Design of biodegradable, implantable devices towards of

Nature Reviews Materials 5, 61-81 DOI: 10.1038/s41578-019-0150-z

Citation Report

#	Article	IF	CITATIONS
1	In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomaterialia, 2020, 116, 415-425.	4.1	38
2	Studies on enzymatic degradation of multifunctional composite consisting of chitosan microspheres and shape memory polyurethane matrix. Polymer Degradation and Stability, 2020, 182, 109392.	2.7	5
3	Medical Micro/Nanorobots in Precision Medicine. Advanced Science, 2020, 7, 2002203.	5.6	197
4	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
5	Fabrication of a biodegradable Fe-Mn-Si alloy by field assisted sintering. Advanced Powder Technology, 2020, 31, 4577-4584.	2.0	9
6	Effect of hierarchical porous scaffold on osteoimmunomodulation and bone formation. Applied Materials Today, 2020, 20, 100779.	2.3	9
7	Dynamic,3DSchiff base networks for medical applications. Journal of Applied Polymer Science, 2020, 137, 49756.	1.3	3
8	Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Frontiers in Bioengineering and Biotechnology, 2020, 8, 563203.	2.0	15
9	Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 9460-9469.	2.2	0
10	Comparison of the mechanical properties of biodegradable and titanium osteosynthesis systems used in oral and maxillofacial surgery. Scientific Reports, 2020, 10, 18143.	1.6	17
11	Combating Implant Infections: Shifting Focus from Bacteria to Host. Advanced Materials, 2020, 32, e2002962.	11.1	119
12	100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Letters, 2020, 9, 1590-1603.	2.3	14
13	Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann-Christine Albertsson. Biomacromolecules, 2020, 21, 1647-1652.	2.6	0
14	Mediated Electrochemistry to Mimic Biology's Oxidative Assembly of Functional Matrices. Advanced Functional Materials, 2020, 30, 2001776.	7.8	17
15	Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends. Current Opinion in Solid State and Materials Science, 2020, 24, 100822.	5.6	49
16	Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Research, 2020, 80, 3786-3794.	0.4	16
17	Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials, 2020, 10, 656.	1.9	173
18	Tumor-Stroma Interactions Alter the Sensitivity of Drug in Breast Cancer. Frontiers in Materials, 2020. 7	1.2	11

#	Article	IF	CITATIONS
19	Toward Nontransient Silk Bioelectronics: Engineering Silk Fibroin for Bionic Links. Small Methods, 2020, 4, 2000274.	4.6	24
20	From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Advanced Healthcare Materials, 2020, 9, e1901552.	3.9	53
21	Enzymatic Degradation of <i>Bombyx mori</i> Silk Materials: A Review. Biomacromolecules, 2020, 21, 1678-1686.	2.6	99
22	Biodegradable bone implants in orthopedic applications: a review. Biocybernetics and Biomedical Engineering, 2020, 40, 596-610.	3.3	104
23	Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials. Coatings, 2020, 10, 264.	1.2	43
24	Clinical Opportunities for Continuous Biosensing and Closed-Loop Therapies. Trends in Chemistry, 2020, 2, 319-340.	4.4	39
25	Recent Advances in Bioplastics: Application and Biodegradation. Polymers, 2020, 12, 920.	2.0	195
26	Biodegradable metal-derived magnesium and sodium enhances bone regeneration by angiogenesis aided osteogenesis and regulated biological apatite formation. Chemical Engineering Journal, 2021, 410, 127616.	6.6	22
27	Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Applied Bio Materials, 2021, 4, 122-139.	2.3	52
28	Fabricating Organized Elastin in Vascular Grafts. Trends in Biotechnology, 2021, 39, 505-518.	4.9	34
29	Biomedical Hydrogels Fabricated Using Diels–Alder Crosslinking. European Journal of Organic Chemistry, 2021, 2021, 374-382.	1.2	23
30	In Situ 3D Printing: Opportunities with Silk Inks. Trends in Biotechnology, 2021, 39, 719-730.	4.9	54
31	Nitrogen-containing bisphosphonate-loaded micro-arc oxidation coating for biodegradable magnesium alloy pellets inhibits osteosarcoma through targeting of the mevalonate pathway. Acta Biomaterialia, 2021, 121, 682-694.	4.1	16
32	Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomaterialia, 2021, 121, 180-192.	4.1	29
33	Biodegradable metals for bone fracture repair in animal models: a systematic review. International Journal of Energy Production and Management, 2021, 8, rbaa047.	1.9	27
34	Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Applied Electronic Materials, 2021, 3, 68-100.	2.0	46
35	Photolithographically Printed Flexible Silk/PEDOT:PSS Temperature Sensors. ACS Applied Electronic Materials, 2021, 3, 21-29.	2.0	48
36	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021. 9. 1463-1470.	5.2	31

#	Article	IF	CITATIONS
37	Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Applied Bio Materials, 2021, 4, 163-194.	2.3	133
38	Dealing with the Foreignâ€Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Advanced Functional Materials, 2021, 31, 2007226.	7.8	114
39	From wearables to implantables—clinical drive and technical challenges. , 2021, , 29-84.		8
40	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
41	Immune-instructive materials and surfaces for medical applications. , 2021, , 67-87.		0
42	Chestnut-like macro-acanthosphere triggered hemostasis: a featured mechanism based on puncturing red blood cells. Nanoscale, 2021, 13, 9843-9852.	2.8	6
43	Biomedical optical fibers. Lab on A Chip, 2021, 21, 627-640.	3.1	37
44	Fate of Biomaterials Post Payload Delivery: Current Understanding and Future Perspectives. Nanotechnology in the Life Sciences, 2021, , 141-173.	0.4	1
45	Composites Based on Chitin Nanoparticles and Biodegradable Polymers for Medical Use: Preparation and Properties. Nanobiotechnology Reports, 2021, 16, 42-68.	0.2	3
46	Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chemical Society Reviews, 2021, 50, 7779-7819.	18.7	23
47	Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. Burns and Trauma, 2021, 9, tkab003.	2.3	15
48	Modulating, instead of suppressing, foreign body responses for biomaterials design. Engineered Regeneration, 2021, 2, 91-95.	3.0	3
49	Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002236.	3.9	35
50	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
51	Silk-Based Materials for Hard Tissue Engineering. Materials, 2021, 14, 674.	1.3	30
52	Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials. Micromachines, 2021, 12, 157.	1.4	24
53	Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Advanced Science, 2021, 8, 2004023.	5.6	73
54	Does acid pickling of Mg-Ca alloy enhance biomineralization?. Journal of Magnesium and Alloys, 2021, 9, 1028-1038.	5.5	19

#	Article	IF	CITATIONS
55	Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Materials Science and Engineering C, 2021, 122, 111924.	3.8	24
56	Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Advanced Healthcare Materials, 2021, 10, e2002153.	3.9	46
57	Recent Advances for Improving Functionality, Biocompatibility, and Longevity of Implantable Medical Devices and Deliverable Drug Delivery Systems. Advanced Functional Materials, 2021, 31, 2010929.	7.8	18
59	Sugar Functionalization of Silks with Pathway ontrolled Substitution and Properties. Advanced Biology, 2021, 5, 2100388.	1.4	8
60	The proâ€inflammatory response of macrophages regulated by acid degradation products of poly(lactideâ€coâ€glycolide) nanoparticles. Engineering in Life Sciences, 2021, 21, 709-720.	2.0	23
61	Construction of Bioâ€Piezoelectric Platforms: From Structures and Synthesis to Applications. Advanced Materials, 2021, 33, e2008452.	11.1	114
62	Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. Advanced Materials, 2021, 33, e2005786.	11.1	51
63	The solubility of N-acetyl amino acid amides in organic acid and alcohol solutions: Mechanistic insight into structural protein solubilization. International Journal of Biological Macromolecules, 2021, 178, 607-615.	3.6	5
64	Mitigating the foreign body response through â€~immune-instructive' biomaterials. Journal of Immunology and Regenerative Medicine, 2021, 12, 100040.	0.2	12
65	Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100614.	3.9	41
66	Effect of Thermomechanical Treatment on Structure and Functional Fatigue Characteristics of Biodegradable Fe-30Mn-5Si (wt %) Shape Memory Alloy. Materials, 2021, 14, 3327.	1.3	5
67	Future trends in measuring physiology in free-living animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200230.	1.8	27
68	Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application. Advanced Materials, 2021, 33, e2101682.	11.1	21
69	Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. Advanced Materials, 2021, 33, e2007504.	11.1	23
70	3D printing of microneedle arrays: challenges towards clinical translation. Journal of 3D Printing in Medicine, 2021, 5, 65-70.	1.0	16
71	Design approaches and challenges for biodegradable bone implants: a review. Expert Review of Medical Devices, 2021, 18, 629-647.	1.4	19
72	3D Printing of Implants Composed of Nanjing Tamasudareâ€Inspired Flexible Shape Transformers. Advanced Materials Technologies, 2021, 6, 2100240.	3.0	4
73	Healthcare management applications based on triboelectric nanogenerators. APL Materials, 2021, 9, .	2.2	17

#	Article	IF	CITATIONS
74	Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 359-391.	3.3	81
75	Biocompatibility and Biological Performance Evaluation of Additive-Manufactured Bioabsorbable Iron-Based Porous Suture Anchor in a Rabbit Model. International Journal of Molecular Sciences, 2021, 22, 7368.	1.8	8
76	Wafer-scale heterostructured piezoelectric bio-organic thin films. Science, 2021, 373, 337-342.	6.0	129
77	Drug delivery to the pediatric upper airway. Advanced Drug Delivery Reviews, 2021, 174, 168-189.	6.6	2
78	Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels. International Journal of Molecular Sciences, 2021, 22, 7107.	1.8	17
79	The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering. International Journal of Biological Macromolecules, 2021, 182, 1268-1277.	3.6	12
80	Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomaterialia, 2021, 133, 168-186.	4.1	71
81	Starch-based isocyanate- and non-isocyanate polyurethane hybrids: A review on synthesis, performance and biodegradation. Carbohydrate Polymers, 2021, 265, 118029.	5.1	40
82	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	11.1	85
83	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	2.0	24
84	Initial immune response to a FRET-based MMP sensor-immobilized silk fibroin hydrogel in vivo. Acta Biomaterialia, 2021, 130, 199-210.	4.1	8
85	Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Advanced Functional Materials, 2021, 31, 2104149.	7.8	53
86	Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. Chemical Engineering Journal, 2021, 417, 129335.	6.6	45
87	3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nature Communications, 2021, 12, 5133.	5.8	22
88	Bioadaptability of biomaterials: Aiming at precision medicine. Matter, 2021, 4, 2648-2650.	5.0	23
89	Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials, 2021, 276, 121038.	5.7	60
90	Shapeâ€Engineerable Silk Fibroin Papers for Ideal Substrate Alternatives of Plastic Electronics. Advanced Functional Materials, 2021, 31, 2104088.	7.8	18
91	NIR-II light-responsive biodegradable shape memory composites based on cuprorivaite nanosheets for enhanced tissue reconstruction. Chemical Engineering Journal, 2021, 419, 129437.	6.6	24

#	Article	IF	CITATIONS
92	Effect of biodegradable Zn screw on bone tunnel enlargement after anterior cruciate ligament reconstruction in rabbits. Materials and Design, 2021, 207, 109834.	3.3	7
93	Materials design for resilience in the biointegration of electronics. MRS Bulletin, 2021, 46, 860.	1.7	3
94	How do the printing parameters of Fused Filament Fabrication and structural voids influence the degradation of biodegradable devices?. Acta Biomaterialia, 2021, 136, 254-265.	4.1	7
95	Developing high strength poly(L-lactic acid) nanofiber yarns for biomedical textile materials: A comparative study of novel nanofiber yarns and traditional microfiber yarns. Materials Letters, 2021, 300, 130229.	1.3	20
96	In-reactor engineering of bioactive aliphatic polyesters via magnesium-catalyzed polycondensation for guided tissue regeneration. Chemical Engineering Journal, 2021, 424, 130432.	6.6	13
97	Strength, corrosion resistance and cellular response of interfaces in bioresorbable poly-lactic acid/Mg fiber composites for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104781.	1.5	12
98	Transient electronics: new opportunities for implantable neurotechnology. Current Opinion in Biotechnology, 2021, 72, 22-28.	3.3	20
99	Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials, 2021, 6, 4430-4446.	8.6	53
100	Biomaterials and devices for immunotherapy. , 2022, , 97-133.		0
101	Advanced biopolymer-based composites: an introduction and fracture modeling. , 2022, , 213-243.		0
102	In vivo urinary compatibility of Mg-Sr-Ag alloy in swine model. Bioactive Materials, 2022, 7, 254-262.	8.6	8
103	Biosafety of micro/nanomotors towards medical application. Materials Advances, 2021, 2, 3441-3458.	2.6	8
104	Influence of Thermal Processing on Resoloy Wire Microstructure and Properties. Advanced Engineering Materials, 2021, 23, 2001278.	1.6	6
105	First-principles analysis of precipitation in Mg-Zn alloys. Physical Review Materials, 2020, 4, .	0.9	7
106	Continuous Based Direct Ink Write for Tubular Cardiovascular Medical Devices. Polymers, 2021, 13, 77.	2.0	5
107	The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Biomaterials Science, 2021, 9, 8090-8110.	2.6	37
108	The Developing Field of Scaffold-Free Tissue Engineering for Articular Cartilage Repair. Tissue Engineering - Part B: Reviews, 2022, 28, 995-1006.	2.5	6
109	Dual Extrusion Patterning Drives Tissue Development Aesthetics and Shape Retention in 3D Printed Nippleâ€Areola Constructs. Advanced Healthcare Materials, 2021, 10, e2101249.	3.9	8

<u><u> </u></u>	 	Depe	
	10 N	REDC	דגוו
\sim		ILLI C	

#	Article	IF	CITATIONS
110	Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.	11.1	71
111	Silk Microneedle Patch Capable of Onâ€Demand Multidrug Delivery to the Brain for Glioblastoma Treatment. Advanced Materials, 2022, 34, e2106606.	11.1	73
112	Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers, 2021, 13, 5389.	1.7	18
113	Biomimicking Bone–Implant Interface Facilitates the Bioadaption of a New Degradable Magnesium Alloy to the Bone Tissue Microenvironment. Advanced Science, 2021, 8, e2102035.	5.6	31
114	Surface structure change properties: Auto-soft bionic fibrous membrane in reducing postoperative adhesion. Bioactive Materials, 2022, 12, 16-29.	8.6	13
115	Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments. Materials Advances, 2021, 2, 7820-7841.	2.6	19
116	A non-inferiority study to compare daily fast-acting insulin versus twice a week slow-acting insulin–moderate diabetes mode. Acta Cirurgica Brasileira, 2020, 35, e202000704.	0.3	0
117	The Role of Biodegradable Magnesium and Its Alloys in Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis Based on Animal Studies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 789498.	2.0	1
118	Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. ACS Nano, 2021, 15, 19310-19320.	7.3	20
119	Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today, 2021, 25, 101257.	2.3	24
120	Flexible and Soft Materials and Devices for Neural Interface. , 2021, , 1-61.		1
121	Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice. Drug Delivery, 2022, 29, 174-185.	2.5	25
122	Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nature Communications, 2022, 13, 160.	5.8	66
123	Characterization of Physical, Mechanical, and Biological Properties of SilkBridge Nerve Conduit after Enzymatic Hydrolysis. ACS Applied Bio Materials, 2020, 3, 8361-8374.	2.3	10
124	Mimicking Native Heart Tissue Physiology and Pathology in Silk Fibroin Constructs through a Perfusionâ€Based Dynamic Mechanical Stimulation Microdevice. Advanced Healthcare Materials, 2022, 11, e2101678.	3.9	6
125	Challenges and Opportunities in 3D Printing of Biodegradable Medical Devices by Emerging Photopolymerization Techniques. Advanced Functional Materials, 2022, 32, .	7.8	77
126	Biocompatibility and degradation comparisons of four biodegradable copolymeric osteosynthesis systems used in maxillofacial surgery: A goat model with four years follow-up. Bioactive Materials, 2022, 17, 439-456.	8.6	3
127	Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS Nano, 2022, 16, 2292-2305.	7.3	50

#	Article	IF	CITATIONS
128	Performance analysis of biodegradable materials for orthopedic applications. Materials Today Communications, 2022, 31, 103167.	0.9	13
129	Dual Self-Healing Hybrid Coatings with Controlled Inhibitor Release on Magnesium Alloys for Reliable Corrosion Resistance. SSRN Electronic Journal, 0, , .	0.4	0
130	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
131	Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology, 2022, 17, 244-269.	2.6	46
132	Advances in cell membrane-encapsulated biomaterials for tissue repair and regeneration. Applied Materials Today, 2022, 26, 101389.	2.3	9
133	Insight into microbiologically induced corrosion performance of magnesium in tryptic soy broth with S. aureus and E. coli. Journal of Materials Science and Technology, 2022, 115, 221-231.	5.6	9
134	Recent Progress in Surface Modification of Mg Alloys for Biodegradable Orthopedic Applications. Frontiers in Materials, 2022, 9, .	1.2	22
135	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
136	Preliminary Studies for One-Step Fabrication of Metallic Iron-Based Coatings on Magnesium as Temporary Protection in Biodegradable Medical Application. Frontiers in Materials, 2021, 8, .	1.2	1
137	Cellulose based flexible and wearable sensors for health monitoring. Materials Advances, 2022, 3, 3766-3783.	2.6	15
138	Biodegradable and Flexible Capacitive Pressure Sensor for Electronic Skins. SSRN Electronic Journal, 0, , .	0.4	0
139	Biodegradable and Flexible Capacitive Pressure Sensor for Electronic Skins. SSRN Electronic Journal, 0, , .	0.4	0
140	Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsystems and Nanoengineering, 2022, 8, 21.	3.4	18
141	A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries. Materials, 2022, 15, 1584.	1.3	4
142	Adult Human Vascular Smooth Muscle Cells on 3D Silk Fibroin Nonwovens Release Exosomes Enriched in Angiogenic and Growth-Promoting Factors. Polymers, 2022, 14, 697.	2.0	2
143	Processing-Structure-Properties Relationships of Glycerol-Plasticized Silk Films. Molecules, 2022, 27, 1339.	1.7	7
144	Advances in controlled drug delivery to the sinonasal mucosa. Biomaterials, 2022, 282, 121430.	5.7	6
145	Bioactive Glasses in Periodontal Regeneration: Existing Strategies and Future Prospects—A Literature Review. Materials, 2022, 15, 2194.	1.3	9

#	Article	IF	CITATIONS
146	Chemical Modification of Silk Proteins: Current Status and Future Prospects. Advanced Fiber Materials, 2022, 4, 705-719.	7.9	28
147	Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomedical Materials (Bristol), 2022, 17, 022007.	1.7	20
148	In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor. Materials, 2022, 15, 2572.	1.3	11
149	Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation. Bioactive Materials, 2022, 16, 301-319.	8.6	38
150	Hydroxyapatite composited PEEK with 3D porous surface enhances osteoblast differentiation through mediating NO by macrophage. International Journal of Energy Production and Management, 2022, 9, rbab076.	1.9	14
151	Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules, 2022, 23, 163-173.	2.6	4
152	A Biomimetic Platelet-Rich Plasma-Based Interpenetrating Network Printable Hydrogel for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 887454.	2.0	3
153	Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. Sensors, 2022, 22, 3062.	2.1	12
154	Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. Advanced Materials, 2022, 34, e2105645.	11.1	21
155	Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 1366.	1.9	33
156	Degradable Silkâ€Based Subcutaneous Oxygen Sensors. Advanced Functional Materials, 2022, 32, .	7.8	11
158	Osteogenesis of Iron Oxide Nanoparticles-Labeled Human Precartilaginous Stem Cells in Interpenetrating Network Printable Hydrogel. Frontiers in Bioengineering and Biotechnology, 2022, 10, 872149.	2.0	4
159	Microstructure and Corrosion Behavior of Iron Based Biocomposites Prepared by Laser Additive Manufacturing. Micromachines, 2022, 13, 712.	1.4	3
160	Effectiveness of non-uniform thickness on a locking compression plate used as a biodegradable bone implant plate. Journal of Biomaterials Applications, 2022, 37, 429-446.	1.2	2
161	The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.	3.9	10
162	Experimental study on novel biodegradable <scp>Zn</scp> – <scp>Fe</scp> – <scp>Si</scp> alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2266-2275.	1.6	5
163	Fluorescent <i>In Situ</i> 3D Visualization of Dynamic Corrosion Processes of Magnesium Alloys. ACS Applied Bio Materials, 2022, 5, 2340-2346.	2.3	2
164	Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review. Materials Today Communications, 2022, 31, 103658.	0.9	10

#	Article	IF	CITATIONS
165	Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Review of Medical Devices, 2022, 19, 353-367.	1.4	2
166	Recent progress and perspectives in additive manufacturing of magnesium alloys. Journal of Magnesium and Alloys, 2022, 10, 1511-1541.	5.5	75
167	Tailoring Biodegradation of Mg-Ca Alloy by Acid Pickling and Polydioxanone/n-Hydroxyapatite Composite Coating for Temporary Implant Applications. Journal of Materials Engineering and Performance, 2023, 32, 2784-2792.	1.2	1
168	Biodegradable and flexible capacitive pressure sensor for electronic skins. Organic Electronics, 2022, 106, 106539.	1.4	9
169	A Facile Composite Strategy to Prepare a Biodegradable Polymer Based Radiopaque Raw Material for "Visualizable―Biomedical Implants. ACS Applied Materials & Interfaces, 2022, 14, 24197-24212.	4.0	16
170	Immunoregulation in Diabetic Wound Repair with a Photoenhanced Glycyrrhizic Acid Hydrogel Scaffold. Advanced Materials, 2022, 34, e2200521.	11.1	212
171	Progress in manufacturing and processing of degradable Fe-based implants: a review. Progress in Biomaterials, 2022, 11, 163-191.	1.8	19
172	Incorporation of Mg-phenolic networks as a protective coating for magnesium alloy to enhance corrosion resistance and osteogenesis in vivo. Journal of Magnesium and Alloys, 2023, 11, 4247-4262.	5.5	3
173	A biodegradable 3D woven magnesium-based scaffold for orthopedic implants. Biofabrication, 2022, 14, 034107.	3.7	8
174	Osteichthyes skin-inspired tough and sticky composite hydrogels for dynamic adhesive dressings. Composites Part B: Engineering, 2022, 241, 110010.	5.9	23
175	Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105290.	1.5	13
176	Biomechanical evaluation on a novel design of biodegradable embossed locking compression plate for orthopaedic applications using finite element analysis. Biomechanics and Modeling in Mechanobiology, 2022, 21, 1371-1392.	1.4	2
177	3D Printing of Biodegradable Polymer Vascular Stents: A Review. , 2022, 1, 100020.		3
178	Controllable graphene oxide-based biocompatible hybrid interface as an anti-fibrotic coating for metallic implants. Materials Today Bio, 2022, 15, 100326.	2.6	6
179	Low-Stiffness Hydrogels Promote Peripheral Nerve Regeneration Through the Rapid Release of Exosomes. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	11
180	Transient, Biodegradable Energy Systems as a Promising Power Solution for Ecofriendly and Implantable Electronics. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	8
181	Visualization of degradation of injectable thermosensitive hydroxypropyl chitin modified by aggregation-induced emission. Carbohydrate Polymers, 2022, 293, 119739.	5.1	8
182	Recyclable thermoset polymers: beyond self-healing. , 2022, , 483-511.		3

	Сітаті	on Report	
#	Article	IF	CITATIONS
184	Multifunctional Fiberâ \in Enabled Intelligent Health Agents. Advanced Materials, 2022, 34, .	11.1	36
185	Biodegradable Polymer Composites for Electrophysiological Signal Sensing. Polymers, 2022, 14, 2875.	2.0	8
186	Titanium or Biodegradable Osteosynthesis in Maxillofacial Surgery? In Vitro and In Vivo Performances. Polymers, 2022, 14, 2782.	2.0	10
187	Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 287, 121672.	5.7	36
189	Ecoresorbable and bioresorbable microelectromechanical systems. Nature Electronics, 2022, 5, 526-538.	13.1	28
190	Digital Light 3D Printed Bioresorbable and NIRâ€Responsive Devices with Photothermal and Shapeâ€Memory Functions. Advanced Science, 2022, 9, .	5.6	18
191	Effect of Ca content on biomineralization of Mg-Ca alloys. IOP Conference Series: Materials Science and Engineering, 2022, 1248, 012108.	0.3	0
192	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
193	Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 2022, 288, 121699.	5.7	18
194	Making electronics that don't last. Nature Electronics, 2022, 5, 479-479.	13.1	2
195	Effect of Saccharides Coating on Antibacterial Potential and Drug Loading and Releasing Capability of Plasma Treated Polylactic Acid Films. International Journal of Molecular Sciences, 2022, 23, 8821.	1.8	10
196	Bioinspired zwitterionic microgel-based coating: Controllable microstructure, high stability, and anticoagulant properties. Acta Biomaterialia, 2022, 151, 290-303.	4.1	10
197	A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices. Macromolecular Rapid Communications, 2023, 44, .	2.0	13
198	Modeling strain-induced dual-phase transformation in semicrystalline polylactide. Mechanics of Time-Dependent Materials, 2023, 27, 989-1005.	2.3	1
199	Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections—A Systematic Review. Bioengineering, 2022, 9, 409.	1.6	9
200	Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Materials Today Bio, 2022, 16, 100381.	2.6	31
201	Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials, 2022, 289, 121786.	5.7	62
202	Characterization of direct ink write pure silk fibroin based on alcohol post-treatments. Polymer Testing, 2022, 116, 107784.	2.3	4

#	Article	IF	CITATIONS
203	Biodegradable bioelectronics for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 8575-8595.	2.9	6
204	Orientation-controlled crystallization of γ-glycine films with enhanced piezoelectricity. Journal of Materials Chemistry B, 2022, 10, 6958-6964.	2.9	9
205	Interplay between Biomaterials and the Immune System: Perspective on Challenges and Opportunities in Regenerative Medicine. SSRN Electronic Journal, 0, , .	0.4	0
206	Biodegradable Materials: Fundamentals, Importance, and Impacts. , 2022, , 1-16.		1
207	Bi-functional water-purification materials derived from natural wood modified TiO ₂ by photothermal effect and photocatalysis. RSC Advances, 2022, 12, 26245-26250.	1.7	4
208	Recent advances in biopolymer-based hemostatic materials. Regenerative Biomaterials, 2022, 9, .	2.4	18
209	Degradable silk-based soft actuators with magnetic responsiveness. Journal of Materials Chemistry B, 2022, 10, 7650-7660.	2.9	4
210	Ultraâ€Thin Flexible Encapsulating Materials for Soft Bioâ€Integrated Electronics. Advanced Science, 2022, 9, .	5.6	37
211	Potential Use of 3D CORAGRAF-Loaded PDGF-BB in PLGA Microsphere Seeded Mesenchymal Stromal Cells in Enhancing the Repair of Calvaria Critical-Size Bone Defect in Rat Model. Marine Drugs, 2022, 20, 561.	2.2	0
212	Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. Biosensors, 2022, 12, 697.	2.3	22
216	Mechanistic study of the bioactivity improvement of Al2O3-doped BBG after dynamic flow treatment. Ceramics International, 2023, 49, 773-782.	2.3	3
217	Machine Learning for Bioelectronics on Wearable and Implantable Devices: Challenges and Potential. Tissue Engineering - Part A, 2023, 29, 20-46.	1.6	15
218	Synthesis, characterization, thermal stability, and inÂvitro and inÂvivo degradation study of polycaprolactone and polyglycolide block copolymers. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 302-314.	1.9	2
219	A "Nonsolvent Quenching―Strategy for 3D Printing of Polysaccharide Scaffolds with Immunoregulatory Accuracy. Advanced Science, 0, , 2203236.	5.6	3
220	A kinetic scission model for molecular weight evolution in bioresorbable polymers. Polymer Engineering and Science, 2022, 62, 3611-3630.	1.5	3
221	Deconstructing In Vitro Corrosion of Pure Mg: Influence of Serum Biomolecules and Phosphate Ions. Corrosion, 2022, 78, 1100-1116.	0.5	0
222	Development of plant based bioactive, anticoagulant and antioxidant surface coatings for medical implants. Materials Today Communications, 2022, 33, 104516.	0.9	0
223	Biodegradable polymeric materials for flexible and degradable electronics. Frontiers in Electronics, 0, 3, .	2.0	10

#	Article	IF	CITATIONS
224	Synthetic biodegradable polyesters for implantable controlled-release devices. Expert Opinion on Drug Delivery, 2022, 19, 1351-1364.	2.4	6
225	Zwitterionic Biomaterials. Chemical Reviews, 2022, 122, 17073-17154.	23.0	140
226	Materials and Biomedical Applications of Implantable Electronic Devices. Advanced Materials Technologies, 2023, 8, .	3.0	6
227	A nano-enabled biotinylated anti-LDL theranostic system to modulate systemic LDL cholesterol. International Journal of Pharmaceutics, 2022, 628, 122258.	2.6	1
228	3D-printed microrobots from design to translation. Nature Communications, 2022, 13, .	5.8	52
229	Electrophoretic deposition of alginate/bioglass composite coating on Mg Ca alloy for degradable metallic implant applications. Surface and Coatings Technology, 2022, 448, 128914.	2.2	9
230	Long-range ordered amino acid assemblies exhibit effective optical-to-electrical transduction and stable photoluminescence. Acta Biomaterialia, 2022, 154, 135-144.	4.1	7
231	Challenges in the use of Fe-based materials for bone scaffolds applications: Perspective from in vivo biocorrosion. Materials Today Communications, 2022, 33, 104564.	0.9	6
232	High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nature Communications, 2022, 13, .	5.8	14
234	Microstructure, Mechanical, In Vitro Biodegradation, and Antimicrobial Behavior of a Mg-Zn-Ca-Sr/ZrO ₂ Composite Prepared Using Powder Metallurgy. ACS Applied Bio Materials, 2022, 5, 5148-5155.	2.3	1
235	The effect of chemical composition on the degradation kinetics of high molecular weight poly(trimethylene carbonate-co-L-lactide). Polymer Degradation and Stability, 2022, 206, 110183.	2.7	0
236	Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022, 7, 935-952.	23.3	153
237	In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications. Electrochimica Acta, 2023, 437, 141463.	2.6	7
238	Immunomodulatory Biomaterials and Emerging Analytical Techniques for Probing the Immune Micro-Environment. Tissue Engineering and Regenerative Medicine, 2023, 20, 11-24.	1.6	7
239	Monitoring of Drug Release via Intra Body Communication with an Edible Pill. Advanced Materials Technologies, 2023, 8, .	3.0	9
241	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	2.2	22
242	Janus Micro/Nanorobots in Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	10
243	Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics. 2022. 14. 2463.	2.0	14

#	Article	IF	CITATIONS
244	Natural Piezoelectric Biomaterials: A Biocompatible and Sustainable Building Block for Biomedical Devices. ACS Nano, 2022, 16, 17708-17728.	7.3	38
245	Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes. Advanced Functional Materials, 0, , 2210627.	7.8	1
246	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	3
247	Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomaterialia, 2023, 155, 1-18.	4.1	20
248	Biodegradable magnesium materials regulate ROS-RNS balance in pro-inflammatory macrophage environment. Bioactive Materials, 2023, 23, 261-273.	8.6	5
249	Photolithographyâ€Based Microfabrication of Biodegradable Flexible and Stretchable Sensors. Advanced Materials, 2023, 35, .	11.1	11
250	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	2.4	54
251	Bioactive polymer-enabled conformal neural interface and its application strategies. Materials Horizons, 2023, 10, 808-828.	6.4	2
252	Silk sericin as building blocks of bioactive materials for advanced therapeutics. Journal of Controlled Release, 2023, 353, 303-316.	4.8	18
253	Elevated oxidative phosphorylation is critical for immune cell activation by polyethylene wear particles. Journal of Immunology and Regenerative Medicine, 2023, 19, 100069.	0.2	6
254	Thermal conductivity of single silk fibroin fibers measured from the 3ï‰ method. International Journal of Thermal Sciences, 2023, 185, 108057.	2.6	3
255	Immune response differences in degradable and non-degradable alloy implants. Bioactive Materials, 2023, 24, 153-170.	8.6	8
256	Applications of MXenes in human-like sensors and actuators. Nano Research, 2023, 16, 5767-5795.	5.8	15
257	Recent Advances in Enzymeâ€Based Biomaterials Toward Diabetic Wound Healing. Advanced NanoBiomed Research, 2023, 3, .	1.7	11
258	Engineering Silk Protein to Modulate Polymorphic Transitions for Green Lithography Resists. ACS Applied Materials & Interfaces, 2022, 14, 56623-56634.	4.0	5
259	Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nature Communications, 2022, 13, .	5.8	18
260	Research hotspots and trends of biodegradable magnesium and its alloys. Smart Materials in Medicine, 2023, 4, 468-479.	3.7	12
261	Advanced medical micro-robotics for early diagnosis and therapeutic interventions. Frontiers in Robotics and AI, 0, 9, .	2.0	6

#	Article	IF	CITATIONS
262	Stereochemistry Determines Immune Cellular Responses to Polylactide Implants. ACS Biomaterials Science and Engineering, 2023, 9, 932-943.	2.6	8
263	Angiogenic Modification of Microfibrous Polycaprolactone by pCMV-VEGF165 Plasmid Promotes Local Vascular Growth after Implantation in Rats. International Journal of Molecular Sciences, 2023, 24, 1399.	1.8	10
264	Pathway of transient electronics towards connected biomedical applications. Nanoscale, 2023, 15, 4236-4249.	2.8	6
265	Orthopedical Nanotechnology. Micro/Nano Technologies, 2023, , 501-523.	0.1	0
266	Investigating the Biodegradation Mechanism of Poly(trimethylene carbonate): Macrophage-Mediated Erosion by Secreting Lipase. Biomacromolecules, 2023, 24, 921-928.	2.6	2
267	Design and validation of performance-oriented injectable chitosan thermosensitive hydrogels for endoscopic submucosal dissection. , 2023, 146, 213286.		5
268	Horseradish Peroxidase Catalyzed Silk–Prefoldin Composite Hydrogel Networks. ACS Applied Bio Materials, 2023, 6, 203-208.	2.3	3
269	Biodegradable Polymer Nanoparticles: Therapeutic Applications and Challenges. Oriental Journal of Chemistry, 2022, 38, 1419-1427.	0.1	0
270	Flexible and Soft Materials and Devices for Neural Interface. , 2023, , 79-139.		1
271	Glass-Based Biodegradable Pressure Sensor Toward Biomechanical Monitoring With a Controllable Lifetime. , 2023, 7, 1-4.		2
272	A biocompatible and fully erodible conducting polymer enables implanted rechargeable Zn batteries. Chemical Science, 2023, 14, 2123-2130.	3.7	6
273	Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomaterials Science, 0, , .	2.6	0
274	Influence of Polyols on the In Vitro Biodegradation and Bioactivity of 58S Bioactive Sol–Gel Coatings on AZ31B Magnesium Alloys. Polymers, 2023, 15, 1273.	2.0	2
275	An Allâ€Inâ€One Selfâ€Degradable Flexible Skin Patch with Thermostatic Control and Spontaneous Release of Antibacterial Ions to Accelerate Wound Healing. Advanced Materials Technologies, 2023, 8, .	3.0	4
276	Scaffold degradation in bone tissue engineering: An overview. International Biodeterioration and Biodegradation, 2023, 180, 105599.	1.9	32
277	Nature-derived, biocompatible silibinin based bioresorbable neuromorphic device for implantable medical electronics. Applied Surface Science, 2023, 621, 156814.	3.1	1
278	Dual-crosslinked starchâ^'poly(ester urethane)â^'oligochitosan films with high starch content: Application as biodegradable food packaging. Food Packaging and Shelf Life, 2023, 37, 101064.	3.3	7
279	3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioactive Materials, 2023, 27, 216-230.	8.6	6

#	Article	IF	CITATIONS
280	300 MPa grade highly ductile biodegradable Zn-2Cu-(0.2-0.8)Li alloys with novel ternary phases. Journal of Materials Science and Technology, 2023, 157, 234-245.	5.6	8
281	Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials, 2023, 296, 122075.	5.7	12
282	Material–Structure–Function Integrated Additive Manufacturing of Degradable Metallic Bone Implants for Loadâ€Bearing Applications. Advanced Functional Materials, 2023, 33, .	7.8	12
283	Flexible Transient Bioelectronic System Enables Multifunctional Activeâ€Controlled Drug Delivery. Advanced Functional Materials, 2023, 33, .	7.8	9
284	Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 2023, 10, 218.	1.6	17
285	Boosting the Piezoelectric Sensitivity of Amino Acid Crystals by Mechanical Annealing for the Engineering of Fully Degradable Force Sensors. Advanced Science, 2023, 10, .	5.6	14
286	A 3D biomimetic optoelectronic scaffold repairs cranial defects. Science Advances, 2023, 9, .	4.7	10
287	A new method for evaluating sirolimus actual release kinetics of degradable polymer matrix via numerical convolution. Journal of Drug Delivery Science and Technology, 2023, 81, 104275.	1.4	0
288	Expanded Polytetrafluoroethylene Membranes for Vascular Stent Coating: Manufacturing, Biomedical and Surgical Applications, Innovations and Case Reports. Membranes, 2023, 13, 240.	1.4	3
289	Bioresorbable Pressure Sensor and Its Applications in Abnormal Respiratory Event Identification. ACS Applied Electronic Materials, 2023, 5, 1761-1769.	2.0	8
290	In vitro cellular biocompatibility and in vivo degradation behavior of calcium phosphate-coated ZK60 magnesium alloy. Biomedical Materials (Bristol), 2023, 18, 035003.	1.7	1
291	Injectable Conductive Hydrogels with Tunable Degradability as Novel Implantable Bioelectrodes. Small, 2023, 19, .	5.2	8
292	Biodegradable Materials: Fundamentals, Importance, and Impacts. , 2023, , 3-18.		2
293	Biodegradable Cements for Bone Regeneration. Journal of Functional Biomaterials, 2023, 14, 134.	1.8	11
294	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
295	Influence of ECAP process on mechanical, corrosion and bacterial properties of Zn-2Ag alloy for wound closure devices. Materials and Design, 2023, 228, 111817.	3.3	7
296	Ultrasoundâ€Ðriven Injectable and Fully Biodegradable Triboelectric Nanogenerators. Small Methods, 2023, 7, .	4.6	13
297	Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics, 2023, 15, 937.	2.0	1

#	Article	IF	CITATIONS
298	Thermodynamic behavior of bioactive glass in relationship with high fluorine content. Ceramics International, 2023, 49, 18238-18247.	2.3	3
299	Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications. Journal of Functional Biomaterials, 2023, 14, 159.	1.8	7
300	Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering, 2023, 10, 394.	1.6	5
301	Controllable Production of Natural Silk Nanofibrils for Reinforcing Silk-Based Orthopedic Screws. Polymers, 2023, 15, 1645.	2.0	2
302	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	16.0	6
303	Effect of static tensile stress on enzymatic degradation of poly(glycerol sebacate). Journal of Biomedical Materials Research - Part A, 2023, 111, 1513-1524.	2.1	1
304	Silk chemistry and biomedical material designs. Nature Reviews Chemistry, 2023, 7, 302-318.	13.8	33
305	Body shaping membrane to regenerate breast fat by elastic structural holding. Research, 2023, 6, .	2.8	2
317	Tissue-Derived Decellularized Materials for Biomedical Applications. , 2023, , 1-33.		1
334	Editorial: Relevant technology adaptation for bio medical application and sustainability. Frontiers in Medical Technology, 0, 5, .	1.3	1
348	Implantable microfluidics: methods and applications. Analyst, The, 2023, 148, 4637-4654.	1.7	1
349	Micro-/nanoscale robotics for chemical and biological sensing. Lab on A Chip, 2023, 23, 3741-3767.	3.1	3
354	Anti-biofouling strategies for implantable biosensors of continuous glucose monitoring systems. Frontiers of Chemical Science and Engineering, 0, , .	2.3	0
383	Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling. Green Chemistry, 2024, 26, 571-592.	4.6	2
406	Implantable soft electronics and sensors. , 2024, , 393-435.		0
409	Translation of a silk-based medical device from bench to bedside. , 2024, , 805-832.		0
415	Biodegradable Materials-Based Sensors. , 2024, , 1-34.		0
418	Organic encapsulants for bioresorbable medical electronics. MRS Bulletin, 2024, 49, 247-255.	1.7	0

#	Article	IF	CITATIONS
439	Estimating Biosafety of Biodegradable Biomedical Materials From In Vitro Ion Tolerance Parameters and Toxicity of Nanomaterials in Brain. Advances in Healthcare Information Systems and Administration Book Series, 2024, , 201-221.	0.2	0