Enhance decoding of pre-movement EEG patterns for b

Journal of Neural Engineering 17, 016033

DOI: 10.1088/1741-2552/ab598f

Citation Report

#	Article	IF	CITATIONS
1	A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials., 2020, 2020, 3090-3093.		8
2	Enhancement of Movement Intention Detection Using EEG Signals Responsive to Emotional Music Stimulus. IEEE Transactions on Affective Computing, 2022, 13, 1637-1650.	5.7	3
3	Using SSVEP-BCI to Continuous Control a Quadcopter with 4-DOF Motions. , 2020, 2020, 4745-4748.		4
4	Optimizing SSVEP-Based BCI System towards Practical High-Speed Spelling. Sensors, 2020, 20, 4186.	2.1	16
5	A Brain-Computer Interface Based on Multifocal SSVEPs Detected by Inter-Task-Related Component Analysis. IEEE Access, 2020, 8, 138539-138550.	2.6	7
6	Corticomuscular Co-Activation Based Hybrid Brain-Computer Interface for Motor Recovery Monitoring. IEEE Access, 2020, 8, 174542-174557.	2.6	7
7	Classification of auditory attention focuses during speech perception., 2020, 2020, 3074-3077.		1
8	Enhancing performance of SSVEP-based BCI by unsupervised learning information from test trials*., 2020, 2020, 3359-3362.		2
9	â€~Write' but not â€~spell' Chinese characters with a BCI-controlled robot*. , 2020, 2020, 4741-4744.		5
10	EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Medical and Biological Engineering and Computing, 2020, 58, 1515-1528.	1.6	28
11	Small-Dimension Feature Matrix Construction Method for Decoding Repetitive Finger Movements From Electroencephalogram Signals. IEEE Access, 2020, 8, 56060-56071.	2.6	4
12	Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification. Frontiers in Neuroscience, 2020, 14, 155.	1.4	10
13	Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features. IEEE Transactions on Biomedical Engineering, 2020, 67, 3073-3082.	2.5	104
14	Neural activities classification of left and right finger gestures during motor execution and motor imagery. Brain-Computer Interfaces, 2021, 8, 117-127.	0.9	12
15	Separable EEG Features Induced by Timing Prediction for Active Brain-Computer Interfaces. Sensors, 2020, 20, 3588.	2.1	10
16	Detection of Solitary Pulmonary Nodules Based on Brain-Computer Interface. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-10.	0.7	7
17	EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis. Neuroscience, 2020, 436, 93-109.	1.1	44
18	Preliminary Study on Real-Time Prediction of Gait Acceleration Intention From Volition-Associated EEG Patterns. IEEE Access, 2021, 9, 62676-62686.	2.6	5

#	ARTICLE	IF	CITATIONS
19	Detection of Movement Intention for Operating Methods of Serious Games. Applied Sciences (Switzerland), 2021, 11, 883.	1.3	3
20	Efficient Spatial Filters Enhance SSVEP Target Recognition Based on Task-Related Component Analysis. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 1119-1128.	2.6	1
21	Global research on artificial intelligence-enhanced human electroencephalogram analysis. Neural Computing and Applications, 0 , 1 .	3.2	11
22	Adaptive Hausdorff Estimation of Movement-Related Eeg Patterns for Brain-Computer Interfaces. SSRN Electronic Journal, 0, , .	0.4	0
23	Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG. Frontiers in Human Neuroscience, 2021, 15, 645952.	1.0	37
24	Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain–computer interfaces. Journal of Neural Engineering, 2021, 18, 026018.	1.8	17
25	Long Multi-Stage Training for a Motor-Impaired User in a BCI Competition. Frontiers in Human Neuroscience, 2021, 15, 647908.	1.0	8
26	Review of brain encoding and decoding mechanisms for EEG-based brain–computer interface. Cognitive Neurodynamics, 2021, 15, 569-584.	2.3	41
27	Multilinear Discriminative Spatial Patterns for Movement-Related Cortical Potential Based on EEG Classification with Tensor Representation. Computational Intelligence and Neuroscience, 2021, 2021, 1-9.	1.1	0
28	A motor imagery EEG signal classification algorithm based on recurrence plot convolution neural network. Pattern Recognition Letters, 2021, 146, 134-141.	2.6	19
29	Motor imagery EEG signal classification using upper triangle filter bank auto-encode method. Biomedical Signal Processing and Control, 2021, 68, 102608.	3.5	7
30	Detection of fixation points using a small visual landmark for brain–computer interfaces. Journal of Neural Engineering, 2021, 18, 046098.	1.8	4
31	Optimization of Task Allocation for Collaborative Brain–Computer Interface Based on Motor Imagery. Frontiers in Neuroscience, 2021, 15, 683784.	1.4	6
32	Neural Kinesthetic Contribution to Motor Imagery of Body Parts: Tongue, Hands, and Feet. Frontiers in Human Neuroscience, 2021, 15, 602723.	1.0	6
33	Instruction Cues Increase Brain Network Complexity During Movement Preparation. Journal of Shanghai Jiaotong University (Science), 2022, 27, 202-210.	0.5	1
34	A hybrid environment control system combining EMG and SSVEP signal based on brain-computer interface technology. SN Applied Sciences, 2021, 3, 1.	1.5	1
35	Embedding Tangent Space Extreme Learning Machine for EEG Decoding in Brain Computer Interface Systems. Journal of Control Science and Engineering, 2021, 2021, 1-11.	0.8	2
36	A Functional BCI Model by the P2731 Working Group: Transducer. Brain-Computer Interfaces, 2021, 8, 92-107.	0.9	3

3

#	Article	IF	CITATIONS
37	Optimal channel-based sparse time-frequency blocks common spatial pattern feature extraction method for motor imagery classification. Mathematical Biosciences and Engineering, 2021, 18, 4247-4263.	1.0	10
38	Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 699-707.	2.7	66
39	Effective Connectivity for Decoding Electroencephalographic Motor Imagery Using a Probabilistic Neural Network. Sensors, 2021, 21, 6570.	2.1	7
40	A Tensor-Based Frequency Features Combination Method for Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 465-475.	2.7	37
41	Using Convolutional Neural Network to Classify 2D EEG Scalp Topograms during Visual Task., 2021,,.		0
42	Assessing residual motor function in patients with disorders of consciousness by brain network properties of task-state EEG. Cognitive Neurodynamics, 2022, 16, 609-620.	2.3	4
43	Visual Stimuli-Based Dynamic Commands With Intelligent Control for Reactive BCI Applications. IEEE Sensors Journal, 2022, 22, 1435-1448.	2.4	4
44	Effect of Robot-Assisted Training on EEG-Derived Movement-Related Cortical Potentials for Post-Stroke Rehabilitation–A Case Series Study. IEEE Access, 2021, 9, 154143-154155.	2.6	1
45	Action Intention Understanding EEG Signal Classification Based on Improved Discriminative Spatial Patterns. Computational Intelligence and Neuroscience, 2021, 2021, 1-8.	1.1	2
46	Current Challenges for the Practical Application of Electroencephalography-Based Brain–Computer Interfaces. Engineering, 2021, 7, 1710-1712.	3.2	58
47	Detection of Movement Intention in EEG-Based Brain-Computer Interfaces Using Fourier-Based Synchrosqueezing Transform. International Journal of Neural Systems, 2021, , 2150059.	3.2	5
48	Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sciences, 2021, 11, 1525.	1.1	68
49	Smart Sensors HW/SW Interface based on Brain-actuated Personal Care Robot for Ambient Assisted Living. , 2020, , .		4
50	Phase Preservation Neural Network for Electroencephalography Classification in Rapid Serial Visual Presentation Task. IEEE Transactions on Biomedical Engineering, 2022, 69, 1931-1942.	2.5	7
51	VMD-WSST: A Combined BCI Algorithm to Predict Self-paced Gait Intention [*] ., 2021, , .		1
52	MasterMind: Many-Accelerator SoC Architecture for Real-Time Brain-Computer Interfaces. , 2021, , .		4
53	Time-estimation process could cause the disappearence of readiness potential. Cognitive Neurodynamics, 2022, 16, 1003-1011.	2.3	1
54	A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 20-29.	2.7	21

#	ARTICLE	IF	Citations
55	EEGG: An Analytic Brain-Computer Interface Algorithm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 643-655.	2.7	8
56	Motor Imagery EEG Classification Algorithm Based on Improved Lightweight Feature Fusion Network. SSRN Electronic Journal, 0, , .	0.4	0
57	Effects of inter-stimulus intervals on concurrent P300 and SSVEP features for hybrid brain-computer interfaces. Journal of Neuroscience Methods, 2022, 372, 109535.	1.3	6
58	Motor imagery EEG classification algorithm based on improved lightweight feature fusion network. Biomedical Signal Processing and Control, 2022, 75, 103618.	3.5	13
59	DSCNN: Dilated Shuffle CNN Model for SSVEP Signal Classification. IEEE Sensors Journal, 2022, 22, 12036-12043.	2.4	8
60	A Power Spectrum Pattern Difference-Based Time-Frequency Sub-Band Selection Method for MI-EEG Classification. IEEE Sensors Journal, 2022, 22, 11928-11939.	2.4	7
61	Human factors engineering of BCI: an evaluation for satisfaction of BCI based on motor imagery. Cognitive Neurodynamics, 2023, 17, 105-118.	2.3	6
62	Time-Varying Effective Connectivity for Describing the Dynamic Brain Networks of Post-stroke Rehabilitation. Frontiers in Aging Neuroscience, 2022, 14, .	1.7	3
63	Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces. Frontiers in Human Neuroscience, 0, 16 , .	1.0	0
64	Hybrid Brain–Computer Interface Spellers: A Walkthrough Recent Advances in Signal Processing Methods and Challenges. International Journal of Human-Computer Interaction, 2023, 39, 3096-3113.	3.3	3
65	Detection of Motor Activity in Visual Cognitive Task Using Autoregressive Modelling and Deep Recurrent Network. Lecture Notes in Electrical Engineering, 2022, , 371-381.	0.3	1
66	Lightweight Source-Free Transfer for Privacy-Preserving Motor Imagery Classification. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 938-949.	2.6	7
67	Euler common spatial pattern modulated with cross-frequency coupling. Knowledge and Information Systems, $0, , .$	2.1	1
68	Electroencephalogram-Based Motor Imagery Brain–Computer Interface Using Multivariate Iterative Filtering and Spatial Filtering. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1408-1418.	2.6	11
69	Improving pre-movement pattern detection with filter bank selection. Journal of Neural Engineering, 2022, 19, 066012.	1.8	4
70	Optimal channel and frequency bandâ€based feature selection for motor imagery electroencephalogram classification. International Journal of Imaging Systems and Technology, 0, , .	2.7	1
72	Data Augmentation of SSVEPs Using Source Aliasing Matrix Estimation for Brain–Computer Interfaces. IEEE Transactions on Biomedical Engineering, 2023, 70, 1775-1785.	2.5	5
73	Enhance decoding of functional lower-limb movements by combining sensory motor rhythm and movement-related cortical potential features. , 2022, , .		0

#	Article	IF	CITATIONS
74	A BCI Speller with 120 Commands Encoded by Hybrid P300 and SSVEP Features. Communications in Computer and Information Science, 2023, , 220-228.	0.4	0
75	Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification. Frontiers in Computational Neuroscience, 0, 16, .	1.2	O
76	A high-speed hybrid brain-computer interface with more than 200 targets. Journal of Neural Engineering, 2023, 20, 016025.	1.8	7
77	Single-trial P300 classification algorithm based on centralized multi-person data fusion CNN. Frontiers in Neuroscience, 0, 17, .	1.4	4
78	Deep stacked least square support matrix machine with adaptive multi-layer transfer for EEG classification. Biomedical Signal Processing and Control, 2023, 82, 104579.	3.5	1
79	MRCPs-and-ERS/D-Oscillations-Driven Deep Learning Models for Decoding Unimanual and Bimanual Movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1384-1393.	2.7	2
81	The Objective Assessment of Event-Related Potentials: An Influence of Chronic Pain on ERP Parameters. Neuroscience Bulletin, 2023, 39, 1105-1116.	1.5	3
82	Transformed common spatial pattern for motor imagery-based brain-computer interfaces. Frontiers in Neuroscience, $0,17,.$	1.4	3
83	Decoding of Pre-movement EEG Patterns Using Cross-entropy Loss-based Ensemble Learning., 2022,,.		0
84	EEG Patterns and Classification of Different Sequential Finger Movements*., 2023,,.		0
91	Evoked Potentials Detection During Self-Initiated Movements Using Machine Learning Approach. , 2023, , .		0
92	Electroencephalogram based Control of Prosthetic Hand using Optimizable Support Vector Machine. , 2023, , .		0