Three-dimensional printing of multicomponent glasses

Nature Materials 19, 212-217

DOI: 10.1038/s41563-019-0525-y

Citation Report

#	Article	IF	Citations
1	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
2	3D printing of glass by additive manufacturing techniques: a review. Frontiers of Optoelectronics, 2021, 14, 263-277.	1.9	52
3	3D printed gradient index glass optics. Science Advances, 2020, 6, .	4.7	70
4	Porous cage-derived nanomaterial inks for direct and internal three-dimensional printing. Nature Communications, 2020, 11, 4695.	5.8	18
5	A natural impact-resistant bicontinuous composite nanoparticle coating. Nature Materials, 2020, 19, 1236-1243.	13.3	115
6	Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e2000556.	11.1	134
7	3D Twoâ€Photon Microprinting of Nanoporous Architectures. Advanced Materials, 2020, 32, e2002044.	11.1	44
8	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. , 2020, 2, 1041-1056.		45
9	Divide and print. Nature Materials, 2020, 19, 131-133.	13.3	6
10	Direct Ink Writing Glass: A Preliminary Step for Optical Application. Materials, 2020, 13, 1636.	1.3	16
11	Hydrogelâ€Based Additive Manufacturing of Lithium Cobalt Oxide. Advanced Materials Technologies,		
	2021, 6, 2000791.	3.0	17
12	0001 6 0000=01	3.0 6.6	17 32
12	2021, 6, 2000791. 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chemical Engineering		
	2021, 6, 2000791. 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chemical Engineering Journal, 2021, 416, 127885. ⟨scp>Threeâ€dimensional⟨/scp> chemical reactors: ⟨i>in situ⟨/i> materials synthesis to advance vat	6.6	32
13	2021, 6, 2000791. 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chemical Engineering Journal, 2021, 416, 127885. ⟨scp>Threeâ€dimensional⟨/scp> chemical reactors: ⟨i>in situ⟨/i> materials synthesis to advance vat photopolymerization. Polymer International, 2021, 70, 964-976. Programmable Local Orientation of Micropores by Moldâ€Assisted Ice Templating. Small Methods, 2021,	1.6	32 19
13	3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chemical Engineering Journal, 2021, 416, 127885. ⟨scp>Threeâ€dimensional⟨/scp> chemical reactors: ⟨i>in situ⟨/i> materials synthesis to advance vat photopolymerization. Polymer International, 2021, 70, 964-976. Programmable Local Orientation of Micropores by Moldâ€Assisted Ice Templating. Small Methods, 2021, 5, 2000963.	6.6 1.6 4.6	32 19 13
13 14 15	2021, 6, 2000791. 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chemical Engineering Journal, 2021, 416, 127885.	6.6 1.6 4.6	32 19 13 27

#	Article	IF	CITATIONS
19	Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. Journal of Materials Chemistry A, 2021, 9, 21379-21386.	5.2	30
20	Transparent Glass Ceramics. Crystals, 2021, 11, 156.	1.0	10
21	3D Printing in Fiber-Device Technology. Advanced Fiber Materials, 2021, 3, 59-75.	7.9	43
22	Low-cost and open-source strategies for chemical separations. Journal of Chromatography A, 2021, 1638, 461820.	1.8	25
23	Correcting ray distortion in tomographic additive manufacturing. Optics Express, 2021, 29, 11037.	1.7	20
24	3D Printing of Transparent Spinel Ceramics with Transmittance Approaching the Theoretical Limit. Advanced Materials, 2021, 33, e2007072.	11.1	18
25	Preshaping clear glass at low temperatures. Science, 2021, 372, 126-127.	6.0	3
26	Additive manufacturing of structural materials. Materials Science and Engineering Reports, 2021, 145, 100596.	14.8	254
27	Rapid synchronized fabrication of vascularized thermosets and composites. Nature Communications, 2021, 12, 2836.	5.8	30
28	Particle-free compositions for printing dense 3D ceramic structures by digital light processing. Virtual and Physical Prototyping, 2021, 16, 255-266.	5.3	8
29	Smooth or not: Robust fused silica micro-components by femtosecond-laser-assisted etching. Materials and Design, 2021, 204, 109670.	3.3	18
30	Three-dimensional printing of glass micro-optics. Optica, 2021, 8, 904.	4.8	35
31	A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromolecular Bioscience, 2021, 21, e2100022.	2.1	20
32	3D Printing of Nextâ€generation Electrochemical Energy Storage Devices: from Multiscale to Multimaterial. Energy and Environmental Materials, 2022, 5, 427-438.	7.3	25
33	Transparent origami glass. Nature Communications, 2021, 12, 4261.	5.8	24
34	Direct laser heating of the filament/substrate interface in digital glass forming. Manufacturing Letters, 2022, 31, 106-109.	1.1	3
35	Rapid manufacturing of silica glass parts with complex structures through stereolithography and pressureless spark plasma sintering. Ceramics International, 2022, 48, 55-63.	2.3	11
36	Solvent-Free Three-Dimensional Printing of Biodegradable Elastomers Using Liquid Macrophotoinitiators. Macromolecules, 2021, 54, 7830-7839.	2.2	25

#	ARTICLE	IF	CITATIONS
37	Extracting processing and testing parameters from materials science literature for improved property prediction of glasses. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108607.	1.8	11
38	Additive manufacturing of strong silica sand structures enabled by polyethyleneimine binder. Nature Communications, 2021, 12, 5144.	5.8	21
39	Multimaterial Vat Polymerization Additive Manufacturing. ACS Applied Polymer Materials, 2021, 3, 4304-4324.	2.0	67
40	Fusedâ€Silica 3D Chiral Metamaterials via Heliumâ€Assisted Microcasting Supporting Topologically Protected Twist Edge Resonances with High Mechanical Quality Factors. Advanced Materials, 2021, 33, 2103205.	11.1	7
41	Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds. Materials, 2021, 14, 5083.	1.3	9
42	Impact-resistant materials inspired by the mantis shrimp's dactyl club. Matter, 2021, 4, 2831-2849.	5.0	40
43	Porous polymer $\hat{a} \in d$ erived ceramics: Flexible morphological and compositional controls through sol $\hat{a} \in d$ chemistry. Journal of the American Ceramic Society, 0, , .	1.9	10
44	Additives for Ambient 3D Printing with Visible Light. Advanced Materials, 2021, 33, e2104906.	11.1	29
45	Digital Transformation in Materials Science: A Paradigm Change in Material's Development. Advanced Materials, 2021, 33, e2004940.	11.1	37
46	Direct printing of functional 3D objects using polymerization-induced phase separation. Nature Communications, 2021, 12, 55.	5.8	38
47	Rapid three-dimensional structuring of transparent SiO2 glass using interparticle photo-cross-linkable suspensions. Communications Materials, 2020, 1, .	2.9	32
48	Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews, 2020, 89, 1507-1561.	2.5	32
49	Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective. IEEE Access, 2021, 9, 140654-140666.	2.6	17
50	Printing glass in the nano. Nature Materials, 2021, 20, 1454-1456.	13.3	2
51	3D-printed silica with nanoscale resolution. Nature Materials, 2021, 20, 1506-1511.	13.3	93
52	3D Printing of Customized Aspheric Lenses for Imaging. Polymers, 2021, 13, 3477.	2.0	3
54	Strategies to Introduce Topographical and Structural Cues in 3Dâ€Printed Scaffolds and Implications in Tissue Regeneration. Advanced NanoBiomed Research, 2021, 1, 2100068.	1.7	14
55	3D Printed, Solidâ€ S tate Conductive Ionoelastomer as a Generic Building Block for Tactile Applications. Advanced Materials, 2022, 34, e2105996.	11.1	54

#	Article	IF	Citations
56	3D Printing of Transparent Glasses. Springer Series in Optical Sciences, 2021, , 169-184.	0.5	0
57	Fabrication of High-Performance CNT Reinforced Polymer Composite for Additive Manufacturing by Phase Inversion Technique. Polymers, 2021, 13, 4007.	2.0	14
58	Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions. Scientific Reports, 2021, 11, 22316.	1.6	18
59	Photo Curing and Pressureless Sintering of Orange-emitting Glass-ceramics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, , 518.	0.6	1
60	Overview of 3D-Printed Silica Glass. Micromachines, 2022, 13, 81.	1.4	19
61	3D printing of customized key biomaterials genomics for bone regeneration. Applied Materials Today, 2022, 26, 101346.	2.3	11
62	Origami-Based Design for 4D Printing of 3D Support-Free Hollow Structures. Engineering, 2022, 12, 70-82.	3.2	20
63	3D Printing of Liquid Crystalline Hydroxypropyl Celluloseâ€"toward Tunable and Sustainable Volumetric Photonic Structures. Advanced Functional Materials, 2022, 32, .	7.8	38
64	Stiffness control in dual color tomographic volumetric 3D printing. Nature Communications, 2022, 13, 367.	5.8	21
65	Laser additive manufacturing of Si/ZrO ₂ tunable crystalline phase 3D nanostructures. Opto-Electronic Advances, 2022, 5, 210077-210077.	6.4	37
67	Hydrazone bond enhance the mechanical properties, heating resistance, and water resistance of imine-based thermosets. Chemical Engineering Journal, 2022, 435, 134766.	6.6	20
68	Ich druck mir die Welt, wie sie mir gefÄtt. Nachrichten Aus Der Chemie, 2022, 70, 68-71.	0.0	0
69	Quill-free additive manufacturing of fused silica glass. Optical Materials Express, 2022, 12, 1480.	1.6	8
70	Additive Manufacturing Fiber Preforms for Structured Silica Fibers with Bismuth and Erbium Dopants. Light Advanced Manufacturing, 2022, 3, 1.	2.2	3
71	Polysaccharide Derivative for High-Precision Stereolithography 3D Hydrogel Bio-Printing. SSRN Electronic Journal, 0, , .	0.4	0
72	Three-Dimensional Printing of Large-Scale, High-Resolution Bioceramics with Micronano Inner Porosity and Customized Surface Characterization Design for Bone Regeneration. ACS Applied Materials & Distriction (14, 8804-8815).	4.0	30
74	î»/30 inorganic features achieved by multi-photon 3D lithography. Nature Communications, 2022, 13, 1357.	5.8	32
75	Temperature–dependent dynamic plasticity of micro-scale fused silica. Materials and Design, 2022, 215, 110503.	3.3	7

#	ARTICLE	IF	CITATIONS
76	Additive manufacturing of Ca–Mg silicate scaffolds supported by flame-synthesized glass microspheres. Ceramics International, 2022, 48, 9107-9113.	2.3	4
77	Direct sound printing. Nature Communications, 2022, 13, 1800.	5. 8	26
78	A reaction–diffusion model for grayscale digital light processing 3D printing. Extreme Mechanics Letters, 2022, 53, 101714.	2.0	24
79	Hybrid additive manufacturing for the fabrication of freeform transparent silica glass components. Additive Manufacturing, 2022, 54, 102727.	1.7	12
80	Present state of 3D printing from glass. Pure and Applied Chemistry, 2022, 94, 169-179.	0.9	1
81	Rapid Determination of Phase Diagrams for Biomolecular Liquid–Liquid Phase Separation with Microfluidics. Analytical Chemistry, 2022, 94, 687-694.	3.2	12
82	Putting the Squeeze on Phase Separation. Jacs Au, 2022, 2, 66-73.	3.6	31
83	Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 2022, 376, 308-312.	6.0	94
84	Highâ€Precision Printing of Complex Glass Imaging Optics with Precondensed Liquid Silica Resin. Advanced Science, 2022, 9, e2105595.	5 . 6	16
85	Silica-Encapsulated Germania Colloids as 3D-Printable Glass Precursors. ACS Omega, 2022, 7, 17492-17500.	1.6	5
86	Rapid prototyping of silica optical fibers. Optical Materials Express, 2022, 12, 2426.	1.6	7
87	Low Temperature Additive Manufacturing of Glass. SSRN Electronic Journal, 0, , .	0.4	0
88	Refractive Index and Abbe Number Tuning via 3D Printable Optical Quality Silica–Titania–Germania Glasses. Advanced Photonics Research, 2022, 3, .	1.7	6
89	Lightâ€Based Printing of Leachable Salt Molds for Facile Shaping of Complex Structures. Advanced Materials, 2022, 34, .	11.1	10
90	Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation. Nature Communications, 2022, 13, .	5.8	42
91	Additive Manufacturing of Optical Waveguides. , 0, , .		0
92	Hierarchical Porous Polymer Coatings Based on UV-Curing for Highly Efficient Passive All-Day Radiative Cooling. ACS Applied Polymer Materials, 2022, 4, 5746-5755.	2.0	7
93	Review of 3D printing in photocatalytic substrates and catalysts. Materials Today Energy, 2022, 29, 101100.	2.5	7

#	Article	IF	CITATIONS
94	3D printing of ceramic composite with biomimetic toughening design. Additive Manufacturing, 2022, 58, 103027.	1.7	2
95	Aquabots. ACS Nano, 2022, 16, 13761-13770.	7. 3	10
96	Investigation of glass bonding and multi-layer deposition during filament-based glass 3D printing. Frontiers in Materials, 0, 9, .	1.2	6
97	Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing, 2023, 8, 331-351.	2.5	55
98	Biomacromolecule-based agent for high-precision light-based 3D hydrogel bioprinting. Cell Reports Physical Science, 2022, 3, 100985.	2.8	10
99	Mussel-inspired polydopamine decorated alginate dialdehyde-gelatin 3D printed scaffolds for bone tissue engineering application. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
100	Emerging techniques for customized fabrication of glass. Journal of Non-Crystalline Solids: X, 2022, 15, 100114.	0.5	2
101	Micro/nano functional devices fabricated by additive manufacturing. Progress in Materials Science, 2023, 131, 101020.	16.0	55
102	Controllable Additive Manufacturing of High Performance Ceramic Cores: Tailoring the Grain Size Effect of Ceramic Powders. SSRN Electronic Journal, 0, , .	0.4	0
103	Principles of Elastic Bridging in Biological Materials. SSRN Electronic Journal, 0, , .	0.4	0
104	Printing adaptability and vitrification of UV photo-responsive silica nanocomposites. Materials Research Bulletin, 2023, 158, 112046.	2.7	5
106	Matrix-Directed Mineralization for Bulk Structural Materials. Journal of the American Chemical Society, 2022, 144, 18175-18194.	6.6	25
107	Principles of elastic bridging in biological materials. Acta Biomaterialia, 2022, 153, 320-330.	4.1	3
108	Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. 3D Printing and Additive Manufacturing, 0, , .	1.4	3
109	Digital light processing additive manufacturing of thin dental porcelain veneers. Journal of the European Ceramic Society, 2023, 43, 1161-1167.	2.8	3
110	3D Printing of Hierarchical Porous Steel and Ironâ∈Based Materials. Advanced Materials Technologies, 2023, 8, .	3.0	2
111	3D-printed polymer foams maintain stiffness and energy dissipation under repeated loading. Composites Communications, 2023, 37, 101453.	3.3	2
112	Mussels Fabricate Porous Glues via Multiphase Liquid–Liquid Phase Separation of Multiprotein Condensates. ACS Nano, 2022, 16, 20877-20890.	7.3	8

#	Article	IF	CITATIONS
113	Additive Manufacturing of Glass-Ceramic Parts from Recycled Glass Using a Novel Selective Powder Deposition Process. Applied Sciences (Switzerland), 2022, 12, 13022.	1.3	1
114	Numerical Simulations of the Influence on the Temperature Fields of Large-Sized Nd-Glass Slab with Designed Edge-Cladding Materials, Methods, and Structures. Photonics, 2022, 9, 931.	0.9	0
116	Overall Aspects of Glasses for Photonic Devices. Advances in Material Research and Technology, 2023, , 1-52.	0.3	2
117	3D Microprinting of Superâ€Repellent Microstructures: Recent Developments, Challenges, and Opportunities. Advanced Functional Materials, 2023, 33, .	7.8	7
118	3D Printing Functionally Graded Porous Materials for Simultaneous Fabrication of Dense and Porous Structures in Membraneâ€Integrated Fluidic Devices. Small Structures, 2023, 4, .	6.9	10
119	Understanding the Microstructure Connectivity in Photopolymerizable Aluminum-Phosphate-Silicate Sol–Gel Hybrid Materials for Additive Manufacturing. Journal of Physical Chemistry C, 2023, 127, 2416-2429.	1.5	1
120	Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms. Science China Chemistry, $0, , .$	4.2	1
121	3D Printed Ionogels In Sensors. Polymer-Plastics Technology and Materials, 2023, 62, 632-654.	0.6	1
122	A comprehensive review on additive manufacturing of glass: Recent progress and future outlook. Materials and Design, 2023, 227, 111736.	3.3	7
123	Liquid Shuttle Mediated by Microwick for Openâ€Air Microfluidics. Advanced Functional Materials, 2023, 33, .	7.8	2
124	Angle-independent solar radiation capture by 3D printed lattice structures for efficient photoelectrochemical water splitting. Materials Horizons, 2023, 10, 1806-1815.	6.4	2
125	Recent Progress and Perspectives of Direct Ink Writing Applications for Mass Transfer Enhancement in Gasâ€Phase Adsorption and Catalysis. Small Methods, 2023, 7, .	4.6	9
126	Laserâ€Induced Cavitationâ€Assisted True 3D Nanoâ€Sculpturing of Hard Materials. Small, 2023, 19, .	5.2	7
127	Twoâ€Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Advanced Functional Materials, 2023, 33, .	7.8	39
128	The Universality of Self-Organisation: A Path to an Atom Printer?. Springer Series in Optical Sciences, 2023, , 173-207.	0.5	0
129	Random Silica-Glass Microlens Arrays Based on the Molding Technology of Photocurable Nanocomposites. ACS Applied Materials & Interfaces, 2023, 15, 19230-19240.	4.0	6
143	Fast Local Thickness. , 2023, , .		1
161	Fabrication of silica glass microchannel reflectors by 3D printing and UV-curing. , 2023, , .		0

Article IF Citations