The Past, Present, and Future of Maize Improvement: D Functional Genomic Routes toward Crop Enhancement

Plant Communications 1, 100010 DOI: 10.1016/j.xplc.2019.100010

Citation Report

#	Article	IF	CITATIONS
1	Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress. Plants, 2020, 9, 1367.	1.6	12
2	Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. Frontiers in Plant Science, 2020, 11, 576718.	1.7	9
3	Genomeâ€wide association study of resistance to Mal de RÃo Cuarto disease in maize. Agronomy Journal, 2020, 112, 4624-4633.	0.9	3
4	Crop breeding – From experience-based selection to precision design. Journal of Plant Physiology, 2021, 256, 153313.	1.6	19
5	Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. Molecular Plant, 2021, 14, 9-26.	3.9	58
6	Identification of Polymorphic Markers by High-Resolution Melting (HRM) Assay for High-Throughput SNP Genotyping in Maize. Phyton, 2021, 90, 1711-1725.	0.4	0
7	sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. Plant Molecular Biology, 2021, 105, 483-495.	2.0	89
8	Genetic characterization of popcorn hybrids based on SNP genotyping and development of rapid ARMS based primers. Journal of Crop Science and Biotechnology, 2021, 24, 319-325.	0.7	0
9	Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell, 2021, 56, 557-568.e6.	3.1	129
10	CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. Molecular Breeding, 2021, 41, 1.	1.0	13
11	Genetic Variation of the Serine Acetyltransferase Gene Family for Sulfur Assimilation in Maize. Genes, 2021, 12, 437.	1.0	0
12	Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genetic Resources and Crop Evolution, 2021, 68, 1709-1730.	0.8	16
13	New genomic approaches for enhancing maize genetic improvement. Current Opinion in Plant Biology, 2021, 60, 101977.	3.5	9
14	The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22, 148.	3.8	69
15	Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review. Frontiers in Plant Science, 2021, 12, 688980.	1.7	18
16	The utility of metabolomics as a tool to inform maize biology. Plant Communications, 2021, 2, 100187.	3.6	17
17	Restructuring plant types for developing tailorâ€made crops. Plant Biotechnology Journal, 2023, 21, 1106-1122.	4.1	10
18	qTeller: a tool for comparative multi-genomic gene expression analysis. Bioinformatics, 2021, 38, 236-242.	1.8	15

#	Article	IF	CITATIONS
19	Transcriptome and Resequencing Analyses Provide Insight into Differences in Organic Acid Accumulation in Two Pear Varieties. International Journal of Molecular Sciences, 2021, 22, 9622.	1.8	5
20	Introduction to the Special Issue: The ecology and genetics of population differentiation in plants. AoB PLANTS, 2021, 13, plab057.	1.2	4
21	Variation in non-target traits in genetically modified hybrid aspens does not exceed natural variation. New Biotechnology, 2021, 64, 27-36.	2.4	0
22	Plasticity of root anatomy during domestication of a maize-teosinte derived population. Journal of Experimental Botany, 2022, 73, 139-153.	2.4	11
23	Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivoreâ€associated molecular patterns. Plant Journal, 2021, 108, 1295-1316.	2.8	9
24	Maize diversity for fall armyworm resistance in a warming world. Crop Science, 2022, 62, 1-19.	0.8	7
25	Wild Progenitor and Landraces Led Genetic Gain in the Modern-Day Maize (Zea mays L.). , 0, , .		3
26	Grain properties of new inbred lines in comparison with maize hybrids. Journal on Processing and Energy in Agriculture, 2020, 24, 95-99.	0.3	1
27	Grain properties of yellow and red kernel maize hybrids from Serbia. Selekcija I Semenarstvo, 2020, 26, 7-14.	0.6	5
28	Assessment of Acacia dealbata as green manure and weed control for maize crop. Renewable Agriculture and Food Systems, 0, , 1-15.	0.8	2
29	Back to the wild: mining maize (Zea mays L) disease resistance using advanced breeding tools. Molecular Biology Reports, 2022, 49, 5787-5803.	1.0	8
31	Source material from the VIR collection for hybrid breeding of multiple-ear maize. Proceedings on Applied Botany, Genetics and Breeding, 2021, 182, 27-35.	0.1	1
32	Maize Breeding. , 2022, , 221-258.		4
33	Mutant lpa1 Analysis of ZmLPA1 Gene Regulates Maize Leaf-Angle Development through the Auxin Pathway. International Journal of Molecular Sciences, 2022, 23, 4886.	1.8	7
34	Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. Plant Communications, 2022, 3, 100332.	3.6	33
36	Prospects of Feral Crop De Novo Redomestication. Plant and Cell Physiology, 2022, 63, 1641-1653.	1.5	8
37	Maize (<i>Zea mays</i> L.) as a Model System for Plant Genetic, Genomic, and Applied Research. , 0, , .		0
38	De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology, 0, , .	1.5	4

CITATION REPORT

#	Article	IF	CITATIONS
39	Cloning of a new allele of ZmAMP1 and evaluation of its breeding value in hybrid maize. Crop Journal, 2023, 11, 157-165.	2.3	2
40	Advances in research and utilization of maize wild relatives. Chinese Science Bulletin, 2022, 67, 4370-4387.	0.4	1
41	Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth. Journal of Integrative Agriculture, 2022, , .	1.7	1
42	Genomic Selection for Enhanced Stress Tolerance in Maize. , 2022, , 121-160.		0
43	Teosinte confers specific alleles and yield potential to maize improvement. Theoretical and Applied Genetics, 2022, 135, 3545-3562.	1.8	7
44	Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Frontiers in Nutrition, 0, 9, .	1.6	2
45	OMICS in Fodder Crops: Applications, Challenges, and Prospects. Current Issues in Molecular Biology, 2022, 44, 5440-5473.	1.0	4
46	Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. International Journal of Molecular Sciences, 2022, 23, 14030.	1.8	4
48	Application of Spent Sun Mushroom Substrate in Substitution of Synthetic Fertilizers at Maize Topdressing. Agronomy, 2022, 12, 2884.	1.3	3
49	Novel Combination of the Biophysical, Nutritional, and Nutraceutical Properties in Subtropical Pigmented Maize Hybrids. Plants, 2022, 11, 3221.	1.6	4
50	A dynamic phosphoproteomic analysis provides insight into the <scp>C4</scp> plant maize (<i>Zea) Tj ETQq0 0</i>	0 <u>rg</u> BT /O	verlock 10 T
51	The effects of a few important gene families on sorghum agronomic traits. Agronomy Science and Biotechnology, 0, 9, 1-11.	0.3	0
52	Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. Plant Cell Reports, 2023, 42, 689-705.	2.8	1
53	QTL Mapping and a Transcriptome Integrative Analysis Uncover the Candidate Genes That Control the Cold Tolerance of Maize Introgression Lines at the Seedling Stage. International Journal of Molecular Sciences, 2023, 24, 2629.	1.8	2
54	Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives. BMC Genomics, 2023, 24, .	1.2	1
55	The Use of DArTseq Technology to Identify Markers Related to the Heterosis Effects in Selected Traits in Maize. Current Issues in Molecular Biology, 2023, 45, 2644-2660.	1.0	3
64	Population Genomics of Maize. Population Genomics, 2022, , .	0.2	1

CITATION REPORT