2021, 33, e2100726.	21.0	24
139	Analysis of the conductive properties and structural surroundings of sodium ions in GeGaSbS sulfur glass system. Journal of Physics and Chemistry of Solids, 2021, 154, 110001.	4.0	0
140	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	19.5	64
141	Two Carboxyl-Decorated Anionic Metal–Organic Frameworks as Solid-State Electrolytes Exhibiting High Li ⁺ and Zn ²⁺ Conductivity. Inorganic Chemistry, 2021, 60, 11032-11037.	4.0	26
142	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	9.9	47
143	Cu-Doped Alloy Layer Guiding Uniform Li Deposition on a Li–LLZO Interface under High Current Density. ACS Applied Materials & Interfaces, 2021, 13, 42212-42219.	8.0	23
144	Reaction Mechanisms of Ta-Substituted Cubic Li ₇ La ₃ Zr ₂ O ₁₂ with Solvents During Storage. ACS Applied Materials & Interfaces, 2021, 13, 38384-38393.	8.0	14

	CHATION R		
#	Article	IF	Citations
145	Stabilizing Ceramic-Based Electrolyte Interfaces with Self-Viscous Modification Strategy for Solid-State Lithium Batteries. Energy & amp; Fuels, 2021, 35, 13411-13418.	5.1	5
146	Stable Interfaces in a Sodium Metal-Free, Solid-State Sodium-Ion Battery with Gradient Composite Electrolyte. ACS Applied Materials & amp; Interfaces, 2021, 13, 39355-39362.	8.0	17
147	New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability. Energy Storage Materials, 2021, 39, 232-238.	18.0	36
148	A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling. Journal of Informetrics, 2021, 15, 101167.	2.9	15
149	A Versatile Li _{6.5} In _{0.25} P _{0.75} S ₅ I Sulfide Electrolyte Triggered by Ultimateâ€Energy Mechanical Alloying for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2101521.	19.5	55
150	Stabilization of NASICON-Type Electrolyte against Li Anode via an Ionic Conductive MOF-Incorporated Adhesive Interlayer. ACS Energy Letters, 2021, 6, 3141-3150.	17.4	32
151	In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39, 186-193.	18.0	98
152	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	14.9	102
153	Commercializationâ€Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. Small, 2021, 17, e2102233.	10.0	38
154	Airâ€stable inorganic solidâ€state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InformaÄnÃ-Materiály, 2022, 4, .	17.3	71
155	Synergistic Dissociationâ€andâ€Trapping Effect to Promote Liâ€Ion Conduction in Polymer Electrolytes via Oxygen Vacancies. Small, 2021, 17, e2102039.	10.0	38
156	Sensitivity Analysis and Joint Estimation of Parameters and States for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 1314-1323.	7.8	49
157	Improving Contact Impedance via Electrochemical Pulses Applied to Lithium–Solid Electrolyte Interface in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3669-3675.	17.4	40
158	Poly(ionic liquid) Bridge Joining Smectic Lamellar Conducting Channels in Photoelectrochemical Devices as High-Performance Solid-State Electrolytes. ACS Applied Energy Materials, 2021, 4, 9479-9486.	5.1	4
159	Scale-up processing of a safe quasi-solid-state lithium battery by cathode-supported solid electrolyte coating. Materials Today Energy, 2021, 21, 100841.	4.7	13
160	A comprehensive review of battery technology for E-mobility. Journal of the Indian Chemical Society, 2021, 98, 100173.	2.8	8
161	Effective Ru/CNT Cathode for Rechargeable Solid-State Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 44266-44273.	8.0	24
162	Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. Journal of Power Sources, 2021, 505, 230062.	7.8	42

#	Article	IF	CITATIONS
163	Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Materials Today Energy, 2021, 21, 100712.	4.7	23
164	Grain Boundary Design of Solid Electrolyte Actualizing Stable Allâ€Solidâ€State Sodium Batteries. Small, 2021, 17, e2103819.	10.0	29
165	Self-Healing Solid Polymer Electrolyte for Room-Temperature Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46794-46802.	8.0	37
166	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 32-60.	12.9	64
167	Low-sintering-temperature garnet oxides by conformal sintering-aid coating. Cell Reports Physical Science, 2021, 2, 100569.	5.6	28
168	Robust and high thermal-stable composite polymer electrolyte reinforced by PI nanofiber network. Nanotechnology, 2021, 32, 495401.	2.6	9
169	In-situ construction of sequential heterostructured CoS/CdS/CuS for building "electron-welcome zone―to enhance solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2022, 300, 120763.	20.2	38
170	Polybenzimidazole functionalized electrolyte with Liâ€wetting and selfâ€fluorination functionalities for practical Li metal batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	33
171	In Situ Construction of Aramid Nanofiber Membrane on Li Anode as Artificial SEI Layer Achieving Ultraâ€High Stability. Small, 2021, 17, e2102347.	10.0	28
172	PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy, 2021, 88, 106205.	16.0	88
173	Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)3 for long-life all-solid-state Li-ion batteries. Electrochimica Acta, 2021, 392, 139007.	5.2	22
174	Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries. Energy Storage Materials, 2021, 41, 289-296.	18.0	28
175	Zinc doped Fe2O3 hierarchical particles for stable all-solid-state Ni-Co/Fe battery. Journal of Alloys and Compounds, 2021, 879, 160436.	5.5	4
176	Enhancing Lithium ion conductivity and all-solid-state secondary battery performance in polymer composite electrolyte membranes with l²-Crystalline-rich Poly(vinylidene fluoride) Nanofibers. Electrochimica Acta, 2021, 394, 139114.	5.2	15
177	Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S battery. Energy Storage Materials, 2021, 41, 563-570.	18.0	22
178	Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chemical Engineering Journal, 2021, 424, 130335.	12.7	13
179	Harnessing artificial intelligence to holistic design and identification for solid electrolytes. Nano Energy, 2021, 89, 106337.	16.0	16
180	Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (MÂ=ÂHf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chemical Engineering Journal, 2021, 425, 130630.	12.7	71

CITATION R	CITATION REPORT	
Article	IF	CITATIONS
Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode. Energy Storage Materials, 2021, 43, 165-171.	18.0	35
Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. Journal of Energy Chemistry, 2022, 64, 395-403.	12.9	24
An all coupled electrochemical-mechanical model for all-solid-state Li-ion batteries considering the effect of contact area loss and compressive pressure. Energy, 2022, 239, 121929.	8.8	11
Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429, 132343.	12.7	42
An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solida Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	â€State 21.0	82
Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	12.0	61
Electrochemical energy storage devices working in extreme conditions. Energy and Environmental Science, 2021, 14, 3323-3351.	30.8	140
A kinetically stable anode interface for Li ₃ YCl ₆ -based all-solid-state lithium batteries. Journal of Materials Chemistry A, 2021, 9, 15012-15018.	10.3	39
A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	30.8	42
Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 16787-16797.	10.3	22
Interrelated interfacial issues between a Li ₇ La ₃ Zr ₂ O ₁₂ -based garnet electrolyte and Li anode in the solid-state lithium battery: a review. Journal of Materials Chemistry A, 2021, 9, 5952-5979.	10.3	50
Rapid ionic conductivity of ternary composite electrolytes for superior solid-state batteries with high-rate performance and long cycle life operated at room temperature. Journal of Materials Chemistry A, 2021, 9, 18338-18348.	10.3	23
Critical interface between inorganic solid-state electrolyte and sodium metal. Materials Today, 2020, 41, 200-218.	14.2	62
Solvent-Free Synthesis of the Polymer Electrolyte via Photo-Controlled Radical Polymerization: Toward Ultrafast In-Built Fabrication of Solid-State Batteries under Visible Light. ACS Applied Materials & Interfaces, 2021, 13, 8426-8434.	8.0	18
Review—Thermal Safety Management in Li-Ion Batteries: Current Issues and Perspectives. Journal of the Electrochemical Society, 2020, 167, 140516.	2.9	25

196	Advance in interface and characterizations of sulfide solid electrolyte materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228803.	0.5	24
197	A critical discussion on the analysis of buried interfaces in Li solid-state batteries. <i>Ex situ</i> and <i>in situ</i> / <i> operando</i> studies. Journal of Materials Chemistry A, 2021, 9, 25341-25368.	10.3	14
198	Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 24661-24669.	10.3	28

#

181

183

185

187

189

191

193

#	Article	IF	CITATIONS
199	Structural and Chemical Compatibilities of Li _{1â[^]} <i>_x</i> Ni _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Material with Garnetâ€Type Solid Electrolyte for Allâ€Solidâ€State Batteries. Small, 2021, 17, e2103306.	10.0	9
200	Modified MOFâ€Based Composite Allâ€Solidâ€State Polymer Electrolyte with Improved Comprehensive Performance for Dendriteâ€Free Liâ€Ion Batteries. Macromolecular Chemistry and Physics, 2022, 223, 2100325.	2.2	11
201	Predicting Li-Rich Layered Oxide Compounds as High-Conductivity and Stable Solid Electrolytes. ACS Energy Letters, 2021, 6, 3793-3800.	17.4	5
202	Singleâ€Crystalâ€Layered Niâ€Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li ₁₀ SnP ₂ S ₁₂ â€Based Allâ€Solidâ€State Li Batteries. Small, 2021, 17, e2103830.	10.0	19
203	A Quasiâ€Double‣ayer Solid Electrolyte with Adjustable Interphases Enabling Highâ€Voltage Solid‣tate Batteries. Advanced Materials, 2022, 34, e2107183.	21.0	45
204	Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics, 2022, 28, 15-26.	2.4	26
205	Linking the Defects to the Formation and Growth of Li Dendrite in All‣olid‣tate Batteries. Advanced Energy Materials, 2021, 11, 2102148.	19.5	61
206	Novel self-supporting multilevel-3D porous NiO nanowires with metal-organic gel coating via "like dissolves like―to trigger high-performance binder-free lithium-ion batteries. Microporous and Mesoporous Materials, 2021, 328, 111483.	4.4	8
207	Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes. ACS Nano, 2021, 15, 17232-17246.	14.6	42
208	Solid Electrolyte with Oxidation Tolerance Provides a Highâ€Capacity Li ₂ Sâ€Based Positive Electrode for Allâ€Solidâ€State Li/S Batteries. Advanced Functional Materials, 2022, 32, 2106174.	14.9	25
209	In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy, 2022, 91, 106679.	16.0	62
210	Development and application of battery materials database. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226104.	0.5	0
211	Brief overview of microscopic physical image of ion transport in electrolytes. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226601.	0.5	27
212	Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228201-228201.	0.5	2
213	Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Progress in Polymer Science, 2022, 125, 101474.	24.7	48
214	Emerging Characterization Techniques for Electrode Interfaces in Sulfideâ€Based Allâ€Solidâ€State Lithium Batteries. Small Structures, 2022, 3, 2100146.	12.0	21
215	Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2, 100644.	5.6	18
216	Electrode-to-electrode monolithic integration for high-voltage bipolar solid-state batteries based on plastic-crystal polymer electrolyte. Chemical Engineering Journal, 2022, 433, 133753.	12.7	7

#	Article	IF	CITATIONS
217	Ultrafast Synthesis of Iâ€Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. Advanced Materials, 2022, 34, e2107346.	21.0	34
218	Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56054-56063.	8.0	19
219	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie, 2022, 134, .	2.0	6
220	Roomâ€Temperature Allâ€Solidâ€State Lithium–Organic Batteries Based on Sulfide Electrolytes and Organodisulfide Cathodes. Advanced Energy Materials, 2021, 11, 2102962.	19.5	19
221	Free-Standing, Robust, and Stable Li ⁺ Conductive Li(Sr,Zr) ₂ (PO ₄) ₃ /PEO Composite Electrolytes for Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 13974-13982.	5.1	3
222	Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 56181-56190.	8.0	13
223	Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. Frontiers in Chemistry, 2021, 9, 744417.	3.6	8
224	Lithium-ion transport in covalent organic framework membrane. Chemical Engineering Journal, 2022, 433, 133550.	12.7	11
225	Dependence of Separator Thickness on Li-Ion Battery Energy Density. Journal of the Electrochemical Society, 2021, 168, 110545.	2.9	4
226	All-Solid-State Polymer Electrolyte with Efficiency and Stability Superior to Its Smectic Precursor for Photoelectrochemical Devices. Industrial & Engineering Chemistry Research, 2021, 60, 17083-17090.	3.7	1
227	Constructing stable lithium interfaces via coordination of fluorinated ether and liquid crystal for room-temperature solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133562.	12.7	8
228	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
229	Cyclodextrin-Integrated PEO-Based Composite Solid Electrolytes for High-Rate and Ultrastable All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57380-57391.	8.0	29
230	Designing Lithium Argyrodite Solidâ€State Electrolytes for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2022, 5, .	4.7	8
231	Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries. Energy Storage Materials, 2022, 46, 155-164.	18.0	9
232	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy, 2022, 7, 83-93.	39.5	249
233	Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100977.	11.5	32
234	Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. ETransportation, 2022, 11, 100152.	14.8	53

#	Article	IF	CITATIONS
235	Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. Journal of Power Sources, 2022, 521, 230921.	7.8	24
236	Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. Energy Storage Materials, 2022, 45, 969-1001.	18.0	36
237	A high-performance organic cathode customized for sulfide-based all-solid-state batteries. Energy Storage Materials, 2022, 45, 680-686.	18.0	13
238	Photo/electrochemical synthesis of Si@Sn microsphere composites with excellent electrochemical lithium storage. Journal of Alloys and Compounds, 2022, 900, 163438.	5.5	5
239	Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134471.	12.7	40
240	Ultra-long KFeS ₂ nanowires grown on Fe foam as a high-performance anode for aqueous solid-state energy storage. Journal of Materials Chemistry A, 2021, 9, 27727-27735.	10.3	11
241	High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	6
242	A Singleâ€Ion Conducting Network as Rationally Coordinating Polymer Electrolyte for Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	35
244	Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale. Materials Futures, 2022, 1, 012101.	8.4	34
245	Recycling of Lithiumâ€ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Advanced Energy Materials, 2022, 12, .	19.5	268
246	SolidPAC is an interactive battery-on-demand energy density estimator for solid-state batteries. Cell Reports Physical Science, 2022, 3, 100756.	5.6	18
247	Stable Quasiâ€5olidâ€5tate Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	21.0	19
248	Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nature Reviews Materials, 2022, 7, 389-405.	48.7	83
249	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	2.9	2
250	Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy and Environmental Science, 2022, 15, 991-1033.	30.8	100
251	Sandwich-like solid composite electrolytes employed as bifunctional separators for safe lithium metal batteries with excellent cycling performance. Journal of Materials Chemistry A, 2022, 10, 4660-4670.	10.3	6
252	Solid Polymer Electrolyte Reinforced with a Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ -Coated Separator for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1195-1202.	8.0	33
253	Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes. EScience, 2022, 2, 79-86.	41.6	28

#	Article	IF	Citations
	Improving interfacial stability by in situ protective layer formation in 4.2V poly(ethylene oxide) based		
254	solid state lithium batteries. Journal of Power Sources, 2022, 523, 231062.	7.8	6
255	Hydrides compounds for electrochemical applications. Current Opinion in Electrochemistry, 2022, 32, 100921.	4.8	3
256	Significantly improved interface between PVDF-based polymer electrolyte and lithium metal via thermal-electrochemical treatment. Energy Storage Materials, 2022, 46, 452-460.	18.0	21
257	Impacts of 3Li2O-2GeO2 melt on fabrication and electrical performance of novel LLZTO@Li4GeO4/Li2O composite electrolytes. Journal of the European Ceramic Society, 2022, 42, 2290-2298.	5.7	6
258	Unveiling thermal decomposition kinetics of Single-Crystalline Ni-Rich LiNi0.88Co0.07Mn0.05O2 cathode for safe Lithium-Ion batteries. Chemical Engineering Journal, 2022, 435, 134927.	12.7	17
259	Porous Coordination Polymers as Active Fillers for Solid Polymer Electrolytes of Lithium-Ion Batteries. Materials Performance and Characterization, 2022, 11, 34-45.	0.3	0
260	Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2022, 14, 23033-23055.	8.0	12
261	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. Materials, 2022, 15, 1157.	2.9	10
262	Achieving fast ionic conductivity and high electrochemical stability through polyhedral structure design. Energy Storage Materials, 2022, 47, 70-78.	18.0	2
263	Ultrafast charging and ultralong cycle life in solid-state Al-ion batteries. Journal of Materials Chemistry A, 2022, 10, 8178-8185.	10.3	4
264	Double-Salt Electrolyte for Li-Ion Batteries Operated at Elevated Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
265	Hf-based UiO-66 type solid electrolytes for all-solid-state lithium batteries. New Journal of Chemistry, 0, , .	2.8	4
266	Polymer Composite Electrolytes Membrane Consisted of Polyacrylonitrile Nanofibers Containing Lithium Salts: Improved Ion Conductive Characteristics and All-Solid-State Battery Performance. SSRN Electronic Journal, 0, , .	0.4	0
267	Scalable, Ultrathin, and Highâ€Temperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	132
268	Advanced Nanoparticle Coatings for Stabilizing Layered Niâ€Rich Oxide Cathodes in Solidâ€State Batteries. Advanced Functional Materials, 2022, 32, .	14.9	45
269	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	41.6	110
270	In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solid‣tate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104277.	11.2	78
271	A Single-Ion Polymer Composite Electrolyte Via In Situ Polymerization of Electrolyte Monomers into a Porous MOF-Based Fibrous Membrane for Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 3800-3809.	5.1	16

#	Article	IF	CITATIONS
272	Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for Allâ€Solidâ€State Batteries. Advanced Materials, 2022, 34, e2200083.	21.0	36
273	Fastâ€Charging Halideâ€Based Allâ€Solidâ€State Batteries by Manipulation of Current Collector Interface. Advanced Functional Materials, 2022, 32, .	14.9	20
274	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in PEOâ€Based Solid Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	14.9	19
275	Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal–Sulfur and Selenium Batteries. Chemical Reviews, 2022, 122, 8053-8125.	47.7	132
276	Sb―and O osubstituted Li ₁₀ SnP ₂ S ₁₂ with High Electrochemical and Air Stability for Allâ€Solidâ€State Lithium Batteries. ChemElectroChem, 2022, 9, .	3.4	6
277	Solid-state lithium batteries: Safety and prospects. EScience, 2022, 2, 138-163.	41.6	190
278	Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes. Nano Letters, 2022, 22, 2461-2469.	9.1	32
279	In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToFâ€&IMS. Advanced Materials Interfaces, 2022, 9, .	3.7	39
280	Tailored lithium metal/polymer electrolyte interface with LiTa2PO8 fillers in PEO-based composite electrolyte. Rare Metals, 2022, 41, 2826-2833.	7.1	7
281	Dry electrode technology, the rising star in solid-state battery industrialization. Matter, 2022, 5, 876-898.	10.0	108
282	Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule, 2022, 6, 906-922.	24.0	58
283	Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Applied Materials & Interfaces, 2022, 14, 13158-13168.	8.0	12
284	Asymmetric polymer solid electrolyte constructed by dopamine-modified Li1.4Al0.4Ti1.6(PO4)3 for dendrite-free lithium battery. Ionics, 2022, 28, 2693-2700.	2.4	2
285	Metal Halide Double Perovskite Fast Lithium Ion Conductors with a Unique Octahedral B-Site Vacancy Migration Mechanism. ACS Applied Energy Materials, 2022, 5, 4926-4933.	5.1	1
286	The effect of inorganic nanoparticles on ion conduction in poly(lithium acrylate)-based composite polymer electrolytes for energy storage devices. Molecular Crystals and Liquid Crystals, 2022, 742, 103-110.	0.9	1
287	Solid-state lithium battery cathodes operating at low pressures. Joule, 2022, 6, 636-646.	24.0	42
288	The Fluorineâ€Rich Electrolyte as an Interface Modifier to Stabilize Lithium Metal Battery at Ultra‣ow Temperature. Advanced Functional Materials, 2022, 32, .	14.9	38
289	Practically Accessible Allâ€Solidâ€State Batteries Enabled by Organosulfide Cathodes and Sulfide Electrolytes. Advanced Functional Materials, 2022, 32, .	14.9	15

#	Article	IF	CITATIONS
290	Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach. Journal of Cleaner Production, 2022, 353, 131689.	9.3	10
291	A Series of Ternary Metal Chloride Superionic Conductors for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	19.5	42
292	A Bifunctional Chemomechanics Strategy To Suppress Electrochemo-Mechanical Failure of Ni-Rich Cathodes for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17674-17681.	8.0	23
293	Smart interfaces in Li-ion batteries: Near-future key challenges. Electrochimica Acta, 2022, 415, 140258.	5.2	8
294	Hybrid amorphous-crystalline silicate composites as feasible solid-state electrolytes. Materials and Design, 2022, 217, 110599.	7.0	7
295	Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Materials, 2022, 47, 542-550.	18.0	34
296	Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+xZr1-xMxCl6 (MÂ=ÂIn, Sc). Chemical Engineering Journal, 2022, 437, 135413.	12.7	34
297	Design of a fast ion-transport interlayer on cathode-electrolyte interface for solid-state lithium metal batteries. Energy Storage Materials, 2022, 48, 205-211.	18.0	9
298	In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Materials Today Energy, 2022, 26, 100984.	4.7	18
299	Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy, 2022, 96, 107104.	16.0	43
300	Surface-roughened current collectors for anode-free all-solid-state batteries. Journal of Energy Chemistry, 2022, 70, 248-257.	12.9	14
301	Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries. Journal of Energy Chemistry, 2022, 70, 356-362.	12.9	30
302	Retarding Li dendrites growth via introducing porous g-C3N4 into polymer electrolytes for solid-state lithium metal batteries. Journal of Alloys and Compounds, 2022, 909, 164825.	5.5	15
303	Interfacial electric field effect of Double-Network composite electrolyte for Ultra-Stable lithium batteries. Chemical Engineering Journal, 2022, 440, 135779.	12.7	7
304	Enhancing the mechanical stability of composite electrodes by regulating the volume of active material using a prelithiation strategy. Journal of Energy Storage, 2022, 51, 104390.	8.1	4
305	Challenges and prospects of nickel-rich layered oxide cathode material. Journal of Alloys and Compounds, 2022, 909, 164727.	5.5	32
306	Enhanced Room-Temperature Ionic Conductivity of NaCB ₁₁ H ₁₂ via High-Energy Mechanical Milling. ACS Applied Materials & Interfaces, 2021, 13, 61346-61356.	8.0	21
307	Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2021, 13, 60678-60688.	8.0	9

#	Article	IF	CITATIONS
308	Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. EScience, 2021, 1, 194-202.	41.6	47
309	Negating the Interfacial Resistance between Solid and Liquid Electrolytes for Next-Generation Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 633-646.	8.0	5
310	Fiberâ€Reinforced Composite Polymer Electrolytes for Solidâ€State Lithium Batteries. Advanced Sustainable Systems, 2022, 6, .	5.3	16
311	Nonstoichiometric Molybdenum Trioxide Adjustable Energy Barrier Enabling Ultralong-Life All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60907-60920.	8.0	11
312	The quest for the holy grail of solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 1840-1860.	30.8	48
313	A long life solid-state lithium–oxygen battery enabled by a durable oxygen deficient flower-like CeO ₂ microsphere based solid electrolyte. Inorganic Chemistry Frontiers, 2022, 9, 2508-2516.	6.0	17
314	Stable composite electrolytes of PVDF modified by inorganic particles for solidâ€state lithium batteries. Journal of the American Ceramic Society, 2022, 105, 5262-5273.	3.8	6
315	Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nature Communications, 2022, 13, 2031.	12.8	19
316	Atomically Intimate Solid Electrolyte/Electrode Contact Capable of Surviving Long-Term Cycling with Repeated Phase Transitions. Nano Letters, 2022, 22, 3457-3464.	9.1	5
317	Experimental and theoretical study on enhanced electrochemistry of aluminum substitution LLZO garnet solid electrolytes. Materials Research Express, 0, , .	1.6	1
318	Thermal stability and thermal conductivity of solid electrolytes. APL Materials, 2022, 10, .	5.1	19
319	Foldable nano-Li2MnO3 integrated composite polymer solid electrolyte for all-solid-state Li metal batteries with stable interface. Journal of Colloid and Interface Science, 2022, 621, 232-240.	9.4	4
320	Engineering high conductive Li7P2S8I via Cl- doping for all-solid-state Li-S batteries workable at different operating temperatures. Chemical Engineering Journal, 2022, 442, 136346.	12.7	21
321	Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure. Energy Storage Materials, 2022, 49, 219-226.	18.0	31
322	Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Science Advances, 2022, 8, eabj7698.	10.3	37
323	Cation effect on ionic liquid-involved polymer electrolyte for solid-state lithium metal batteries. New Journal of Chemistry, 0, , .	2.8	6
324	Organic–Inorganic Composite Electrolytes Optimized with Fluoroethylene Carbonate Additive for Quasi-Solid-State Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 20962-20971.	8.0	19
325	Phenyl 4-Fluorobenzene Sulfonate as a Versatile Film-Forming Electrolyte Additive for Wide-Temperature-Range NCM811//Graphite Batteries. ACS Applied Energy Materials, 2022, 5, 6324-6334.	5.1	13

#	Article	IF	CITATIONS
326	Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications. ACS Energy Letters, 2022, 7, 1776-1805.	17.4	106
327	Ionic conductivity and ion transport mechanisms of solidâ€ s tate lithiumâ€ i on battery electrolytes: A review. Energy Science and Engineering, 2022, 10, 1643-1671.	4.0	105
328	Cl-Doped Li ₁₀ SnP ₂ S ₁₂ with Enhanced Ionic Conductivity and Lower Li-Ion Migration Barrier. ACS Applied Materials & amp; Interfaces, 2022, 14, 22225-22232.	8.0	9
329	Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes. Nano Research, 0, , .	10.4	5
330	High Ionâ€Selectivity of Garnet Solid Electrolyte Enabling Separation of Metallic Lithium. Energy and Environmental Materials, 2023, 6, .	12.8	1
331	Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Metals, 2022, 41, 2453-2459.	7.1	11
332	Organic Crystalline Solid Electrolytes with High Mg-Ion Conductivity Composed of Nonflammable Ionic Liquid Analogs and Mg(TFSA) ₂ . Inorganic Chemistry, 2022, 61, 7358-7364.	4.0	3
333	Moisture Stability of Sulfide Solid-State Electrolytes. Frontiers in Energy Research, 2022, 10, .	2.3	11
334	Sintering of Li-garnets: Impact of Al-incorporation and powder-bed composition on microstructure and ionic conductivity. Open Ceramics, 2022, 10, 100268.	2.0	3
335	A gel polymer electrolyte film based on chitosan derivative and ionic liquid for the LiFePO4 cathode solid Li metal battery. Materials Today Communications, 2022, 31, 103597.	1.9	3
336	Chemomechanics: Friend or foe of the "AND problem―of solid-state batteries?. Current Opinion in Solid State and Materials Science, 2022, 26, 101002.	11.5	5
337	Double-salt electrolyte for Li-ion batteries operated at elevated temperatures. Energy Storage Materials, 2022, 49, 493-501.	18.0	15
338	In-situ modification of ultrathin and uniform layer on LiCoO2 particles for 4.2 V poly(ethylene oxide) based solid-state lithium batteries with excellent cycle performance. Electrochimica Acta, 2022, 421, 140473.	5.2	2
339	Interface science in polymerâ€based composite solid electrolytes in lithium metal batteries. SusMat, 2022, 2, 264-292.	14.9	21
340	Lithium-ion distribution and motion in two-dimensional covalent organic frameworks: the example of TAPB-PDA COF. Journal of Materials Chemistry C, 2022, 10, 13834-13843.	5.5	8
341	A highly conductive and stable hybrid solid electrolyte for high voltage lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 12842-12855.	10.3	15
342	Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications. Chemical Engineering Journal, 2022, 446, 137041.	12.7	17
343	Interface Stability Control by an Electron-Blocking Interlayer for Dendrite-free and Long-Cycle Solid Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 7500-7507.	6.7	10

#	Article	IF	CITATIONS
344	A high power density solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries. Electrochimica Acta, 2022, 424, 140624.	5.2	9
345	High Air Stability and Excellent Li Metal Compatibility of Argyroditeâ€Based Electrolyte Enabling Superior Allâ€Solidâ€State Li Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	26
346	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	21.0	53
347	Evolution of Interfacial Phenomena Induced by Electrolyte Formulation and Hot Cycling of Anode-Free Li-Metal Batteries. ACS Applied Energy Materials, 2022, 5, 7770-7783.	5.1	8
348	Hierarchical microstructure and performance of PVDF/PMMA/SiO2Âlithium battery separator fabricated by thermally-inducedÂphase separation (TIPS). Journal of Materials Science, 2022, 57, 11274-11288.	3.7	7
349	Thermal initiation/ultraviolet cross-linking process in polyethylene oxide@Li6·75La3Zr1·75Ta0·25O12-based composite electrolyte with high room-temperature ionic conductivity and long life cycle. Journal of Power Sources, 2022, 541, 231660.	7.8	4
350	Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Materials, 2022, 50, 543-553.	18.0	16
351	In-Situ Polymerized Electrolyte Modified with Oligomeric Cyclotetrasiloxane for All-Solid-State Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
352	A thin free-standing composite solid electrolyte film for solid-state lithium metal batteries. Chemical Communications, 2022, 58, 7646-7649.	4.1	5
353	Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy and Environmental Science, 2022, 15, 2753-2775.	30.8	62
354	Recent advances in solid-state beyond lithium batteries. Journal of Solid State Electrochemistry, 2022, 26, 1851-1869.	2.5	14
355	Cathode modification by Li2O–B2O3–SiO2 glass addition for all-solid-state battery creation. Ionics, 2022, 28, 3635-3642.	2.4	1
356	Methods and Techniques of Solid-State Batteries. ACS Symposium Series, 0, , 39-89.	0.5	0
357	Ceramic-Based Solid-State Electrolytes. ACS Symposium Series, 0, , 295-318.	0.5	0
358	Enhancing Liâ€ l on Transport in Solid Electrolytes by Confined Water. Small, 2022, 18, .	10.0	2
359	The interphasial degradation of 4.2ÂV-class poly(ethylene oxide)-based solid batteries beyond electrochemical voltage limit. Journal of Energy Chemistry, 2022, 75, 504-511.	12.9	9
360	Tuning Ion/Electron Conducting Properties at Electrified Interfaces for Practical Allâ€Solidâ€State Li–Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	12
361	The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule, 2022, 6, 1172-1198.	24.0	207

#	Article	IF	CITATIONS
362	Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for Allâ€Solidâ€State Batteries. Chemical Record, 2022, 22, .	5.8	26
363	Solid-State Rechargeable Lithium-Ion Batteries: Component Chemistries and Battery Architectures. ACS Symposium Series, 0, , 21-37.	0.5	0
364	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 29878-29885.	8.0	5
365	In-situ imaging techniques for advanced battery development. Materials Today, 2022, 57, 279-294.	14.2	16
366	Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. Nano Energy, 2022, 100, 107528.	16.0	38
367	Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chemical Engineering Journal, 2022, 448, 137740.	12.7	27
368	In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chemical Engineering Journal, 2022, 448, 137661.	12.7	11
369	Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. Journal of Materials Chemistry A, 2022, 10, 16087-16094.	10.3	24
370	Regulating Na/Nascion Electrolyte Interface Chemistry for Stable Solid-State Na Metal Batteries at Room Temperature. SSRN Electronic Journal, 0, , .	0.4	0
371	Thioâ€∤LISICON and LCPSâ€Type Solid Electrolytes for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	35
372	Longâ€Life Lithiumâ€Metal Allâ€Solidâ€State Batteries and Stable Li Plating Enabled by InÂSitu Formation of Li ₃ PS ₄ in the SEI Layer. Advanced Materials, 2022, 34, .	21.0	66
373	Scalable, thin asymmetric composite solid electrolyte for highâ€performance allâ€solidâ€state lithium metal batteries. , 2022, 1, 434-444.		18
374	Research progress on space charge layer effect in lithium-ion solid-state battery. Science China Technological Sciences, 2022, 65, 2246-2258.	4.0	4
375	20 <i>μ</i> m-Thick Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ -Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries. Energy Material Advances, 2022, 2022, .	11.0	48
376	Highâ€Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual onductive Paths for Solid‧tate Li Metal Batteries. Small, 2022, 18, .	10.0	11
377	Customizable solid-state batteries toward shape-conformal and structural power supplies. Materials Today, 2022, 58, 297-312.	14.2	11
378	COFâ€based single Li ⁺ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasiâ€solidâ€state organic batteries. , 2023, 5, .		24
379	On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries, 2022, 8, 70.	4.5	64

#	Article	IF	CITATIONS
380	Dry mixing of cathode composite powder for all-solid-state batteries using a high-shear mixer. Advanced Powder Technology, 2022, 33, 103705.	4.1	4
381	Key issues and emerging trends in sulfide all solid state lithium battery. Energy Storage Materials, 2022, 51, 527-549.	18.0	31
382	Oxide doping improving interface performance for Li7P3S11 solid electrolytes. Journal of Alloys and Compounds, 2022, 921, 166125.	5.5	10
383	Stabilize garnet/electrode interface via low-melting polymer layer in solid-state lithium metal battery. Electrochimica Acta, 2022, 429, 140907.	5.2	2
384	Strain Sensitivity of <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"> <mml:mi>Li</mml:mi></mml:math> -ion Conductivity in <i>Î²</i> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mi>Li</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:m Electrolyte., 2022, 1, .</mml:m </mml:msub></mml:math 	i>PS <td>4 Il:mi> < mml:m</td>	4 Il:mi> < mml:m
385	Immense Reduction in Interfacial Resistance between Sulfide Electrolyte and Positive Electrode. ACS Applied Materials & amp; Interfaces, 2022, 14, 34620-34626.	8.0	7
386	Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries. Sustainability, 2022, 14, 9090.	3.2	6
387	Low-cost molten salt coating enabling robust Li/garnet interface for dendrite-free all-solid-state lithium batteries. Chemical Engineering Journal, 2022, 450, 138236.	12.7	11
388	Preparation of highly ionic conductive lithium phosphorus oxynitride electrolyte particles using the polygonal barrel-plasma treatment method. Journal of Alloys and Compounds, 2022, 923, 166350.	5.5	3
389	A functional additive to in-situ construct stable cathode and anode interfaces for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 450, 138208.	12.7	14
390	Environmental Impact Assessment of Solid Polymer Electrolytes for Solid‣tate Lithium Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	4
391	Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochemical Energy Reviews, 2022, 5,	25.5	54
392	Air/Water Stability Problems and Solutions for Lithium Batteries. Energy Material Advances, 2022, 2022, .	11.0	18
393	Electrolytes for Multivalent Metalâ€Ion Batteries: Current Status and Future Prospect. ChemSusChem, 2022, 15, .	6.8	7
394	Enhanced Electrochemical Properties and Optimized Li ⁺ Transmission Pathways of <scp>PEO</scp> / <scp>LLZTO</scp> â€Based Composite Electrolytes Modified by Supramolecular Combination. Energy and Environmental Materials, 2024, 7, .	12.8	10
395	In Situ Visualization of Electrochemical Processes in Solid-State Lithium Batteries. ACS Energy Letters, 2022, 7, 2988-3002.	17.4	14
396	A High Airâ€Stability and Liâ€Metalâ€Compatible Li _{3+2x} P _{1â^x} Bi _x S _{4â^1.5x} O _{1.5x} Sulfide Electrolyte for Allâ€Solidâ€State Li–Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	17
397	In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long ycle Highâ€Voltage Solid‧tate Lithium Batteries. Advanced Energy Materials, 2022, 12, .	19.5	52

#	Article	IF	CITATIONS
398	A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 080510.	2.9	4
399	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materials, 2023, 35, .	21.0	15
400	Dual Protection of a Li–Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li ₆ PS ₅ Cl Solid Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 37738-37746.	8.0	17
401	In-situ construction of a thermodynamically stabilized interface on the surface of single crystalline Ni-rich cathode materials via a one-step molten-salt route. Nano Research, 2023, 16, 6771-6779.	10.4	6
402	Effect of cobalt addition to NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) on its sintering behavior and electrical properties. Journal of Power Sources, 2022, 546, 231954.	7.8	4
403	Sb-doped Li10GeP2S12-type electrolyte Li10SnP2-xSbxS12 with enhanced ionic conductivity and lower lithium-ion migration barrier. Journal of Colloid and Interface Science, 2022, 627, 1039-1046.	9.4	6
404	In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. ETransportation, 2022, 14, 100203.	14.8	38
405	Polyimide-reinforced solid polymer electrolyte with outstanding lithium transferability for durable Li metal batteries. Journal of Power Sources, 2022, 548, 232034.	7.8	8
406	Developing practical solid-state rechargeable Li-ion batteries: Concepts, challenges, and improvement strategies. Journal of Energy Storage, 2022, 55, 105688.	8.1	11
407	A carbon dot based metal-free photoelectrochemical cell using O2/H2O redox couple in real seawater. Applied Catalysis B: Environmental, 2022, 319, 121914.	20.2	2
408	Mechanical Properties of Solid State Li-Ion Batteries. , 2022, , .		0
409	Solid electrolytes for solid-state Li/Na–metal batteries: inorganic, composite and polymeric materials. Chemical Communications, 2022, 58, 12035-12045.	4.1	10
410	Comparative Study of Thermal Stability of Lithium Metal Anode in Carbonate and Ether Based Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
411	A Review on Design Considerations in Polymer and Polymer Composite Solid-State Electrolytes for Solid Li Batteries. SSRN Electronic Journal, 0, , .	0.4	0
412	Co-sintering process of LiCoO ₂ cathodes and NASICON-type LATP solid electrolytes studied by X-ray diffraction and X-ray absorption near edge structure. Physical Chemistry Chemical Physics, 2022, 24, 25878-25884.	2.8	10
413	Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. Rare Metals, 2022, 41, 3639-3645.	7.1	10
415	Understanding the battery safety improvement enabled by a quasi-solid-state battery design. Chinese Physics B, 2022, 31, 118202.	1.4	5
416	Ionic Liquidâ€Incorporated Metalâ€Organic Framework with High Magnesium Ion Conductivity for Quasiâ€Solidâ€State Magnesium Batteries. Batteries and Supercaps, 2022, 5, .	4.7	6

#	Article	IF	Citations
417	Dipole–Dipole Interaction Induced Electrolyte Interfacial Model To Stabilize Antimony Anode for High-Safety Lithium-Ion Batteries. ACS Energy Letters, 2022, 7, 3545-3556.	17.4	54
418	Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. Nature Materials, 2022, 21, 1412-1418.	27.5	30
419	50C Fast harge Liâ€lon Batteries using a Graphite Anode. Advanced Materials, 2022, 34, .	21.0	82
420	Spatiotemporal-scale neutron studies on lithium-ion batteries and beyond. Applied Physics Letters, 2022, 121, .	3.3	5
421	Buffering Volume Change in Solid-State Battery Composite Cathodes with CO ₂ -Derived Block Polycarbonate Ethers. Journal of the American Chemical Society, 2022, 144, 17477-17486.	13.7	32
422	Role of Interfaces in Solidâ \in State Batteries. Advanced Materials, 2023, 35, .	21.0	29
423	High Lithium Salt Content PVDFâ€Based Solidâ€State Composite Polymer Electrolyte Enhanced by hâ€BN Nanosheets. ChemSusChem, 2022, 15, .	6.8	7
424	Preparation and Study of a Simple Three-Matrix Solid Electrolyte Membrane in Air. Nanomaterials, 2022, 12, 3069.	4.1	3
425	Surface Degradation of Singleâ€crystalline Niâ€rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solidâ€State Lithium Batteries. Angewandte Chemie, 2022, 134, .	2.0	1
426	All-solid-state Li battery with atomically intimate electrode–electrolyte contact. Applied Physics Letters, 2022, 121, 143904.	3.3	2
428	Understanding a Single-Li-Ion COF Conductor for Being Dendrite Free in a Li-Organic Battery. Research, 2022, 2022, .	5.7	4
429	Surface Degradation of Singleâ€crystalline Niâ€rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
430	Interfaces in Solid-State Batteries: Challenges and Design Strategies. Advances in Material Research and Technology, 2022, , 193-218.	0.6	0
431	An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes. Journal of Materials Chemistry A, 2022, 10, 24269-24279.	10.3	7
432	<i>In situ</i> encapsulation of iron oxide nanoparticles into nitrogen-doped carbon nanotubes as anodic electrode materials of lithium ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 27114-27120.	2.8	6
433	Polypropylene separator-reinforced polymer-in-salt solid composite electrolytes for high-performance lithium ion batteries at room temperature. Sustainable Energy and Fuels, 2022, 6, 5503-5513.	4.9	2
434	How to commercialize solid-state batteries: a perspective from solid electrolytes. , 2023, 2, 20220036.		2
435	An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte. CheM, 2023, 9, 394-410.	11.7	29

#	Article	IF	CITATIONS
436	Room Temperature Halideâ€Eutectic Solid Electrolytes with Viscous Feature and Ultrahigh Ionic Conductivity. Advanced Science, 2022, 9, .	11.2	14
437	Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries. Nano-Micro Letters, 2022, 14, .	27.0	20
438	Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
439	Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte. Journal of Solid State Electrochemistry, 2023, 27, 245-253.	2.5	3
440	NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries. Tungsten, 2022, 4, 316-322.	4.8	15
441	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	47.7	67
442	Single- to Few-Layer Nanoparticle Cathode Coating for Thiophosphate-Based All-Solid-State Batteries. ACS Nano, 2022, 16, 18682-18694.	14.6	9
443	Fast Ionic Migration from Bulk to Interface in the Li(NH ₃) <i>_x</i> BH ₄ @SiO ₂ Composite. ACS Applied Energy Materials, 2022, 5, 14301-14310.	5.1	4
444	Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angewandte Chemie, 0, , .	2.0	0
445	Orderâ€structured solidâ€state electrolytes. SusMat, 2022, 2, 660-678.	14.9	7
446	Thermal Runaway Behavior of Li ₆ PS ₅ Cl Solid Electrolytes for LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ and LiFePO ₄ in All-Solid-State Batteries. Chemistry of Materials, 2022, 34, 9159-9171.	6.7	25
447	Significant regulation of stress on the contribution of optical phonons to thermal conductivity in layered Li2ZrCl6: First-principles calculations combined with the machine-learning potential approach. Applied Physics Letters, 2022, 121, .	3.3	11
448	Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes. EScience, 2022, 2, 639-645.	41.6	9
449	Stabilization of garnet/Li interphase by diluting the electronic conductor. Science Advances, 2022, 8, .	10.3	25
450	Achieving High Performance of Lithium Metal Batteries by Improving the Interfacial Compatibility between Organic and Inorganic Electrolytes Using a Lithium Single-Ion Polymer. ACS Applied Energy Materials, 2022, 5, 14175-14184.	5.1	1
451	Concerted ionic-electronic conductivity enables high-rate capability Li-metal solid-state batteries. Energy Storage Materials, 2023, 54, 524-532.	18.0	4
452	Multi-component solid PVDF-HFP/PPC/LLTO-nanorods composite electrolyte enabling advanced solid-state lithium metal batteries. Electrochimica Acta, 2022, 435, 141384.	5.2	7
453	Comparative study of thermal stability of lithium metal anode in carbonate and ether based electrolytes. Journal of Power Sources, 2022, 551, 232182.	7.8	6

#	Article	IF	CITATIONS
454	Improvement of thin-film Ni-rich ALD cathode for microbatteries. Applied Surface Science, 2023, 609, 155265.	6.1	5
455	A novel study on COF-based semi-solid electrolyte for spinel LiNi0.5Mn1.5O4 targeting transition metals migration. Scripta Materialia, 2023, 223, 115101.	5.2	3
456	A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries. Journal of Power Sources, 2023, 553, 232267.	7.8	18
457	Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature. Energy Storage Materials, 2023, 54, 403-409.	18.0	12
458	Highly conductive Poly(ε-caprolactone) and chitosan based polymer electrolyte for lithium metal battery. Journal of Power Sources, 2023, 553, 232271.	7.8	6
459	Lithium-enhanced functionalized carbon nanofibers as a mixed electronic/ionic conductor for sulfide all solid-state batteries. Applied Surface Science, 2023, 610, 155490.	6.1	2
460	Molecular design and post-synthetic vulcanization on two-dimensional covalent organic framework@rGO hybrids towards high-performance sodium-ion battery cathode. Chemical Engineering Journal, 2023, 453, 139607.	12.7	9
461	Vacancy-controlled quaternary sulfide Na _{3â^`<i>x</i>} Zn _{1â^`<i>x</i>} Ga _{1+<i>x</i>} S ₄ with improved ionic conductivity and aqueous stability. Journal of Materials Chemistry A, 2022, 10, 25039-25046.	10.3	7
462	Negating Naâ€−Na ₃ Zr ₂ Si ₂ PO ₁₂ interfacial resistance for dendrite-free and "Na-less―solid-state batteries. Chemical Science, 2022, 13, 14132-14140.	7.4	18
463	Mesoporous silicas tethered with anions as quasi-solid electrolytes for lithium–metal batteries. Chemical Communications, 2022, 58, 13656-13659.	4.1	3
464	Graphitic carbon nitride assisted PVDF-HFP based solid electrolyte to realize high performance solid-state lithium metal batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130520.	4.7	5
465	Suppressing structural degradation of single crystal nickel-rich cathodes in PEO-based all-solid-state batteries: Mechanistic insight and performance. Energy Storage Materials, 2023, 54, 579-588.	18.0	8
466	Effect of the Solvate Environment of Lithium Cations on the Resistance of the Polymer Electrolyte/Electrode Interface in a Solid-State Lithium Battery. Membranes, 2022, 12, 1111.	3.0	3
467	Electrochemical modeling in a building blocks' way. Chemical Engineering Journal, 2023, 454, 140419.	12.7	3
468	A low-cost Al-doped garnet Li7La3Zr2O12 with high ionic conductivity for high-energy solid-state lithium metal batteries. Applied Physics Letters, 2022, 121, .	3.3	5
469	Comparative study on high-voltage safety performance of LiNixMnyCozO2 cathode with different nickel contents. Applied Physics Letters, 2022, 121, .	3.3	3
470	Prospects of LLZO type solid electrolyte: From material design to battery application. Chemical Engineering Journal, 2023, 454, 140375.	12.7	20
471	Surface-modified and sulfide electrolyte-infiltrated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries. Journal of Colloid and Interface Science, 2023, 632, 11-18.	9.4	4

#	Article	IF	CITATIONS
472	Percolative Channels for Superionic Conduction in an Amorphous Conductor. Journal of Physical Chemistry Letters, 2022, 13, 10507-10512.	4.6	2
473	Progress and Prospects of Inorganic Solidâ€State Electrolyteâ€Based Allâ€Solidâ€State Pouch Cells. Advanced Materials, 2023, 35, .	21.0	30
474	A Review of the Application of Carbon Materials for Lithium Metal Batteries. Batteries, 2022, 8, 246.	4.5	9
475	Fluorine Substitution at the O-Site Imparts Enhanced Chemical Stability for Garnet-Structured Electrolytes. ACS Energy Letters, 2023, 8, 48-55.	17.4	10
476	Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 689-712.	18.0	11
477	In-situ polymerized electrolyte modified with oligomeric cyclotetrasiloxane for all-solid-state lithium metal batteries. Journal of Power Sources, 2023, 555, 232346.	7.8	1
478	Design of active-material/solid-electrolyte composite particles with conductive additives for all-solid-state lithium-ion batteries. Journal of Power Sources, 2023, 555, 232379.	7.8	5
479	Synthesis of carbon-coated FeOx nanoparticles via spray solidification as anode materials for high-performance lithium-ion batteries. Applied Surface Science, 2023, 611, 155647.	6.1	4
480	NaSICON-type solid-state Li+ ion conductors with partial polyanionic substitution of phosphate with silicate. Open Ceramics, 2022, 12, 100313.	2.0	2
481	Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries. Energy Storage Materials, 2023, 55, 193-204.	18.0	16
482	An <i>in situ</i> formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 1966-1977.	10.3	17
483	Environmentally friendly, non-glove box, closed-system and continuously massive production of lithium sulfide for battery applications. Journal of Cleaner Production, 2023, 382, 135221.	9.3	5
484	Solid electrolyte membrane-containing rechargeable high-temperature molten salt electrolyte-based batteries. Sustainable Energy and Fuels, 2023, 7, 330-354.	4.9	2
485	Novel two-dimensional layered black phosphorus/nano-Si composites anode for Li-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 288, 116198.	3.5	1
486	Liquid metallic Ga as sintering aid to promote the densification of garnet electrolytes for all-solid-state Li-ion batteries. Journal of Power Sources, 2023, 556, 232527.	7.8	4
487	Methodological developments to expose and analyse buried interfaces in lithium solid-state batteries using <i>ex situ, in situ</i> and <i>operando</i> cycling. EPJ Web of Conferences, 2022, 273, 01007.	0.3	0
488	Empirical decay relationship between ionic conductivity and porosity of garnet type inorganic solid-state electrolytes. Transactions of Nonferrous Metals Society of China, 2022, 32, 3362-3373.	4.2	3
489	Duality of Li2CO3 in Solid-State Batteries. Transactions of Tianjin University, 2023, 29, 73-87.	6.4	4

#	Article	IF	CITATIONS
490	Revisiting the Role of Hydrogen in Lithiumâ€Rich Antiperovskite Solid Electrolytes: New Insight in Lithium Ion and Hydrogen Dynamics. Advanced Energy Materials, 2023, 13, .	19.5	5
491	High-voltage superionic and humidity-tolerant Li2.5Sc0.5Zr0.5Cl6 conductor for lithium batteries via preferred orientation. Chemical Engineering Journal, 2023, 455, 140509.	12.7	3
492	Wideâ€Temperature, Longâ€Cycling, and Highâ€Loading Pyrite Allâ€Solidâ€State Batteries Enabled by Argyrodite Thioarsenate Superionic Conductor. Advanced Functional Materials, 2023, 33, .	14.9	15
493	LISICON-type Electrolyte: Preparation of Oxide-based All-Solid-State Battery. Denki Kagaku, 2022, 90, 336-341.	0.0	0
494	Grain Boundary Electronic Insulation for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Angewandte Chemie, 2023, 135, .	2.0	8
495	Microstructural and mechanical characterization of Na1+xHf2Si2.3P0.7O10.85+0.5x and Na1+xZr2P3-xSixO12 NASICON-type solid electrolytes. Journal of Materials Science, 2023, 58, 144-156.	3.7	1
496	Limits of a rechargeable spin battery. Physical Review B, 2022, 106, .	3.2	0
497	Triggering Fast Lithium Ion Conduction in LiPS ₄ 1. , 0, , 144-154.		0
498	Grain Boundary Electronic Insulation for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
499	Solidâ€State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective. Energy Technology, 2023, 11, .	3.8	14
500	Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries. Energy Storage Materials, 2023, 55, 847-856.	18.0	11
501	Reversible Discharge Products in Li–Air Batteries. Advanced Materials, 2023, 35, .	21.0	9
502	Spontaneous gas–solid reaction on sulfide electrolytes for high-performance all-solid-state batteries. Energy and Environmental Science, 2023, 16, 1091-1099.	30.8	12
503	Preparation and characterization of 2Na ₃ SbS ₄ ·Na ₂ WS ₄ and 2Na ₃ SbS ₄ ·Na ₄ XS ₄ (XÂ=ÂSi, Ge, Sn) glass–ceramic electrolytes. Journal of the American Ceramic Society, 2023, 106, 3199-3208.	3.8	2
504	Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃ -Modified Li ₄ Ti ₅ O ₁₂ Anode for Lithium-Ion Storage with Enhanced Rate and Cycling Performance. ACS Sustainable Chemistry and Engineering, 2023, 11, 482-490.	6.7	3
506	UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries. Journal of Electrochemical Science and Technology, 2023, 14, 85-95.	2.2	2
507	Novel quasi-solid-state composite electrolytes boost interfacial Li+ transport for long-cycling and dendrite-free lithium metal batteries. Energy Storage Materials, 2023, 56, 258-266.	18.0	3
508	MgF2 as an effective additive for improving ionic conductivity of ceramic solid electrolytes. Materials Today Energy, 2023, 32, 101248.	4.7	4

#	Article	IF	CITATIONS
509	Microstructure- and Interface-Modified Ni-Rich Cathode for High-Energy-Density All-Solid-State Lithium Batteries. ACS Energy Letters, 2023, 8, 809-817.	17.4	17
510	Nitrogen Plasma Enhanced Low Temperature Atomic Layer Deposition of Magnesium Phosphorus Oxynitride (MgPON) Solidâ€State Electrolytes. Angewandte Chemie, 2023, 135, .	2.0	1
511	A Stable Polymerâ€based Solidâ€6tate Lithium Metal Battery and its Interfacial Characteristics Revealed by Cryogenic Transmission Electron Microscopy. Advanced Functional Materials, 2023, 33, .	14.9	10
512	Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries. , 2023, 1, 39-59.		25
513	A customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteries. National Science Review, 2023, 10, .	9.5	6
514	Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries. Energy Storage Materials, 2023, 56, 310-318.	18.0	11
515	Nitrogen Plasma Enhanced Low Temperature Atomic Layer Deposition of Magnesium Phosphorus Oxynitride (MgPON) Solid‣tate Electrolytes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
516	Evaluation and Improvement of the Stability of Poly(ethylene oxide)â€based Solidâ€state Batteries with Highâ€Voltage Cathodes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	22
517	Evaluation and Improvement of the Stability of Poly(ethylene oxide)â€based Solidâ€state Batteries with Highâ€Voltage Cathodes. Angewandte Chemie, 0, , .	2.0	2
518	Influence of the Halogen in Argyrodite Electrolytes on the Electrochemical Performance of Allâ€Solidâ€State Lithium Batteries. Energy Technology, 2023, 11, .	3.8	2
519	Enhanced ionic conductivity of protonated antiperovskites <i>via</i> tuning lattice and rotational dynamics. Journal of Materials Chemistry A, 2023, 11, 6157-6167.	10.3	2
520	Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries. Nano Research, 2023, 16, 8139-8158.	10.4	4
521	Tailoring of Li/LATP-PEO Interface via a Functional Organic Layer for High-Performance Solid Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 785-795.	6.7	9
522	Highly-concentrated bis(fluorosulfonyl)imide-based ternary gel polymer electrolytes for high-voltage lithium metal batteries. Journal of Power Sources, 2023, 557, 232554.	7.8	8
523	Enabling fast-charging capability for all-solid-state lithium-ion batteries. Journal of Power Sources, 2023, 559, 232647.	7.8	8
524	Mechanochemical reactions between polyanionic borate and residue Li2CO3 on LiCoO2 to stabilize cathode/electrolyte interface in sulfide-based all-solid-state batteries. Nano Energy, 2023, 108, 108192.	16.0	11
525	Liquidâ€Phase Synthesis of Highly Deformable and Airâ€Stable Snâ€Substituted Li ₃ PS ₄ for Allâ€Solidâ€State Batteries Fabricated and Operated under Low Pressures. Advanced Energy Materials, 2023, 13, .	19.5	8
526	Confined in-situ polymerization of poly(1,3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Materials Today Energy, 2023 32 101239	4.7	9

#	Article	IF	CITATIONS
527	Enhanced Moisture Stability of Lithiumâ€Rich Antiperovskites for Sustainable Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2023, 35, .	21.0	6
528	Incorporating Ethylene Oxide Functionalized Inorganic Particles to Solid Polymer Electrolytes for Enhanced Mechanical Stability and Electrochemical Performance. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	0
529	Experimental Investigations on the Chemo-Mechanical Coupling in Solid-State Batteries and Electrode Materials. Energies, 2023, 16, 1180.	3.1	1
530	Surface Defects Reinforced Polymerâ€Ceramic Interfacial Anchoring for Highâ€Rate Flexible Solidâ€State Batteries. Advanced Functional Materials, 2023, 33, .	14.9	19
531	Enhancing Performance of LiFePO4 Battery by Using a Novel Gel Composite Polymer Electrolyte. Batteries, 2023, 9, 51.	4.5	1
532	Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nature Communications, 2023, 14, .	12.8	47
533	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie, 2023, 135, .	2.0	3
534	Limiting Factors Affecting the Ionic Conductivities of LATP/Polymer Hybrid Electrolytes. Batteries, 2023, 9, 87.	4.5	5
535	Solidâ \in State Batteries Based on Organic Cathode Materials. Batteries and Supercaps, 2023, 6, .	4.7	3
537	First-principles study on ultrafast Li-ion diffusion in halospinel Li ₂ Sc _{2/3} Cl ₄ through multichannels designed by aliovalent doping. Journal of Materials Chemistry A, 2023, 11, 4272-4279.	10.3	2
538	H ₃ PO ₄ -Induced Nano-Li ₃ PO ₄ Pre-reduction Layer to Address Instability between the Nb-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte and Metallic Li Anode. ACS Applied Materials & amp; Interfaces, 2023, 15, 5345-5356.	8.0	8
539	Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries. Energy and Environmental Science, 2023, 16, 1049-1061.	30.8	18
540	Insights into the Enhanced Interfacial Stability Enabled by Electronic Conductor Layers in Solid‣tate Li Batteries. Advanced Energy Materials, 2023, 13, .	19.5	10
541	Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. Nano-Micro Letters, 2023, 15, .	27.0	44
542	Recent advances in 3D printed electrode materials for electrochemical energy storage devices. Journal of Energy Chemistry, 2023, 81, 272-312.	12.9	16
543	Practical Application of Li-Rich Materials in Halide All-Solid-State Batteries and Interfacial Reactions between Cathodes and Electrolytes. ACS Applied Materials & Interfaces, 2023, 15, 8190-8199.	8.0	7
544	Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batteries. Journal of Solid State Chemistry, 2023, 320, 123861.	2.9	1
545	Current Status and Future Directions in Environmental Stability of Sulfide Solid-State Electrolytes for All-Solid-State Batteries. Energy Material Advances, 2023, 4, .	11.0	6

#	Article	IF	Citations
546	In situ formed LiF-Li3N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2023, 79, 272-278.	12.9	19
547	Revealing the Influence of Surface Microstructure on Li Wettability and Interfacial Ionic Transportation for Garnetâ€Type Electrolytes. Advanced Energy Materials, 2023, 13, .	19.5	8
548	Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2023, 80, 458-465.	12.9	19
549	A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries. Journal of Power Sources, 2023, 568, 232992.	7.8	7
550	Enhanced grain connection and ionic conductivity of Na3.3La0.3Zr1.7Si2PO12 ceramic electrolyte by adding Na2B4O7. Solid State Ionics, 2023, 396, 116229.	2.7	3
551	Polyetherâ€bâ€Amide Based Solid Electrolytes with Wellâ€Adhered Interface and Fast Kinetics for Ultralow Temperature Solidâ€ S tate Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	14.9	10
552	Directly Using Li ₂ CO ₃ as a Lithiophobic Interlayer to Inhibit Li Dendrites for High-Performance Solid-State Batteries. ACS Energy Letters, 2023, 8, 2221-2231.	17.4	10
553	Multifunctional asymmetric electrolyte membrane encouraging durable lithium-metal batteries in wide temperature variations. Journal of Membrane Science, 2023, 677, 121636.	8.2	6
554	In Situ Polymerized 1,3â€Ðioxolane Electrolyte for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie, 2023, 135, .	2.0	7
555	Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries. Journal of Energy Chemistry, 2023, 79, 340-347.	12.9	7
556	In Situ Polymerized 1,3â€Ðioxolane Electrolyte for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
557	Encapsulating and Operating a Stable Li ₃ ErBr ₆ â€Based Solid Li–SeS ₂ Battery at Room Temperature. Advanced Functional Materials, 2023, 33, .	14.9	2
558	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
559	Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. Journal of Power Sources, 2023, 561, 232720.	7.8	6
560	Advances in thermalâ€related analysis techniques for solidâ€state lithium batteries. InformaÄnÃ-Materiály, 2023, 5, .	17.3	13
561	State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions. Journal of Cleaner Production, 2023, 394, 136246.	9.3	28
562	Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochemical Energy Reviews, 2023, 6, .	25.5	17
563	An endâ€ŧoâ€end artificial intelligence platform enables realâ€ŧime assessment of superionic conductors. SmartMat, 2023, 4, .	10.7	1

#	Article	IF	CITATIONS
564	Co-doping strategy enhanced the ionic conductivity and excellent lithium stability of garnet-type Li7La3Zr2O12 electrolyte in all solid-state lithium batteries. Journal of Materiomics, 2023, 9, 651-660.	5.7	7
565	Current Challenges, Progress and Future Perspectives of Aluminum-Ion Batteries. Applied Solar Energy (English Translation of Geliotekhnika), 2022, 58, 334-354.	1.6	0
566	Designing Bidirectionally Functional Polymer Electrolytes for Stable Solid Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	19.5	14
567	Progress and perspectives of liquid metal batteries. Energy Storage Materials, 2023, 57, 205-227.	18.0	6
568	Constructing a Superlithiophilic 3D Burrâ€Microsphere Interface on Garnet for Highâ€Rate and Ultraâ€Stable Solidâ€State Li Batteries. Advanced Science, 2023, 10, .	11.2	13
569	Controlling Electrolyte Properties and Redox Reactions Using Solvation and Implications in Battery Functions: A Miniâ€Review. Advanced Energy Materials, 2023, 13, .	19.5	14
570	Interface modification between Ta, Al-doped Li7La3Zr2O12 solid electrolyte and LiNi1/3Co1/3Mn1/3O2 cathode in all-solid-state batteries. Journal of Materials Science, 2023, 58, 4070-4081.	3.7	0
571	12µmâ€Thick Sintered Garnet Ceramic Skeleton Enabling Highâ€Energyâ€Density Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	19.5	35
572	Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery. Chemical Engineering Journal, 2023, 461, 141995.	12.7	7
573	Enhanced Li+ migration in solid polymer electrolyte driven by anion-containing polymer-chains. Chinese Chemical Letters, 2023, 34, 108245.	9.0	0
574	Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials, 2023, 57, 429-459.	18.0	11
575	Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries. Energy Material Advances, 2023, 4, .	11.0	12
576	A Universal Roomâ€Temperature 3D Printing Approach Towards porous MOF Based Dendrites Inhibition Hybrid Solidâ€State Electrolytes. Small, 2023, 19, .	10.0	8
577	Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of Highâ€Energy Batteries. Advanced Energy Materials, 2023, 13, .	19.5	22
578	Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes. Advanced Energy Materials, 2023, 13, .	19.5	34
579	Recycling of garnet solid electrolytes with lithium-dendrite penetration by thermal healing. Science China Materials, 2023, 66, 2192-2198.	6.3	1
580	Low ost, Highâ€Strength Celluloseâ€based Quasiâ€Solid Polymer Electrolyte for Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	21
581	Lowâ€Cost, Highâ€6trength Celluloseâ€based Quasiâ€6olid Polymer Electrolyte for Solidâ€6tate Lithiumâ€Metal Batteries. Angewandte Chemie, 2023, 135, .	2.0	2

#	Article	IF	CITATIONS
582	Lithium salt-regulated dual-stabilized elastomeric quasi-solid electrolyte for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 8308-8319.	10.3	2
583	Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor. Nano Research, 2023, 16, 9344-9351.	10.4	1
584	MOF-Based 3D Ion-Conducting Network Enables High-Voltage All-Solid-State Lithium Metal Batteries at Room Temperature. , 2023, 5, 1136-1144.		10
585	The Influences of DMF Content in Composite Polymer Electrolytes on Li ⁺ â€Conductivity and Interfacial Stability with Liâ€Metal. Advanced Functional Materials, 2023, 33, .	14.9	15
586	Realization of High Loading Density Lithium Polymer Batteries by Optimizing Lithium-Ion Transport and Electronic Conductivity. ACS Applied Materials & Interfaces, 2023, 15, 15298-15310.	8.0	1
587	All-Solid-State Garnet Type Sulfurized Polyacrylonitrile/Lithium-Metal Battery Enabled by an Inorganic Lithium Conductive Salt and a Bilayer Electrolyte Architecture. ACS Energy Letters, 2023, 8, 1803-1810.	17.4	16
588	Fast and stable charge transfer at the lithium–sulfide (electrolyte) interface <i>via</i> an <i>in situ</i> solidified Li ⁺ -conductive interlayer. Materials Chemistry Frontiers, 2023, 7, 2405-2410.	5.9	1
589	Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. Journal of Physical Chemistry B, 2023, 127, 2979-2990.	2.6	2
590	Improving the Electrochemical Performance of a Solid-State Battery with a LiFePO ₄ –Garnet-Based Composite Cathode. Journal of Physical Chemistry C, 2023, 127, 6192-6198.	3.1	2
592	Fluorinated Solid Electrolyte Interphase Derived From Fluorinated Polymer Electrolyte To Stabilize Li Metal. ChemSusChem, 2023, 16, .	6.8	1
593	A Solid-State Lithium Battery with PVDF–HFP-Modified Fireproof Ionogel Polymer Electrolyte. ACS Applied Energy Materials, 2023, 6, 4016-4026.	5.1	6
594	Accelerated Workflow for Antiperovskiteâ€based Solid State Electrolytes. Batteries and Supercaps, 2023, 6, .	4.7	4
595	Extraordinary Ionic Conductivity Excited by Hierarchical Ionâ€Transport Pathways in MOFâ€Based Quasiâ€Solid Electrolytes. Advanced Materials, 2023, 35, .	21.0	9
596	Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nature Communications, 2023, 14, .	12.8	16
597	The role of ceramic composite materials in achieving next-generation electrochemical energy storage devices. , 2023, , 335-370.		0
598	Simultaneously Suppressing Shuttle Effect and Dendrite Growth in Lithium–Sulfur Batteries via Building Dualâ€Functional Asymmetricâ€Cellulose Gel Electrolyte. Small, 2023, 19, .	10.0	5
599	A New Solid Electrolyte with A High Lithium Ionic Conductivity for Solid-State Lithium-Ion Batteries. , 0, , .		1
600	Li-ion transport at the LiFePO4/γ-Li3PO4 interface and its enhancement through surface nitrogen doping. Journal of Applied Physics, 2023, 133, .	2.5	2

#	Article	IF	CITATIONS
601	Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	25.5	30
602	A Flexible Solid Polymer Electrolyte based Polymerized Ionic Liquid for High Performance Solidâ€State Batteries. Batteries and Supercaps, 2023, 6, .	4.7	1
603	New Concepts and Tools. , 2023, , 714-764.		0
604	Improved electrochemical performance and chemical stability of thin-film lithium phosphorus oxynitride electrolyte by appropriate fluorine plasma treatment. Electrochimica Acta, 2023, 454, 142411.	5.2	0
605	Solid-state inorganic electrolytes (oxides, sulfides, and halides). , 2023, , 77-117.		0
606	Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nature Communications, 2023, 14, .	12.8	39
607	Tailoring of the Anti-Perovskite Solid Electrolytes at the Grain-Scale. ACS Energy Letters, 2023, 8, 2356-2364.	17.4	7
608	Unraveling Li growth kinetics in solid electrolytes due to electron beam charging. Science Advances, 2023, 9, .	10.3	7
609	Toward Sustainable All Solidâ€State Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Advanced Materials, 2023, 35, .	21.0	14
610	IonML: A physically inspired machine learning platform to directed design superionic conductors. Energy Storage Materials, 2023, 59, 102781.	18.0	3
611	High-Efficiency Lithium-Ion Transport in a Porous Coordination Chain-Based Hydrogen-Bonded Framework. Journal of the American Chemical Society, 2023, 145, 10149-10158.	13.7	25
612	Stable Cycling with Intimate Contacts Enabled by Crystallinityâ€Controlled PTFEâ€Based Solventâ€Free Cathodes in Allâ€Solidâ€State Batteries. Small Methods, 2023, 7, .	8.6	4
613	Competing Heat Carriers Leading to Distinctive Cation Concentration Dependent Thermal Conductivity of Amorphous Li <i>_x</i> S (<i>x</i> Â=Â0–2) Batteries. Advanced Functional Materials, 2023, 33, .	14.9	2
614	In Situ Fabricated Nonâ€Flammable Quasiâ€Solid Electrolytes for Liâ€Metal Batteries. Small Methods, 2023, 7,	8.6	5
615	Optimization Strategies Toward Functional Sodiumâ€Ion Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	26
616	Ultrafast microwave heated form-stable thermal package providing operating temperature for PEO all-solid-state batteries. Energy Storage Materials, 2023, 60, 102814.	18.0	5
617	Revisiting the Role of Discharge Products in Li–CO ₂ Batteries. Advanced Materials, 2023, 35, .	21.0	7
618	Hopping Rate and Migration Entropy as the Origin of Superionic Conduction within Solid-State Electrolytes. Journal of the American Chemical Society, 2023, 145, 11701-11709.	13.7	8

#	Article	IF	CITATIONS
619	Mechanically Robust Ultrathin Solid Electrolyte Membranes Using a Porous Net Template for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2023, 15, 28064-28072.	8.0	1
620	Experimental Discovery of a Fast and Stable Lithium Thioborate Solid Electrolyte, Li _{6+2<i>x</i>} [B ₁₀ S ₁₈]S _{<i>x</i>} (<i>x</i> â‰^ 1). ACS Energy Letters, 2023, 8, 2762-2771.	17.4	5
621	Multilayer structure solid-state electrolyte composite membranes for long-life quasi-solid-state battery. Journal of Alloys and Compounds, 2023, 960, 170736.	5.5	1
622	Amorphous Phase Induced Lithium Dendrite Suppression in Glass-Ceramic Garnet-Type Solid Electrolytes. ACS Applied Materials & Interfaces, 2023, 15, 28692-28704.	8.0	5
623	Composition, structure and electrochemical performance of LiSiPSCI electrolyte with Li/Li-In anodes in all-solid-state batteries. Electrochimica Acta, 2023, 461, 142691.	5.2	2
624	Dendritic Solid Polymer Electrolytes: A New Paradigm for Highâ€Performance Lithiumâ€Based Batteries. Advanced Materials, 2023, 35, .	21.0	9
625	Electrochemical properties of LATP ceramic electrolyte doped with LiBiO3 sintering additive and its derived sandwich structure composite solid electrolyte. Ionics, 2023, 29, 2665-2678.	2.4	1
626	Flexible Solid-State Lithium-Ion Batteries: Materials and Structures. Energies, 2023, 16, 4549.	3.1	2
628	MXenes and Their Derivatives for Advanced Solidâ€State Energy Storage Devices. Advanced Functional Materials, 2023, 33, .	14.9	10
629	Realizing fast Li-ion conduction of Li ₃ PO ₄ solid electrolyte at low temperature by mechanochemical formation of lithium-containing dual-shells. Materials Advances, 0, ,	5.4	0
630	Software for Evaluating Ionic Conductivity of Inorganic–Polymer Composite Solid Electrolytes. Energy Material Advances, 2023, 4, .	11.0	2
631	Critical Factors to Understanding the Electrochemical Performance of Allâ€Solidâ€State Batteries: Solid Interfaces and Nonâ€Zero Lattice Strain. Small, 0, , .	10.0	0
632	On High-Temperature Thermal Cleaning of Li ₇ La ₃ Zr ₂ O ₁₂ Solid-State Electrolytes. ACS Applied Energy Materials, 2023, 6, 6972-6980.	5.1	3
633	High-Capacity Oxide Cathode beyond 300 mAh/g. ACS Energy Letters, 2023, 8, 3025-3037.	17.4	13
634	Pathways to Nextâ€Generation Fire‣afe Alkaliâ€Ion Batteries. Advanced Science, 2023, 10, .	11.2	4
635	Application of Liquid Metal Electrodes in Electrochemical Energy Storage. , 0, , .		0
636	Li _{3–<i>x</i>} Zr _{<i>x</i>} (Ho/Lu) _{1–<i>x</i>} Cl ₆ Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. ACS Energy Letters, 2023, 8, 3102-3111.	17.4	6
637	Effect of Residual Solvents on Properties of Composite Solid Electrolytes. ACS Sustainable Chemistry and Engineering, 2023, 11, 10164-10171.	6.7	2

#	ARTICLE	IF	CITATIONS
638	Bilayer Zwitterionic Metalâ€Organic Framework for Selective Allâ€Solidâ€State Superionic Conduction in Lithium Metal Batteries. Advanced Materials, 2023, 35, .	21.0	13
639	Exploring the potential of material information in patent data: The case of solid-state batteries. Journal of Energy Storage, 2023, 71, 108123.	8.1	1
640	Comprehensive understanding on lithium argyrodite electrolytes for stable and safe all-solid-state lithium batteries. Energy Storage Materials, 2023, 61, 102869.	18.0	2
641	Modeling ionic conductivity and activation energy in garnet-structured solid electrolytes: The role of composition, grain boundaries and processing. Solid State Ionics, 2023, 399, 116293.	2.7	3
642	Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chemical Engineering Journal, 2023, 468, 143222.	12.7	3
643	Incombustible Polymer Electrolyte Boosting Safety of Solid tate Lithium Batteries: A Review. Advanced Functional Materials, 2023, 33, .	14.9	29
644	Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nature Communications, 2023, 14, .	12.8	29
645	Hybrid Dynamic Covalent Network as a Protective Layer and Solid-State Electrolyte for Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 23765-23776.	8.0	3
646	In-Situ-Polymerized 1,3-Dioxolane Solid-State Electrolyte with Space-Confined Plasticizers for High-Voltage and Robust Li/LiCoO ₂ Batteries. ACS Applied Materials & Interfaces, 2023, 15, 26834-26842.	8.0	2
647	Building the homogeneous ionic interfaces and channels for high compatible composite PVDF/SiO2 solid electrolyte by grafting sulfonate betaine. Surfaces and Interfaces, 2023, 39, 102978.	3.0	1
648	Electrode/electrolyte interphases in high-temperature batteries: a review. Energy and Environmental Science, 2023, 16, 2825-2855.	30.8	7
649	A MOF vertical array enables continuous ion transport pathways with high throughput. Journal of Materials Chemistry A, 2023, 11, 14025-14033.	10.3	3
650	Construction of High-Strength Flame-Retardant Li-SPEEK-Modified PEG Gel Polymer Electrolytes for Lithium Batteries. ACS Applied Energy Materials, 2023, 6, 6381-6390.	5.1	0
651	Tuning the Covalent Coupling Degree between the Cathode and Electrolyte for Optimized Interfacial Resistance in Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2023, 15, 29140-29148.	8.0	0
652	Electrolytes for better and safer batteries: Liquid, solid or frameworked, what's next?. , 2023, 1, 100024.		3
653	Design Strategies of Li–Si Alloy Anode for Mitigating Chemoâ€Mechanical Degradation in Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Science, 2023, 10, .	11.2	3
654	Computational design of a mixed A-site cation halide solid electrolyte for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2023, 11, 15968-15978.	10.3	2
655	Insights into interfacial physiochemistry in sulfide solid-state batteries: a review. Materials Chemistry Frontiers, 2023, 7, 4810-4832.	5.9	4

#	Article	IF	CITATIONS
656	Low-temperature sintering of Li _{1.3} Al _{0.3} Ti _{1.7} (PO _{4electrolytes enabled by cobalt surface modification followed by two-step sintering. Journal of the Ceramic Society of Japan, 2023, 131, 298-305.}	t;)& t;sub 1.	>3
657	Challenges and opportunities towards silicon-based all-solid-state batteries. Energy Storage Materials, 2023, 61, 102875.	18.0	10
658	Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Materials, 2023, 61, 102876.	18.0	7
659	New superionic halide solid electrolytes enabled by aliovalent substitution in Li _{3â^'<i>x</i>} Y _{1â^'<i>x</i>} Hf _{<i>x</i>} Cl ₆ for all-solid-state lithium metal based batteries. Journal of Materials Chemistry A, 2023, 11, 15651-15662.	10.3	4
661	A eutectic electrolyte for an ultralong-lived Zn//V ₂ O ₅ cell: an <i>in situ</i> generated gradient solid-electrolyte interphase. Energy and Environmental Science, 2023, 16, 3587-3599.	30.8	37
662	NASICON-based all-solid-state Na–ion batteries: A perspective on manufacturing via tape-casting process. , 2023, 1, .		2
663	Ti3C2T MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2023, , 108776.	9.0	0
664	Synergized Tricomponent Allâ€Inorganics Solid Electrolyte for Highly Stable Solidâ€State Liâ€Ion Batteries. Advanced Science, 2023, 10, .	11.2	3
665	Realizing long-cycling all-solid-state Li-In TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes. Nature Communications, 2023, 14, .	12.8	19
666	Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries. Energy and Environmental Science, 2023, 16, 3552-3563.	30.8	21
667	Reactive boride as a multifunctional interface stabilizer for garnet-type solid electrolyte in all-solid-state lithium batteries. Nanoscale, 0, , .	5.6	0
668	Chemistry Aspects and Designing Strategies of Flexible Materials for Highâ€Performance Flexible Lithium″on Batteries. Chemical Record, 2024, 24, .	5.8	0
669	Optimizing the Composite Cathode Microstructure in Allâ€Solidâ€State Batteries by Structureâ€Resolved Simulations. Batteries and Supercaps, 2023, 6, .	4.7	3
670	Molecular regulated polymer electrolytes for solid-state lithium metal batteries: Mechanisms and future prospects. ETransportation, 2023, 18, 100264.	14.8	6
671	Lewis acid fluorine-donating additive enables an excellent semi-solid-state electrolyte for ultra-stable lithium metal batteries. Nano Energy, 2023, 115, 108700.	16.0	3
672	5D Analysis of Capacity Degradation in Battery Electrodes Enabled by <i>Operando</i> CTâ€XANES. Small Methods, 2023, 7, .	8.6	1
673	Building better solidâ€state batteries with siliconâ€based anodes. , 2023, 2, 635-663.		15
674	Two-in-one structure as both lithium protective layer and electrolyte for safe solid-state lithium-metal battery. Energy Storage Materials, 2023, 61, 102884.	18.0	2

#	Article	IF	CITATIONS
675	Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries. Advanced Materials, 2023, 35, .	21.0	1
676	Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety. Journal of Energy Storage, 2023, 72, 108389.	8.1	6
677	Unraveling Li Growth Kinetics in Solid Electrolytes Due to Charging Effect under Electron Microscopy. Microscopy and Microanalysis, 2023, 29, 1335-1336.	0.4	0
678	Structural Analysis of the LiCoPO ₄ Electrode/NASICON-Type Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Solid Electrolyte Interface. Journal of Physical Chemistry C, 0, , .	3.1	1
679	Advanced metal anodes and their interface design toward safe metal batteries: A comprehensive review. Progress in Materials Science, 2023, 139, 101171.	32.8	4
681	Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35, 108846.	9.0	1
682	Post-synthetic Covalent Organic Framework to Improve the Performance of Solid-State Li ⁺ Electrolytes. ACS Applied Materials & Interfaces, 2023, 15, 34704-34710.	8.0	2
683	Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-Voltage Cathodes. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, , 215.	1.3	0
684	Influence of Li3BO3 on the stability of Li1.5Al0.5Ge1.5(PO4)3 glass-ceramics with Li4Ti5O12 anode. Solid State Ionics, 2023, 399, 116317.	2.7	0
685	Challenges and Opportunities for Fast-Charging Batteries. Journal of Physical Chemistry C, 2023, 127, 15021-15034.	3.1	3
686	Fatigue-Free and Skin-like Supramolecular Ion-Conductive Elastomeric Interphases for Stable Lithium Metal Batteries. ACS Nano, 2023, 17, 16239-16251.	14.6	11
687	Challenges and Prospects of Allâ€Solidâ€State Electrodes for Solidâ€State Lithium Batteries. Advanced Functional Materials, 2023, 33, .	14.9	6
688	Design Strategies for Anodes and Interfaces Toward Practical Solidâ€State Liâ€Metal Batteries. Advanced Science, 0, , .	11.2	3
689	Recent Advances in Developing High-Performance Solid-State Lithium Batteries: Interface Engineering. Energy & Fuels, 0, , .	5.1	1
690	Dual-Salt-Containing Polymer Interlayer Stabilizes Solid-State Li-Metal Batteries with LiCoO ₂ Cathodes. ACS Sustainable Chemistry and Engineering, 2023, 11, 12378-12388.	6.7	0
691	Highly Conductive Poly(ethylene oxide)-Based Composite Polymer Electrolyte for Sodium Battery Applications. ACS Applied Energy Materials, 2023, 6, 8434-8442.	5.1	1
692	Revealing the role of hydrogen bond coupling structure for enhanced performance of the solid-state electrolyte. Journal of Colloid and Interface Science, 2023, 652, 529-539.	9.4	5
693	Advanced strategies for solid electrolyte interface design with MOF materials. , 2024, 3, 100154.		3

#	Article	IF	CITATIONS
694	Copper oxide decorated carbon nanofiber skeleton for dendriteâ€free Liâ€metal anodes. Batteries and Supercaps, 0, , .	4.7	0
695	Layer-Structured Composite Solid-State Electrolyte with a Li _{1.3} Al _{O.3} Ti _{1.7} (PO ₄) ₃ -Coated Separator for High-Voltage Lithium Metal Batteries by In Situ Polymerization. ACS Applied Energy Materials, 2023, 6. 8626-8633.	5.1	1
696	Sulfur Polymers as Flexible Interfacial Additives for Low Stackâ€Pressure Solidâ€State Lithiumâ€Ion Batteries. Batteries and Supercaps, 0, , .	4.7	0
697	Unlocking the chemical space in anti-perovskite conductors by incorporating anion rotation dynamics. Energy Storage Materials, 2023, 62, 102936.	18.0	0
698	Crack Suppression by Downsizing Sulfideâ€Electrolyte Particles for Highâ€Currentâ€Density Operation of Metal/Alloy Anodes. Batteries and Supercaps, 2023, 6, .	4.7	1
699	Recent advances in designing solid-state electrolytes to reduce the working temperature of lithium batteries. Materials Chemistry Frontiers, 2023, 7, 6061-6084.	5.9	2
700	Specific applications of the lanthanides. , 2023, , 649-741.		0
701	Titanium–Oxygen Clusters Brazing Li with Li _{6.5} La ₃ Zr _{1.5} Ta _{0.5} O ₁₂ for High-Performance All-Solid-State Li Batteries. Nano Letters, 2023, 23, 7934-7940.	9.1	2
702	Elucidating the diffusion pathway of lithium ions in superionic halide solid electrolytes Li2+Hf1â^'In Cl6 for all-solid-state lithium-metal based batteries. Journal of Energy Chemistry, 2023, 87, 12-23.	12.9	1
703	Ion Migration Mechanism Study of Hydroborate/Carborate Electrolytes for All-Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	25.5	1
704	Contributing to the Revolution of Electrolyte Systems via In Situ Polymerization at Different Scales: A Review. Small, 2024, 20, .	10.0	0
705	A Review on the Features and Progress of Silicon Anodesâ€Based Solidâ€State Batteries. Advanced Energy Materials, 2023, 13, .	19.5	2
706	An ultraconformal chemo-mechanical stable cathode interface for high-performance all-solid-state batteries at wide temperatures. Energy and Environmental Science, 2023, 16, 4453-4463.	30.8	6
707	Functional nanosheet fillers with fast Li+ conduction for advanced all-solid-state lithium battery. Energy Storage Materials, 2023, 62, 102954.	18.0	1
708	Halide solid-state electrolytes for all-solid-state batteries: structural design, synthesis, environmental stability, interface optimization and challenges. Chemical Science, 2023, 14, 8693-8722.	7.4	8
709	In Situ Construction of Zwitterionic Polymer Electrolytes with Synergistic Cation–Anion Regulation Functions for Lithium Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	5
710	Anodeâ€Less Allâ€Solidâ€State Batteries Operating at Room Temperature and Low Pressure. Advanced Energy Materials, 2023, 13, .	19.5	6
711	Regulation of polysulfide adsorption and LiF-rich interface chemistry to achieve high-performance PEO-based lithium–sulfur batteries. Journal of Materials Chemistry A, 2023, 11, 19046-19055.	10.3	2

#	Article	IF	CITATIONS
712	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials Chemistry A, 0, , .	10.3	0
713	An LLTO-containing heterogeneous composite electrolyte with a stable interface for solid-state lithium metal batteries. Dalton Transactions, 2023, 52, 14064-14074.	3.3	0
714	Polymer Electrolytes for Lithium-Sulfur Batteries: Progress and Challenges. Batteries, 2023, 9, 488.	4.5	0
716	Garnet-type solid-state electrolytes: crystal structure, interfacial challenges and controlling strategies. Rare Metals, 2023, 42, 3177-3200.	7.1	2
717	Potential electrolytes for solid state batteries and its electrochemical analysis—A review. Energy Storage, 2024, 6, .	4.3	2
718	Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Progress in Materials Science, 2023, 140, 101193.	32.8	4
719	Solid-state lithium batteries-from fundamental research to industrial progress. Progress in Materials Science, 2023, 139, 101182.	32.8	9
720	Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries via Machine Learning. Journal of Physical Chemistry C, 2023, 127, 19335-19343.	3.1	2
721	Achieving superior moisture-resistant and electrochemical properties of chlorine-rich Li-argyrodites via high oxygen dose. Journal of Alloys and Compounds, 2023, 968, 172134.	5.5	2
722	Theoretical and experimental design in the study of sulfide-based solid-state battery and interfaces. Chinese Chemical Letters, 2024, 35, 109173.	9.0	0
723	Amorphous Materials for Lithiumâ€lon and Postâ€Lithiumâ€lon Batteries. Small, 2024, 20, .	10.0	1
724	Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 2023, 73, 109048.	8.1	0
725	Laserâ€Assisted Interfacial Engineering for Highâ€Performance Allâ€Solidâ€State Batteries. ChemElectroChem, 2023, 10, .	3.4	0
726	A Flexible and Self-Healing Ionic Gel Electrolyte Based on a Zwitterion (ZI) Copolymer for High-Performance Lithium Metal Batteries. Batteries, 2023, 9, 452.	4.5	0
727	Mobile energy storage technologies for boosting carbon neutrality. Innovation(China), 2023, 4, 100518.	9.1	4
728	A Roadmap for Solidâ \in State Batteries. Advanced Energy Materials, 2023, 13, .	19.5	6
729	NaF-Rich Multifunctional Layers toward Stable All-Solid-State Sodium Batteries. ACS Applied Materials & Interfaces, 2023, 15, 45026-45034.	8.0	1
730	Practical Application of Allâ€6olidâ€6tate Lithium Batteries Based on Highâ€Voltage Cathodes: Challenges and Progress. Advanced Energy Materials, 2023, 13, .	19.5	8

#	Article	IF	CITATIONS
731	A Supertough and Highlyâ€Conductive Nanoâ€Dipole Doped Composite Polymer Electrolyte with Hybrid Li ⁺ â€Solvation Microenvironment for Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	19.5	2
732	Synchrotron-Based X-ray Photoelectron Microscopy of LMO/LAGP/Cu Thin-Film Solid-State Lithium Metal Batteries. Batteries, 2023, 9, 506.	4.5	0
733	Redox-active ferrocene upgrading PEO electrolyte for durable all-solid-state lithium-metal batteries. Journal of Power Sources, 2023, 581, 233459.	7.8	0
734	Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer. Nature Communications, 2023, 14, .	12.8	1
735	Eutecticâ€Based Polymer Electrolyte with the Enhanced Lithium Salt Dissociation for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
736	Eutecticâ€Based Polymer Electrolyte with the Enhanced Lithium Salt Dissociation for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
737	A review on ion transport pathways and coordination chemistry between ions and electrolytes in energy storage devices. Journal of Energy Storage, 2023, 74, 109311.	8.1	6
738	Recent Advances in Liquid Metals for Rechargeable Batteries. Advanced Functional Materials, O, , .	14.9	0
739	Sequencing polymers to enable solid-state lithium batteries. Nature Materials, 2023, 22, 1515-1522.	27.5	5
740	Porous Ga _{0.25} Li _{6.25} La ₃ Zr ₂ O ₁₂ frameworks by gelcasting–reaction sintering for high-performance hybrid quasi-solid lithium metal batteries. Journal of Materials Chemistry A, 0, , .	10.3	0
741	LLZTO Nanoparticle- and Cellulose Mesh-Coreinforced Flexible Composite Electrolyte for Stable Li Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 37884-37892.	8.0	0
742	Sn-doped thioantimonate superionic conductors with high air stability and enhanced Li-ion conduction for all-solid-state lithium batteries. Journal of Materials Chemistry A, O, , .	10.3	0
743	Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. , 0, , .		2
744	Enabling stable and high areal capacity solid state battery with Ni-rich cathode via failure mechanism study. Energy Storage Materials, 2023, 63, 102987.	18.0	1
745	Cathode Interface Construction by Rapid Sintering in Solidâ€ S tate Batteries. Small, 2024, 20, .	10.0	0
746	A dynamic database of solid-state electrolyte (DDSE) picturing all-solid-state batteries. Nano Materials Science, 2023, , .	8.8	1
747	High Performance Hybrid Aqueous Li/NiCl ₂ Rechargeable Batteries with Water‣table High Lithium″on Conductivity Solid Electrolyte. ChemistrySelect, 2023, 8, .	1.5	0
748	Lithium-Ion Batteries under Low and High-Temperature Conditions. Annual Review of Heat Transfer, 2023, , .	1.0	0

# 749	ARTICLE Comparative Analysis of Aqueous and Nonaqueous Polymer Binders for the Silicon Anode in Allâ€Solidâ€State Batteries. Advanced Energy and Sustainability Research, 0, , .	IF 5.8	CITATIONS
751	Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphase. Advanced Energy Materials, 2023, 13, .	19.5	5
752	In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2024, 88, 282-292.	12.9	3
753	Enabling High-Performance All-Solid-State Batteries via Guest Wrench in Zeolite Strategy. Journal of the American Chemical Society, 2023, 145, 24116-24125.	13.7	3
754	A Hundredsâ€Milliampereâ€Hourâ€Scale Solidâ€State Aluminum–Sulfur Pouch Cell. Advanced Energy Materials, 2023, 13, .	19.5	0
755	Ultrathin Superhydrophobic Coatings for Air‣table Inorganic Solid Electrolytes: Toward Dry Room Application for All‣olid‣tate Batteries. Advanced Energy Materials, 2023, 13, .	19.5	3
756	Dual Li+ transport enabled by BN-assisted solid-polymer-electrolyte for high-performance lithium batteries. Chemical Engineering Journal, 2023, 475, 146414.	12.7	0
757	The effect of volume change and stack pressure on solidâ€ s tate battery cathodes. SusMat, 2023, 3, 721-728.	14.9	4
758	In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries. Journal of Energy Chemistry, 2024, 89, 137-143.	12.9	1
759	Solid polymer electrolytes based on poly(ionic liquid-co-ethylene oxide) for room-temperature solid-state lithium batteries. Journal of Solid State Electrochemistry, 0, , .	2.5	0
760	Lithium dynamics at grain boundaries of β-Li ₃ PS ₄ solid electrolyte. Energy Advances, 2023, 2, 2029-2041.	3.3	1
761	Reducing Gases Triggered Cathode Surface Reconstruction for Stable Cathode–Electrolyte Interface in Practical Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2024, 36, .	21.0	2
762	A Dynamically Stable Mixed Conducting Interphase for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Materials, 2024, 36, .	21.0	5
763	Understanding and Controlling Lithium Morphology in Solid Polymer and Gel Polymer Systems: Mechanisms, Strategies, and Gaps. Materials Advances, 0, , .	5.4	0
764	Modeling and simulation in rate performance of solid-state lithium-ion batteries at low temperatures. Journal of Energy Storage, 2023, 74, 109296.	8.1	0
765	Lithium-compatible and air-stable vacancy-rich Li ₉ N ₂ Cl ₃ for high–areal capacity, long-cycling all–solid-state lithium metal batteries. Science Advances, 2023, 9, .	10.3	4
766	Safety of lithium battery materials chemistry. Journal of Materials Chemistry A, 2023, 11, 25236-25246.	10.3	1
767	Trimethylsilyl Compounds for the Interfacial Stabilization of Thiophosphateâ€Based Solid Electrolytes in Allâ€Solidâ€State Batteries. Advanced Science, 2023, 10, .	11.2	1

#	Article	IF	CITATIONS
768	Solid electrolyte cracking due to lithium filament growth and concept of mechanical reinforcement – An operando study. Materials Today, 2023, 70, 33-43.	14.2	0
769	Investigation of Electrochemical Stability of ALD Grown Li ₃ PO ₄ Thin Films and Its Application in Highâ€Voltage PEOâ€based Allâ€Solidâ€State Lithium Batteries. Advanced Sustainable Systems, 0, , .	5.3	0
770	Cathodic interface in sulfide-based all-solid-state lithium batteries. Energy Storage Materials, 2023, 63, 103034.	18.0	0
771	Reducing interfacial thermal resistance between polyethylene oxide-based solid-state polymer electrolyte and lithium anode by using IVA group two-dimensional materials: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2024, 219, 124864.	4.8	0
772	Understanding Interfaces at the Positive and Negative Electrodes on Sulfide-Based Solid-State Batteries. ACS Applied Energy Materials, 2023, 6, 11030-11042.	5.1	0
773	A review of solid-state lithium metal batteries through in-situ solidification. Science China Chemistry, 0, , .	8.2	1
774	Waxing Bare High-Voltage Cathode Surfaces to Enable Sulfide Solid-State Batteries. ACS Energy Letters, 2023, 8, 4949-4956.	17.4	1
775	Large-scale manufacturing of solid-state electrolytes: Challenges, progress, and prospects. Open Ceramics, 2023, 16, 100497.	2.0	0
776	Design of a trigonal halide superionic conductor by regulating cation order-disorder. Science, 2023, 382, 573-579.	12.6	5
777	Lithium metal anode: Past, present, and future. , 0, , .		0
778	Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes. Energy Storage Materials, 2024, 64, 103072.	18.0	2
779	A magnetic-assisted construction of functional gradient interlayer for dendrite-free solid-state lithium batteries. Energy Storage Materials, 2023, 63, 103041.	18.0	0
780	From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Letters, 2024, 16, .	27.0	1
781	å¨â›ºä¼2¨é›»æ±ã«çੌ¨ã"ã,‹ç¡«åŒ−物系固ä¼2¨é›»è§£è³ªç²‰ä¼2¨ã®æ¹¿å¼¢²‰ç•ãïæ´»ç‰©è³³ï¼å›ºä¼2¨é	ź›» ∂§£ 質ä	13⁄@å1⁄4ã,3ã,f1
782	Oxygen-regulated spontaneous solid electrolyte interphase enabling ultra-stable solid-State Na metal batteries. Science Bulletin, 2023, , .	9.0	1
783	Insight into the Extreme Side Reaction between LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ and Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ during Cosintering for All-Solid-State Batteries. Chemistry of Materials. 2023. 35. 9647-9656.	6.7	1
784	Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation. Journal of Energy Chemistry, 2024, 90, 191-204.	12.9	2
785	Solid-state electrolytes for inhibiting active species crossover in lithium metal batteries: a review. Materials Chemistry Frontiers, 2024, 8, 1036-1063.	5.9	0

#	Article	IF	CITATIONS
786	Recent Progress on the Air‣table Battery Materials for Solid‣tate Lithium Metal Batteries. Advanced Science, 2024, 11, .	11.2	0
787	Robust All-Solid-State Lithium Metal Batteries Enabled by a Composite Lithium Anode with Improved Bulk Li Diffusion Kinetics Properties. ACS Nano, 2023, 17, 24290-24298.	14.6	1
788	What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture. Nature Communications, 2023, 14, .	12.8	0
789	In-situ synthesis of fluoropolymer-grafted Nanohybrid electrolyte as ion reservoir for Li-metal batteries. Giant, 2023, 16, 100201.	5.1	1
790	Short literature review of Li+ batteries recycling. E3S Web of Conferences, 2023, 441, 01020.	0.5	0
791	Discovery of high entropy garnet solid-state electrolytes via ultrafast synthesis. Energy Storage Materials, 2023, 63, 103053.	18.0	0
792	Advances in Inorganic Solidâ€ S tate Electrolyte/Li Interface. Chemistry - A European Journal, 0, , .	3.3	0
793	Synthesis, structural study, and Na+ migration pathways simulation of the new phase Na3Al3(AsO4)4. Journal of Solid State Chemistry, 2024, 330, 124459.	2.9	0
794	Synthetic Tailoring of Ionic Conductivity in Multicationic Substituted, Highâ€Entropy Lithium Argyrodite Solid Electrolytes. Small, 0, , .	10.0	0
795	Engineering electrode–electrolyte interface for ultrastable Si-based solid-state batteries. Surfaces and Interfaces, 2024, 44, 103687.	3.0	0
796	Present and Future Generation of Secondary Batteries: A Review. ChemBioEng Reviews, 2023, 10, 1123-1145.	4.4	0
799	Perturbation of Na-ion distribution for enhancement of ionic conductivity to a practical level of over 1 mS·cmâ^'1 in Na3ZnGaS4. Energy Storage Materials, 2024, 65, 103123.	18.0	0
800	Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. Journal of the American Chemical Society, 0, , .	13.7	1
801	g-C ₃ N ₄ Boosting the Interfacial Compatibility of Solid-State Lithium-Sulfur Battery. Journal of the Electrochemical Society, 2023, 170, 120527.	2.9	2
802	Polyoxometalate Li ₃ PW ₁₂ O ₄₀ and Li ₃ PMo ₁₂ O ₄₀ Electrolytes for Highâ€energy Allâ€solidâ€state Lithium Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
803	Polyoxometalate Li ₃ PW ₁₂ O ₄₀ and Li ₃ PMo ₁₂ O ₄₀ Electrolytes for Highâ€energy Allâ€solidâ€state Lithium Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
804	Highâ€Energyâ€Density Solidâ€State Metal–Air Batteries: Progress, Challenges, and Perspectives. Small, 0, , .	10.0	0
805	Ultrathin Allâ€Inorganic Halide Solidâ€State Electrolyte Membranes for Allâ€Solidâ€State Liâ€Ion Batteries. Advanced Energy Materials, 2024, 14	19.5	1

#	Article	IF	CITATIONS
806	The developments, challenges, and prospects of solid-state Li-Se batteries. Energy Storage Materials, 2024, 65, 103138.	18.0	1
807	An Ultrathin Composite Polymer Electrolyte Dualâ€Reinforced by a Polymer of Intrinsic Microporosity (PIMâ€1) and Poly(tetrafluoroethylene) (PTFE) Porous Membrane. Small, 0, , .	10.0	0
809	Completely Amorphous Poly(ethylene oxide)-Based Electrolyte Enables High Ionic Conductivity for Room-Temperature All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2023, 6, 12343-12352.	5.1	0
810	Making the Unfeasible Feasible: Synthesis of the Battery Material Lithium Sulfide via the Metathetic Reaction between Lithium Sulfate and Sodium Sulfide. Inorganic Chemistry, 0, , .	4.0	0
811	Design of thin solid-state electrolyte films for safe and energy-dense batteries. Materials Today, 2023, ,	14.2	0
812	Mesoporous Polyimide Thin Films as Dendrite-Suppressing Separators for Lithium–Metal Batteries. ACS Nano, 2024, 18, 155-163.	14.6	0
813	Microwave Heating Enables Near-Carbonless Liquid-Phase-Derived Li Argyrodites for All-Solid-State Batteries. Energy Storage Materials, 2023, , 103154.	18.0	0
814	Rechargeable Zinc–Air versus Lithium–Air Battery: from Fundamental Promises Toward Technological Potentials. Advanced Energy Materials, 2024, 14, .	19.5	1
815	Quasiâ€Solidâ€State Allâ€V ₂ O ₅ Battery. Small, 0, , .	10.0	0
816	3D Fast Sodium Transport Network of MoS ₂ Endowed by Coupling of Sulfur Vacancies and Sn Doping for Outstanding Sodium Storage. Small, 0, , .	10.0	0
817	Frameworked Electrolytes: A Pathway Towards Solid Future of Batteries. Small, 0, , .	10.0	0
818	Revealing the influence of in-situ formed LiCl on garnet/Li interface for dendrite-free solid-state batteries. Journal of Energy Chemistry, 2024, 92, 394-403.	12.9	0
819	Study on the Properties of Polyethylene Oxide Based Solid State Electrolyte Enhanced by Three-Dimensional Structured Li _{6.28} La ₃ Zr ₂ Al _{0.24} O ₁₂ . Acta Chimica Sinica, 2023, 81, 1708.	1.4	0
820	Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , .	8.2	0
821	Flameâ€Retardant Polyurethaneâ€Based Solidâ€State Polymer Electrolytes Enabled by Covalent Bonding for Lithium Metal Batteries. Advanced Functional Materials, 0, , .	14.9	2
822	An in-situ bicomponent polymeric matrix solid electrolyte for solid-state Lithium metal batteries with extended cycling-life. Journal of Energy Storage, 2024, 80, 110150.	8.1	0
823	Solid-state electrolytes based on metal-organic frameworks for enabling high-performance lithium-metal batteries: Fundamentals, progress, and perspectives. ETransportation, 2024, 20, 100311.	14.8	0
824	Interface challenges and research progress toward solid polymer electrolytesâ€based lithium metal batteries. , 0, , .		0

#	Article	IF	CITATIONS
825	A review of challenges and issues concerning interfaces for garnet-type all-solid-state batteries. Journal of Alloys and Compounds, 2024, 979, 173530.	5.5	1
826	Analogous Design of a Microlayered Silicon Oxideâ€Based Electrode to the General Electrode Structure for Thinâ€Film Lithiumâ€Ion Batteries. Advanced Materials, 2024, 36, .	21.0	1
827	In Situ/Operando Techniques for Unraveling Mechanisms of Ionic Transport in Solid-State Lithium Indium Halide Electrolyte. Batteries, 2024, 10, 21.	4.5	0
828	Improving the stability of ceramic-type lithium tantalum phosphate (LiTa2PO8) solid electrolytes in all-solid-state batteries. Journal of Energy Storage, 2024, 80, 110254.	8.1	0
829	Asymmetric Fire-Retardant Quasi-Solid Electrolytes for Safe and Stable High-Voltage Lithium Metal Battery. Energy Material Advances, 2024, 5, .	11.0	0
830	SnCl4 initiated formation of polymerized solid polymer electrolytes for lithium metal batteries with fast ion transport interfaces. Chemical Engineering Journal, 2024, 481, 148666.	12.7	0
831	Advances in solid-state batteries: Materials, interfaces, characterizations, and devices. MRS Bulletin, 2023, 48, 1221-1229.	3.5	0
832	Mechanism of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mtext>Li</mml:mtext> <mml:mo>+charge transfer at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>Li</mml:mtext> <mml:mo>/<td>3.2</td><td>0</td></mml:mo></mml:mrow></mml:math </mml:mo></mml:msup></mml:math 	3.2	0
833	Physical Review 6, 2024, 2007, . Metal–Organic Framework-Derived NiS ₂ Nanoflowers Supported on Carbon Nanotube Fibers for Aqueous Rechargeable Nickel–Zinc Batteries. ACS Applied Nano Materials, 2024, 7, 2214-2223.	5.0	0
834	Li3N interlayer enables stable long-term cycling for sulfide-based all-solid-state Li metal batteries. Journal of Energy Storage, 2024, 82, 110200.	8.1	0
835	Coaxially MXene-confined solid-state electrolyte for flexible high-rate lithium metal battery. Nano Energy, 2024, 122, 109312.	16.0	0
836	Cubic Iodide Li _x YI _{3+x} Superionic Conductors through Defect Manipulation for Allâ€Solidâ€State Li Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
837	Cubic Iodide Li _x YI _{3+x} Superionic Conductors through Defect Manipulation for Allâ€Solidâ€State Li Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
838	Inorganic Sodium Solid Electrolytes: Structure Design, Interface Engineering and Application. Advanced Materials, 0, , .	21.0	0
839	Preparation and characterization of hybrid solid-state electrolytes for high performance lithium-ion batteries. Solid State Sciences, 2024, 148, 107444.	3.2	0
840	Research progress on chloride solid electrolytes for all-solid-state batteries. Journal of Power Sources, 2024, 595, 234051.	7.8	2
841	Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery. Materials Today Chemistry, 2024, 36, 101926.	3.5	0
842	Enhanced Ionic Conductivity toward Air-Stable Li ₄ SnS ₄ Solid Electrolytes Achieved by Soft Acid Bi ³⁺ Doping. Energy & Fuels, 2024, 38, 3470-3476.	5.1	0

#	Article	IF	CITATIONS
843	Enhanced Air Stability and Li Metal Compatibility of Liâ€Argyrodite Electrolytes Triggered by In ₂ O ₃ Coâ€Doping for Allâ€Solidâ€State Li Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	0
844	Size dependent lithium-ion conductivity of solid electrolytes in machine learning molecular dynamics simulations. , 2024, 2, 100051.		0
845	Influence of contouring the lithium metal/solid electrolyte interface on the critical current for dendrites. Energy and Environmental Science, 2024, 17, 1448-1456.	30.8	0
846	A 3µmâ€Ultrathin Hybrid Electrolyte Membrane with Integrative Architecture for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2024, 14, .	19.5	0
847	Enhanced lithium dendrite suppression ability through SiO2 substitution in superionic halogen-rich argyrodites and their application in all-solid-state lithium batteries. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
848	Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. Journal of the American Chemical Society, 2024, 146, 2977-2985.	13.7	1
849	Evaluating 3D printed mesh geometries in ceramic LiB electrodes. JPhys Energy, 2024, 6, 025008.	5.3	0
850	Reinvestigation of Na ₅ GdSi ₄ O ₁₂ : A Potentially Better Solid Electrolyte than Sodium β Alumina for Solid-State Sodium Batteries. ACS Applied Materials & Interfaces, 2024, 16, 7112-7118.	8.0	0
851	Sulfonylimide based single lithium-ion conducting polymer electrolytes boosting high-safety and high-energy-density lithium batteries. ETransportation, 2024, 20, 100318.	14.8	0
852	A Green Method of Synthesizing Battery-Grade Lithium Sulfide: Hydrogen Reduction of Lithium Sulfate. ACS Sustainable Chemistry and Engineering, 2024, 12, 2813-2824.	6.7	0
853	Ultra-wettable liquid metal interface for highly durable solid-state lithium batteries. Matter, 2024, 7, 934-947.	10.0	1
854	Revealing interfacial parasitic reactions of nitrile rubber binders in all-solid-state lithium batteries. Journal of Materials Chemistry A, 2024, 12, 6426-6437.	10.3	0
855	Closed Battery Systems. The Materials Research Society Series, 2024, , 173-211.	0.2	0
856	Chemomechanical Origins of the Dynamic Evolution of Isolated Li Filaments in Inorganic Solid-State Electrolytes. Nano Letters, 2024, 24, 1843-1850.	9.1	0
857	Nanoscale Visualization of Lithium Plating/Stripping Tuned by Onâ€site Formed Solid Electrolyte Interphase in Allâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
858	Benchmarking of Coatings for Cathode Active Materials in Solid-State Batteries Using Surface Analysis and Reference Electrodes. ACS Applied Materials & Interfaces, 2024, 16, 9400-9413.	8.0	0
859	Nanoscale Visualization of Lithium Plating/Stripping Tuned by Onâ€site Formed Solid Electrolyte Interphase in Allâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie, 2024, 136, .	2.0	0
860	Ion-dipole interactions assist small molecular additives to regulate Li+ coordination of poly(ethylene) oxide-based polymer electrolyte. Electrochimica Acta, 2024, 481, 143949.	5.2	0

#	Article	IF	CITATIONS
861	Interfacial engineering for highâ€performance garnetâ€based solidâ€state lithium batteries. SusMat, 2024, 4, 72-105.	14.9	0
862	Solid electrolyte membranes for all-solid-state rechargeable batteries. ETransportation, 2024, 20, 100319.	14.8	0
863	Enhanced 3D framework composite solid electrolyte with alumina-modified Li1.4Al0.4Ti1.6(PO4)3 for solid-state lithium battery. Ionics, 2024, 30, 2019-2028.	2.4	0
864	Multistage channel PVDF-HFP pregnant ZIF-8@SiO2 quasi-solid electrolyte for lithium-metal batteries. Journal of Power Sources, 2024, 599, 234167.	7.8	0
865	Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning. Chemical Society Reviews, 2024, 53, 3134-3166.	38.1	0
866	A H ⁺ /Li ⁺ Ion Exchange Induced Spinel Ionâ€Conductive Interphase Stabilizes 4.5ÂV LiCoO ₂ in Sulfideâ€Based Allâ€Solidâ€State Lithium Battery. Advanced Functional Materials, 0, , .	14.9	0
867	Surface-functionalized Li1.3Al0.3Ti1.7(PO4)3 with synergetic silane coupling agent and ionic liquid modification for PEO-based all-solid-state lithium metal batteries. Journal of Power Sources, 2024, 599, 234206.	7.8	0
868	The effect of HCl on achieving pure Li3InCl6 by water-mediated synthesis process. Journal of Alloys and Compounds, 2024, 984, 173973.	5.5	0
869	Materials and chemistry design for low-temperature all-solid-state batteries. Joule, 2024, 8, 635-657.	24.0	0
870	Interface and Electrode Microstructure Engineering for Optimizing Performance of the LiNiO ₂ Cathode in All-Solid-State Batteries. Chemistry of Materials, 2024, 36, 2588-2598.	6.7	0
871	Superior Low-Temperature All-Solid-State Battery Enabled by High-Ionic-Conductivity and Low-Energy-Barrier Interface. ACS Nano, 2024, 18, 7334-7345.	14.6	0
872	Epoxy-based multifunctional solid polymer electrolytes for structural batteries and supercapacitors. a short review. Frontiers in Chemistry, 0, 12, .	3.6	0
873	Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries. Journal of Energy Chemistry, 2024, 93, 609-626.	12.9	0
874	Rate-limiting mechanism of all-solid-state battery unravelled by low-temperature test-analysis flow. Energy Storage Materials, 2024, 67, 103316.	18.0	Ο
875	Solid Electrolytes for Lithium Batteries. , 2024, , 140-171.		0
876	Energy ceramic design for robust battery cathodes and solid electrolytes. , 2024, 3, 100185.		0
877	Molecular Design for Inâ€ S itu Polymerized Solid Polymer Electrolytes Enabling Stable Cycling of Lithium Metal Batteries. Advanced Energy Materials, 0, , .	19.5	0
878	Verticallyâ€Aligned Cardâ€House Structure for Composite Solid Polymer Electrolyte with Fast and Stable Ion Transport Channels. Small, 0, , .	10.0	Ο

#	Article	IF	CITATIONS
879	Lithium batteries - Secondary systems – Lithium battery safety Cell level—Safety related material and design engineering. , 2024, , .		0
880	Enhancing Electrode Performance through Triple Distribution Modulation of Active Material, Conductive Agent, and Porosity. Small, 0, , .	10.0	0
881	Roles of cation-doped Li-argyrodite electrolytes on the efficiency of all-solid-state-lithium batteries. Energy Storage Materials, 2024, 69, 103305.	18.0	0
882	New insights into Li-argyrodite solid-state electrolytes based on doping strategies. Coordination Chemistry Reviews, 2024, 508, 215776.	18.8	0
883	Functionalized polyoxometalates enable fast ion transport in solid-state batteries at room temperature. Chemical Communications, 2024, 60, 4198-4201.	4.1	0
884	Principal component analysis enables the design of deep learning potential precisely capturing LLZO phase transitions. Npj Computational Materials, 2024, 10, .	8.7	0
885	Nanocomposite design for solid-state lithium metal batteries: Progress, challenge, and prospects. , 2024, 1, 120-143.		0
886	An in-situ cross-linked network PMMA-based gel polymer electrolyte with excellent lithium storage performance. Journal of Materials Science and Technology, 2024, 199, 197-205.	10.7	0
887	An entanglement association polymer electrolyte for Li-metal batteries. Nature Communications, 2024, 15, .	12.8	0
888	Recent advances in solid-state lithium batteries based on anode engineering. , 2024, , .		0
890	Correlation between physical properties and the electrochemical behavior in inorganic solid-state electrolytes for lithium and sodium batteries: A comprehensive review. Journal of Energy Storage, 2024, 86, 111254.	8.1	0
891	Cationic cellulose nanofiber solid electrolytes: A pathway to high lithium-ion migration and polysulfide adsorption for lithium-sulfur batteries. Carbohydrate Polymers, 2024, 335, 122075.	10.2	Ο