Peptide-Based Vaccines: Current Progress and Future C

Chemical Reviews 120, 3210-3229

DOI: 10.1021/acs.chemrev.9b00472

Citation Report

#	Article	IF	CITATIONS
1	Greener liquid-phase synthesis and the ACE inhibitory structure–activity relationship of an anti-SARS octapeptide. Organic and Biomolecular Chemistry, 2020, 18, 8433-8442.	1.5	10
2	Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. Journal of Medicinal Chemistry, 2020, 63, 14184-14196.	2.9	15
3	Site-selective aqueous C–H acylation of tyrosine-containing oligopeptides with aldehydes. Chemical Science, 2020, 11, 11531-11538.	3.7	19
4	Progress in the Development of Subunit Vaccines against Malaria. Vaccines, 2020, 8, 373.	2.1	15
5	Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Frontiers in Chemistry, 2020, 8, 587975.	1.8	17
6	Self-Assembled Multi-Epitope Peptide Amphiphiles Enhance the Immune Response against Enterovirus 71. Nanomaterials, 2020, 10, 2342.	1.9	5
7	Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Frontiers in Pharmacology, 2020, 11, 578382.	1.6	38
8	Prevalence of antibodies against a cyclic peptide mimicking the FG loop of the human papillomavirus type 16 capsid among Tunisian women. Journal of Translational Medicine, 2020, 18, 288.	1.8	O
9	Designing Functionally Versatile, Highly Immunogenic Peptide-Based Multiepitopic Vaccines against Foot-and-Mouth Disease Virus. Vaccines, 2020, 8, 406.	2.1	7
10	Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Frontiers in Immunology, 2020, 11, 579250.	2.2	72
11	Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Frontiers in Chemistry, 2020, 8, 598160.	1.8	40
12	The role of immunoinformatics in the development of T-cell peptide-based vaccines against <i>Mycobacterium tuberculosis</i> . Expert Review of Vaccines, 2020, 19, 831-841.	2.0	8
13	Therapeutic Vaccines for Cancer Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 6036-6052.	2.6	24
14	Chemical Strategies to Boost Cancer Vaccines. Chemical Reviews, 2020, 120, 11420-11478.	23.0	95
15	Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells, 2020, 9, 2673.	1.8	25
16	Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules, 2020, 25, 5804.	1.7	46
17	Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. Materials, 2020, 13, 4946.	1.3	33
18	Siteâ€Selective Trifluoromethylation Reactions of Oligopeptides. Asian Journal of Organic Chemistry, 2020, 9, 898-909.	1.3	21

#	Article	IF	Citations
19	B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Future Oncology, 2020, 16, 1767-1791.	1.1	16
20	A computational study to disclose potential drugs and vaccine ensemble for COVID-19 conundrum. Journal of Molecular Liquids, 2021, 324, 114734.	2.3	15
21	Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomedical Journal, 2021, 44, 18-30.	1.4	42
22	Combining photothermal ablation-based vaccine with immune checkpoint blockade for synergistic osteosarcoma immunotherapy. Materials and Design, 2021, 198, 109311.	3.3	8
23	A Potent Vaccine Delivery System. Bio-protocol, 2021, 11, e3973.	0.2	2
24	Emerging Technologies in Diagnostic Virology and Antiviral Strategies. , 2021, , 1-13.		0
25	Cancer Vaccines, Treatment of the Future: With Emphasis on HER2-Positive Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 779.	1.8	53
26	Metal-free approach for hindered amide-bond formation with hypervalent iodine(<scp>iii</scp>) reagents: application to hindered peptide synthesis. Green Chemistry, 2021, 23, 848-855.	4.6	18
27	Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology, 2021, 18, 215-229.	12.5	486
28	A mimotope attached to an ITIM–SHP-1 interaction inhibitory peptide boosts immune response and efficacy. RSC Medicinal Chemistry, 2021, 12, 994-999.	1.7	0
29	Mathematical recipe for curbing coronavirus (COVID-19) transmition dynamics., 2021,, 527-545.		0
30	Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers, 2021, 13, 334.	1.7	44
31	Amide bond formation: beyond the dilemma between activation and racemisation. Chemical Communications, 2021, 57, 6346-6359.	2.2	27
32	Approaches for peptide and protein cyclisation. Organic and Biomolecular Chemistry, 2021, 19, 3983-4001.	1.5	32
33	A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 2021, 26, 430.	1.7	190
34	Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A <i>Streptococcus</i> Vaccine Delivery. Journal of Medicinal Chemistry, 2021, 64, 2648-2658.	2.9	32
35	Antigenic Essence: Upgrade of Cellular Cancer Vaccines. Cancers, 2021, 13, 774.	1.7	6
36	A Simplified Amino Acidic Alphabet to Unveil the T-Cells Receptors Antigens: A Computational Perspective. Frontiers in Chemistry, 2021, 9, 598802.	1.8	0

#	Article	IF	CITATIONS
37	Trends in peptide drug discovery. Nature Reviews Drug Discovery, 2021, 20, 309-325.	21.5	792
39	Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. Journal of Chemical Information and Modeling, 2021, 61, 1226-1243.	2.5	24
40	Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chemical Reviews, 2021, 121, 11653-11698.	23.0	51
41	Peptide Vaccination against Cytomegalovirus Induces Specific T Cell Response in Responses in CMV Seronegative End-Stage Renal Disease Patients. Vaccines, 2021, 9, 133.	2.1	8
42	Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Perspectives. Frontiers in Molecular Biosciences, 2021, 8, 604447.	1.6	28
43	Computational identification of significant immunogenic epitopes of the putative outer membrane proteins from Mycobacterium tuberculosis. Journal of Genetic Engineering and Biotechnology, 2021, 19, 48.	1.5	1
44	A Multiepitope Peptide, rOmp22, Encapsulated in Chitosan-PLGA Nanoparticles as a Candidate Vaccine Against Acinetobacter baumannii Infection. International Journal of Nanomedicine, 2021, Volume 16, 1819-1836.	3.3	35
45	Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics, 2021, 13, 501.	2.0	15
48	Cancer neoantigens as potential targets for immunotherapy. Clinical and Experimental Metastasis, 2022, 39, 51-60.	1.7	24
49	Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics, 2021, 13, 644.	2.0	17
50	Efficient immunogenic peptide antigen delivery to dendritic cells using an ESCRT-mediated extracellular vesicle formation method. Vaccine, 2021, 39, 2976-2982.	1.7	4
51	The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules, 2021, 26, 3228.	1.7	17
52	Peptide Headâ€toâ€Tail Cyclization: A "Molecular Claw―Approach. European Journal of Organic Chemistry, 2021, 2021, 3133-3138.	1.2	9
53	Epitope-targeting platform for broadly protective influenza vaccines. PLoS ONE, 2021, 16, e0252170.	1.1	7
54	Extracellular Vesicles and Their Current Role in Cancer Immunotherapy. Cancers, 2021, 13, 2280.	1.7	20
55	Integrative immunoinformatics paradigm for predicting potential B-cell and T-cell epitopes as viable candidates for subunit vaccine design against COVID-19 virulence. Biomedical Journal, 2021, 44, 447-460.	1.4	9
56	Use of a Novel Peptide Welding Technology Platform for the Development of B- and T-Cell Epitope-Based Vaccines. Vaccines, 2021, 9, 526.	2.1	1
57	Formulation matters! A spectroscopic and molecular dynamics investigation on the peptide CIGB552 as itself and in its therapeutical formulation. Journal of Peptide Science, 2022, 28, e3356.	0.8	1

#	Article	IF	CITATIONS
58	Exploiting Knowledge on Structure–Activity Relationships for Designing Peptidomimetics of Endogenous Peptides. Biomedicines, 2021, 9, 651.	1.4	3
60	EpitopeVec: linear epitope prediction using deep protein sequence embeddings. Bioinformatics, 2021, 37, 4517-4525.	1.8	17
61	The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sciences, 2021, 274, 119289.	2.0	9
63	Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduction and Targeted Therapy, 2021, 6, 225.	7.1	115
64	Metalâ€Catalyzed C(sp ²)â^'H Functionalization Processes of Phenylalanine―and Tyrosineâ€Containing Peptides. European Journal of Inorganic Chemistry, 2021, 2021, 2928-2941.	1.0	20
65	Robust induction of TRMs by combinatorial nanoshells confers cross-strain sterilizing immunity against lethal influenza viruses. Molecular Therapy - Methods and Clinical Development, 2021, 21, 299-314.	1.8	5
66	SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Frontiers in Immunology, 2021, 12, 701501.	2.2	157
67	EPIphanyâ€"A Platform for Analysis and Visualization of Peptide Immunoarray Data. Frontiers in Bioinformatics, 2021, 1, .	1.0	3
68	An Epitope Platform for Safe and Effective HTLV-1-Immunization: Potential Applications for mRNA and Peptide-Based Vaccines. Viruses, 2021, 13, 1461.	1.5	6
69	A novel self-assembled epitope peptide nanoemulsion vaccine targeting nasal mucosal epithelial cell for reinvigorating CD8+ T cell immune activity and inhibiting tumor progression. International Journal of Biological Macromolecules, 2021, 183, 1891-1902.	3.6	14
70	Cancer immunotherapy: A comprehensive appraisal of its modes of application (Review). Oncology Letters, 2021, 22, 655.	0.8	17
71	Lipopeptides for Vaccine Development. Bioconjugate Chemistry, 2021, 32, 1472-1490.	1.8	28
72	Rapid Generation of Coronaviral Immunity Using Recombinant Peptide Modified Nanodiamonds. Pathogens, 2021, 10, 861.	1.2	10
73	Characterization of linear epitope specificity of antibodies potentially contributing to spontaneous clearance of hepatitis C virus. PLoS ONE, 2021, 16, e0256816.	1.1	1
74	HemoNet: Predicting hemolytic activity of peptides with integrated feature learning. Journal of Bioinformatics and Computational Biology, 2021, 19, 2150021.	0.3	8
75	Tyrosine-Based Cross-Linking of Peptide Antigens to Generate Nanoclusters with Enhanced Immunogenicity: Demonstration Using the Conserved M2e Peptide of Influenza A. ACS Infectious Diseases, 2021, 7, 2723-2735.	1.8	5
76	Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS Applied Bio Materials, 2021, 4, 7342-7365.	2.3	14
77	A Comprehensive Computer Aided Vaccine Design Approach to Propose a Multi-Epitopes Subunit Vaccine against Genus Klebsiella Using Pan-Genomics, Reverse Vaccinology, and Biophysical Techniques. Vaccines, 2021, 9, 1087.	2.1	13

#	ARTICLE	IF	Citations
78	Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents Francisella tularensis and Burkholderia pseudomallei. Frontiers in Immunology, 2021, 12, 716676.	2.2	O
79	Role of Different Peptides for Cancer Immunotherapy. International Journal of Peptide Research and Therapeutics, 2021, 27, 2777-2793.	0.9	7
80	Recognition of Tumor-Associated Antigens and Immune Subtypes in Glioma for mRNA Vaccine Development. Frontiers in Immunology, 2021, 12, 738435.	2.2	13
82	Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. International Journal of Biological Macromolecules, 2021, 188, 855-862.	3.6	16
83	Optimization of dextran sulfate/poly-l-lysine based nanogels polyelectrolyte complex for intranasal ovalbumin delivery. Journal of Drug Delivery Science and Technology, 2021, 65, 102678.	1.4	10
84	HSymM-guided engineering of the immunodominant p53 transactivation domain putative peptide antigen for improved binding to its anti-p53 monoclonal antibody. Bioorganic and Medicinal Chemistry Letters, 2021, 51, 128341.	1.0	0
85	Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioactive Materials, 2022, 7, 167-180.	8.6	46
86	Immunoinformatics aided design of peptide-based vaccines against ebolaviruses. Vitamins and Hormones, 2021, 117, 157-187.	0.7	1
87	A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2. RSC Advances, 2021, 11, 20006-20035.	1.7	6
88	Brief Introduction of Measles Virus and Its Therapeutic Strategies. , 2021, , 503-530.		0
89	Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. Journal of Controlled Release, 2020, 328, 112-126.	4.8	35
90	Peptides to combat viral infectious diseases. Peptides, 2020, 134, 170402.	1.2	42
92	"Immunoinformatic Identification of T-Cell and B-Cell Epitopes From Giardia lamblia Immunogenic Proteins as Candidates to Develop Peptide-Based Vaccines Against Giardiasis― Frontiers in Cellular and Infection Microbiology, 2021, 11, 769446.	1.8	4
93	BCEPS: A Web Server to Predict Linear B Cell Epitopes with Enhanced Immunogenicity and Cross-Reactivity. Cells, 2021, 10, 2744.	1.8	21
94	Connecting MHC-l-binding motifs with HLA alleles via deep learning. Communications Biology, 2021, 4, 1194.	2.0	8
95	The Chemical Sciences' Advances on Coronavirus Disease 2019 (COVID-19). Asian Journal of Organic & Medicinal Chemistry, 2020, 5, 179-184.	0.1	0
96	Wellâ€Defined Mannosylated Polymer for Peptide Vaccine Delivery with Enhanced Antitumor Immunity. Advanced Healthcare Materials, 2022, 11, e2101651.	3.9	24
97	A Computational Search for Peptide Vaccines Using Novel Mathematical Descriptors of Sequences of Emerging Pathogens. Topics in Medicinal Chemistry, 2020, , 195-220.	0.4	2

#	Article	IF	CITATIONS
98	An integrated computational framework to design a multi-epitopes vaccine against Mycobacterium tuberculosis. Scientific Reports, 2021, 11, 21929.	1.6	18
99	New highly antigenic linear B cell epitope peptides from PvAMA-1 as potential vaccine candidates. PLoS ONE, 2021, 16, e0258637.	1.1	1
100	Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives. Vaccines, 2021, 9, 1278.	2.1	13
101	Immunomodulatory peptides—A promising source for novel functional food production and drug discovery. Peptides, 2022, 148, 170696.	1.2	39
102	Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782234.	2.0	7
103	Potential Immune Biomarker Candidates and Immune Subtypes of Lung Adenocarcinoma for Developing mRNA Vaccines. Frontiers in Immunology, 2021, 12, 755401.	2.2	13
104	Preparation of Trimethyl Chitosan-Based Polyelectrolyte Complexes for Peptide Subunit Vaccine Delivery. Methods in Molecular Biology, 2022, 2414, 141-149.	0.4	2
105	Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines, 2021, 9, 1341.	2.1	15
106	EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ, 2021, 9, e12548.	0.9	4
107	Advancement and Strategies for the Development of Peptide-drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence against Cancer Management. Current Cancer Drug Targets, 2022, 22, 286-311.	0.8	3
108	Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes. Immune Network, 2021, 21, e44.	1.6	3
109	NGIWY-Amide: A Bioinspired Ultrashort Self-Assembled Peptide Gelator for Local Drug Delivery Applications. Pharmaceutics, 2022, 14, 133.	2.0	7
110	Targeting the undruggable oncogenic KRAS: the dawn of hope. JCI Insight, 2022, 7, .	2.3	27
111	Active Humoral Response Reverts Tumorigenicity through Disruption of Key Signaling Pathway. Vaccines, 2022, 10, 163.	2.1	3
112	Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Review of Vaccines, 2022, 21, 337-353.	2.0	9
113	Peptide-Based Vaccines for Tuberculosis. Frontiers in Immunology, 2022, 13, 830497.	2.2	37
114	Physical mixture of a cyclic lipopeptide vaccine induced high titres of opsonic IgG antibodies against group A streptococcus. Biomaterials Science, 2021, 10, 281-293.	2.6	5
115	OUP accepted manuscript. Briefings in Bioinformatics, 2022, , .	3.2	11

#	Article	IF	CITATIONS
116	Selection and T-cell antigenicity of synthetic long peptides derived from SARS-CoV-2. Journal of General Virology, 2022, 103 , .	1.3	2
117	New Generation Vaccines for COVID-19 Based on Peptide, Viral Vector, Artificial Antigen Presenting Cell, DNA or mRNA. Avicenna Journal of Medical Biotechnology, 2022, 14, 30-36.	0.2	6
119	CoVac501, a self-adjuvanting peptide vaccine conjugated with TLR7 agonists, against SARS-CoV-2 induces protective immunity. Cell Discovery, 2022, 8, 9.	3.1	12
120	Immunotherapeutic approaches for HPV-caused cervical cancer. Advances in Protein Chemistry and Structural Biology, 2022, 129, 51-90.	1.0	2
121	Approaches to cancer vaccination., 2022,, 177-199.		0
122	Autoimmune Hepatitis Following Vaccination for SARS-Cov-2 in Korea: Coincidence or Autoimmunity?. Journal of Korean Medical Science, 2022, 37, e116.	1.1	18
123	Peptides for Vaccine Development. ACS Applied Bio Materials, 2022, 5, 905-944.	2.3	26
124	Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine, 2022, Volume 17, 869-900.	3.3	17
125	Ano 1 is a Prognostic Biomarker That is Correlated with Immune Infiltration in Colorectal Cancer. International Journal of General Medicine, 2022, Volume 15, 1547-1564.	0.8	2
126	Peptide-based delivery of therapeutics in cancer treatment. Materials Today Bio, 2022, 14, 100248.	2.6	24
127	Development of Peptide Biopharmaceuticals in Russia. Pharmaceutics, 2022, 14, 716.	2.0	4
128	Photoâ€Induced Construction of <i>N</i> â€Aryl Amides by Fe Catalysis. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
129	Low-Temperature Multiple Micro-Dispensing on Microneedles for Accurate Transcutaneous Smallpox Vaccination. Vaccines, 2022, 10, 561.	2.1	4
130	Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines, 2021, 9, 1490.	2.1	48
131	Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. International Journal of Peptide Research and Therapeutics, 2022, 28, 19.	0.9	28
132	Tailored Nanoparticles as Vaccine Components. Applied Sciences (Switzerland), 2021, 11, 11898.	1.3	0
133	Current Prospects in Peptide-Based Subunit Nanovaccines. Methods in Molecular Biology, 2022, 2412, 309-338.	0.4	6
134	Impact of Intrinsic and Extrinsic Factors on the Pharmacokinetics of Peptides: When Is the Assessment of Certain Factors Warranted?. Antibodies, 2022, 11, 1.	1.2	5

#	ARTICLE	IF	CITATIONS
135	Current view on novel vaccine technologies to combat human infectious diseases. Applied Microbiology and Biotechnology, 2022, 106, 25-56.	1.7	32
136	Self-assembled <scp>d</scp> -arginine derivatives based on click chemical reactions for intracellular codelivery of antigens and adjuvants for potential immunotherapy. Journal of Materials Chemistry B, 2022, 10, 3491-3500.	2.9	2
137	Construction of single-injection vaccine using new time-controlled release system., 2022, 137, 212812.		6
138	Immunoinformatics and Biophysics Approaches to Design a Novel Multi-Epitopes Vaccine Design against Staphylococcus auricularis. Vaccines, 2022, 10, 637.	2.1	0
139	Designing and characterization of a SARS-CoV-2 immunogen with receptor binding motif grafted on a protein scaffold: An epitope-focused vaccine approach. International Journal of Biological Macromolecules, 2022, 209, 1359-1367.	3 . 6	3
140	Multiple-Allele MHC Class II Epitope Engineering by a Molecular Dynamics-Based Evolution Protocol. Frontiers in Immunology, 2022, 13, 862851.	2.2	7
141	Efficacy and security of tumor vaccines for hepatocellular carcinoma: a systemic review and meta-analysis of the last 2 decades. Journal of Cancer Research and Clinical Oncology, 2022, , .	1.2	6
142	Amyloid-beta targeted therapeutic approaches for Alzheimer's disease: long road ahead. Current Drug Targets, 2022, 23, .	1.0	6
143	CD206+ tumor-associated macrophages cross-present tumor antigen and drive antitumor immunity. JCI Insight, 2022, 7, .	2.3	29
144	The Interaction of Anti-DNA Antibodies with DNA: Evidence for Unconventional Binding Mechanisms. International Journal of Molecular Sciences, 2022, 23, 5227.	1.8	2
145	A Review of Different Vaccines and Strategies to Combat COVID-19. Vaccines, 2022, 10, 737.	2.1	8
146	Universal influenza vaccine technologies and recombinant virosome production. Methods in Microbiology, 2022, , .	0.4	0
147	PDAUG: a Galaxy based toolset for peptide library analysis, visualization, and machine learning modeling. BMC Bioinformatics, 2022, 23, .	1.2	5
148	Proteome-Wide and Protein-Specific Multi-Epitope Vaccine Constructs Against the Rift Valley Fever Virus Outbreak Using Integrated Omics Approaches. Frontiers in Microbiology, 2022, 13, .	1.5	2
149	Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Bioscience Reports, 2022, 42, .	1.1	13
150	Alternative use of phage display: phage M13 can remain viable in the intestines of poultry without causing damage. AMB Express, 2022, 12, .	1.4	2
152	Highly Sterically Hindered Peptide Bond Formation between $\hat{l}\pm,\hat{l}\pm$ -Disubstituted $\hat{l}\pm$ -Amino Acids and <i>N</i> -Alkyl Cysteines Using $\hat{l}\pm,\hat{l}\pm$ -Disubstituted $\hat{l}\pm$ -Amidonitrile. Journal of the American Chemical Society, 2022, 144, 10145-10150.	6.6	5
153	The progress of peptide vaccine clinical trials in gynecologic oncology. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	6

#	Article	IF	CITATIONS
154	A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathogens, 2022, 18, e1010573.	2.1	6
155	A chemoenzymatic strategy for site-selective functionalization of native peptides and proteins. Science, 2022, 376, 1321-1327.	6.0	22
156	Potential linear B-cells epitope change to a helix structure in the spike of Omicron 21L or BA.2 predicts increased SARS-CoV-2 antibodies evasion. Virology, 2022, 573, 84-95.	1.1	1
158	Phenylboronic ester-modified polymeric nanoparticles for promoting TRP2 peptide antigen delivery in cancer immunotherapy. Drug Delivery, 2022, 29, 2029-2043.	2.5	5
159	Reverse Vaccinology and Immunoinformatic Assisted Designing of a Multi-Epitopes Based Vaccine Against Nosocomial Burkholderia cepacia. Frontiers in Microbiology, 0, 13, .	1.5	4
160	SARS-Arena: Sequence and Structure-Guided Selection of Conserved Peptides from SARS-related Coronaviruses for Novel Vaccine Development. Frontiers in Immunology, 0, 13, .	2.2	1
161	Landscape and progress of global peptide drugs in obstetrics and gynaecology. Journal of Peptide Science, 2022, 28, .	0.8	1
162	Potential association factors for developing effective peptide-based cancer vaccines. Frontiers in lmmunology, $0,13,1$	2.2	1
163	Toll-like receptor 9 agonists and combination therapies: strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. British Journal of Cancer, 2022, 127, 1584-1594.	2.9	21
164	An in silico approach to study the role of epitope order in the multi-epitope-based peptide (MEBP) vaccine design. Scientific Reports, 2022, 12, .	1.6	3
165	Dissection of Capsid Protein HPV 52 to Rationalize Vaccine Designs Using Computational Approaches Immunoinformatics and Molecular Docking. Asian Pacific Journal of Cancer Prevention, 2022, 23, 2243-2253.	0.5	2
166	Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. Science Advances, 2022, 8, .	4.7	10
167	Poly(hydrophobic Amino Acids) and Liposomes for Delivery of Vaccine against Group A Streptococcus. Vaccines, 2022, 10, 1212.	2.1	6
168	Vaccines platforms and COVID-19: what you need to know. Tropical Diseases, Travel Medicine and Vaccines, 2022, 8, .	0.9	16
169	Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. Journal of Controlled Release, 2022, 349, 844-875.	4.8	22
170	Nanobionics: From plant empowering to the infectious disease treatment. Journal of Controlled Release, 2022, 349, 890-901.	4.8	3
171	The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnology Advances, 2022, 60, 108029.	6.0	9
172	Nanomedicine based potentially transformative strategies for colon targeting of peptides: State-of-the-art. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112816.	2.5	6

#	Article	IF	CITATIONS
173	Mannose in vaccine delivery. Journal of Controlled Release, 2022, 351, 284-300.	4.8	13
174	Bioinspired functional molecular constructs. , 2023, , 207-254.		0
175	Development of a Catalytic Ester Activation Protocol for the Efficient Formation of Amide Bonds using an Arâ^'I/HFâ‹pyridine/ <i>m</i> CPBA System. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
177	Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus. ACS Nano, 2022, 16, 17466-17477.	7.3	2
178	Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody. Immune Network, 2022, 22, .	1.6	0
179	Bioinformatic Analysis of SARS-CoV-2 Genomes to Develop a Universal Coronavirus Vaccine. Journal of Biosciences and Medicines, 2022, 10, 84-97.	0.1	0
180	Influenza Vaccine: An Engineering Vision from Virological Importance to Production. Biotechnology and Bioprocess Engineering, 2022, 27, 740-764.	1.4	4
181	Core Proteomics and Immunoinformatic Approaches to Design a Multiepitope Reverse Vaccine Candidate against Chagas Disease. Vaccines, 2022, 10, 1669.	2.1	0
182	Tumor microenvironment and immunotherapy of oral cancer. European Journal of Medical Research, 2022, 27, .	0.9	24
183	CRM197-conjugated multi antigen dominant epitope for effective human cytomegalovirus vaccine development. International Journal of Biological Macromolecules, 2023, 224, 79-93.	3.6	5
184	Enantioselective Synthesis of Unnatural Carbamate-Protected α-Alkyl Amino Esters via N–H Bond Insertion Reactions. ACS Catalysis, 2022, 12, 13143-13148.	5 . 5	6
185	Rational designing of peptide-ligand conjugates-based immunotherapy for the treatment of complicated malaria. Life Sciences, 2022, 311, 121121.	2.0	6
186	Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. Journal of Controlled Release, 2022, 351, 907-922.	4.8	8
187	Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. IScience, 2022, 25, 105324.	1.9	2
188	Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. BioFactors, 2023, 49, 251-269.	2.6	15
189	Emerging Technologies in Diagnostic VirologyÂand Antiviral Strategies. , 2022, , 1545-1557.		0
190	Peptide Cross-Linking Using Tyrosine Residues Facilitated by an Exogenous Nickel–Histidine Complex: A Facile Approach for Enhancing Vaccine-Specific Immunogenicity. ACS Infectious Diseases, 2022, 8, 2389-2395.	1.8	1
191	Deep learning of protein sequence design of protein–protein interactions. Bioinformatics, 2023, 39, .	1.8	6

#	Article	IF	CITATIONS
192	Dual-Responsive Glycopolymers for Intracellular Codelivery of Antigen and Lipophilic Adjuvants. Molecular Pharmaceutics, 2022, 19, 4705-4716.	2.3	2
193	Adjuvant Treatment for Breast Cancer Patients Using Individualized Neoantigen Peptide Vaccination—A Retrospective Observation. Vaccines, 2022, 10, 1882.	2.1	1
194	Benefits of an Immunogenic Personalized Neoantigen Nanovaccine in Patients with Highâ€Risk Gastric/Gastroesophageal Junction Cancer. Advanced Science, 2023, 10, .	5 . 6	6
195	Developing Nextâ€Generation Proteinâ€Based Vaccines Using Highâ€Affinity Glycan Ligandâ€Decorated Glyconanoparticles. Advanced Science, 2023, 10, .	5. 6	5
196	Immunogenic evaluation of multi-epitope peptide-loaded PCPP microparticles as a vaccine candidate against Toxoplasma Gondii. Comparative Immunology, Microbiology and Infectious Diseases, 2023, 92, 101927.	0.7	0
197	Design of a chimeric protein composed of FimH, FyuA and CNF-1 virulence factors from uropathogenic Escherichia coli and evaluation its biological activity and immunogenicity in vitro and in vivo. Microbial Pathogenesis, 2023, 174, 105920.	1.3	0
198	Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. Materials Horizons, 2023, 10, 361-392.	6.4	21
199	Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics, 2022, 12, 2981.	1.3	4
200	Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines, 2022, 10, 2011.	2.1	20
201	The Role of Tumor-Associated Antigen HER2/neu in Tumor Development and the Different Approaches for Using It in Treatment: Many Choices and Future Directions. Cancers, 2022, 14, 6173.	1.7	3
202	Iron Acquisition Proteins of Pseudomonas aeruginosa as Potential Vaccine Targets: In Silico Analysis and In Vivo Evaluation of Protective Efficacy of the Hemophore HasAp. Vaccines, 2023, 11, 28.	2.1	2
203	A Thermodynamic Study on the Interaction between RH-23 Peptide and DMPC-Based Biomembrane Models. Membranes, 2022, 12, 1282.	1.4	0
204	Antibody epitope profiling of the KSHV LANA protein using VirScan. PLoS Pathogens, 2022, 18, e1011033.	2.1	3
205	Current progress in the development of prophylactic and therapeutic vaccines. Science China Life Sciences, 2023, 66, 679-710.	2.3	13
207	Supramolecular Self-Assembled Peptide-Based Nanostructures and Their Applications in Biomedicine. , 2022, , 241-271.		0
208	Role of Supramolecules in Vaccine Development. , 2022, , 301-317.		0
209	Polymeric Nanoparticles as a Selfâ€Adjuvanting Peptide Vaccine Delivery System: The Role of Shape. Advanced Functional Materials, 2023, 33, .	7.8	6
210	Multi-Epitope Vaccine Candidates Associated with Mannosylated Chitosan and LPS Conjugated Chitosan Nanoparticles Against Brucella Infection. Journal of Pharmaceutical Sciences, 2023, 112, 991-999.	1.6	2

#	Article	IF	Citations
211	Synthesis of Acyl Fluorides from Carboxylic Acids with KI/AgSCF ₃ for Efficient Amide and Peptide Synthesis. Advanced Synthesis and Catalysis, 2023, 365, 295-300.	2.1	3
212	Targeted Protein-Specific Multi-Epitope-Based Vaccine Designing against Human Cytomegalovirus by Using Immunoinformatics Approaches. Vaccines, 2023, 11, 203.	2.1	3
213	From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Frontiers in Chemistry, 0, 10 , .	1.8	1
214	Cell-free protein synthesis systems for vaccine design and production. Current Opinion in Biotechnology, 2023, 79, 102888.	3.3	0
215	Integration: Gospel for immune bioinformatician on epitope-based therapy. Frontiers in Immunology, 0, 14, .	2.2	2
216	Proteome-Wide Screening of Potential Vaccine Targets against Brucella melitensis. Vaccines, 2023, 11, 263.	2.1	8
217	Therapeutic Protein-Based Vaccines. , 2023, , 355-384.		6
218	Immunogenic multi-epitope-based vaccine development to combat cyclosporiasis of immunocompromised patients applying computational biology method. Experimental Parasitology, 2023, 248, 108497.	0.5	0
219	Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics, 2023, 15, 368.	2.0	12
220	Silk Fibroin Nanoparticles: A Biocompatible Multi-Functional Polymer for Drug Delivery. , 0, , .		1
221	Preclinical developments in the delivery of protein antigens for vaccination. Expert Opinion on Drug Delivery, 2023, 20, 367-384.	2.4	1
222	Peptide-based Self-assembly: Design, Bioactive Properties, and Its Applications. Current Pharmaceutical Design, 2023, 29, 640-651.	0.9	1
223	Insight on common forms of cutaneous head and neck carcinoma (Review). Molecular and Clinical Oncology, 2023, 18, .	0.4	2
224	Engineered antibody cytokine chimera synergizes with DNA-launched nanoparticle vaccines to potentiate melanoma suppression in vivo. Frontiers in Immunology, 0, 14 , .	2.2	1
225	Effect of Antigen Structure in Subunit Vaccine Nanoparticles on Humoral Immune Responses. ACS Biomaterials Science and Engineering, 2023, 9, 1296-1306.	2.6	6
226	Immunogenicity of peptideâ€based vaccine composed of epitopes from <i>Echinococcus granulosus</i> A <scp>rEg</scp> . <scp>P29</scp> . FASEB Journal, 2023, 37, .	0.2	2
227	Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds. Molecular Biotechnology, 0, , .	1.3	1
228	An Updated Review on Recent Advances in the Usage of Novel Therapeutic Peptides for Breast Cancer Treatment. International Journal of Peptide Research and Therapeutics, 2023, 29, .	0.9	2

#	Article	IF	Citations
229	Immune Gene Therapy of Cancer. , 2023, , 1-45.		0
230	The power of super-resolution microscopy in modern biomedical science. Advances in Colloid and Interface Science, 2023, 314, 102880.	7.0	4
231	Self-assembled nanomaterials as vaccines for COVID-19 and future pandemics., 2023,, 453-468.		0
233	Identification of peptide epitopes of the gp120 protein of HIV-1 capable of inducing cellular and humoral immunity. RSC Advances, 2023, 13, 9078-9090.	1.7	0
234	A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I. International Journal of Molecular Sciences, 2023, 24, 5972.	1.8	4
235	Precise Epitope Organization with Selfâ€adjuvant Framework Nucleic Acid for Efficient COVIDâ€19 Peptide Vaccine Construction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
236	Precise Epitope Organization with Selfâ€adjuvant Framework Nucleic Acid for Efficient COVIDâ€19 Peptide Vaccine Construction. Angewandte Chemie, 2023, 135, .	1.6	0
238	Combining Phage Display Technology with <i>In Silico</i> -Designed Epitope Vaccine to Elicit Robust Antibody Responses against Emerging Pathogen Tilapia Lake Virus. Journal of Virology, 2023, 97, .	1.5	6
240	A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines, 2023, 11, 792.	2.1	3
241	A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines, 2023, 11, 821.	2.1	4
242	Mimotope discovery as a tool to design a vaccine against Zika and dengue viruses. Biotechnology and Bioengineering, 2023, 120, 2658-2671.	1.7	2
243	A novel multi-component protein vaccine ECP001 containing a protein polypeptide antigen nPstS1 riching in T-cell epitopes showed good immunogenicity and protection in mice. Frontiers in Immunology, 0, 14 , .	2.2	2
244	Protective Efficacy of Multiple Epitope-Based Vaccine against Hyalomma anatolicum, Vector of Theileria annulata and Crimean–Congo Hemorrhagic Fever Virus. Vaccines, 2023, 11, 881.	2.1	1
250	Cancer immunotherapy. , 2023, , 681-741.		0
257	The role of vaccines in glioblastomaâ€"Updated clinical results. , 2023, , 505-513.		0
258	A Web-Based Method for the Identification of IL6-Based Immunotoxicity in Vaccine Candidates. Methods in Molecular Biology, 2023, , 317-327.	0.4	1
260	A Sample Guideline for Reverse Vaccinology Approach for the Development of Subunit Vaccine Using Varicella Zoster as a Model Disease. Methods in Molecular Biology, 2023, , 453-474.	0.4	0
264	Quasi-SMILES as a Tool for Peptide QSAR Modelling. Challenges and Advances in Computational Chemistry and Physics, 2023, , 269-294.	0.6	0

#	Article	IF	Citations
273	An idiosyncratic and imperative laconic view on peptide-based vaccines. AIP Conference Proceedings, 2023, , .	0.3	0
292	Peptide Nanostructured Materials as Drug Delivery Carriers. , 2023, , 401-429.		0
297	Recent advances in targeting the "undruggable―proteins: from drug discovery to clinical trials. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	11
300	Challenges in developing personalized neoantigen cancer vaccines. Nature Reviews Immunology, 2024, 24, 213-227.	10.6	6
302	Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397, 1311-1326.	1.4	0
310	Peptide and protein in vaccine delivery. , 2024, , 217-234.		0
314	Direct administration of human leucocyte antigen (dHLA) molecules into tumour sites: proposal for a new immunotherapy for cancer. , 2023, $1,\dots$		1
341	Site-selective editing of peptides <i>via</i> backbone modification. Organic Chemistry Frontiers, 2024, 11, 1623-1640.	2.3	0