Superstructure control of first-cycle voltage hysteresis

Nature 577, 502-508 DOI: 10.1038/s41586-019-1854-3

Citation Report

#	Article	IF	CITATIONS
1	Fundamental interplay between phase-transition kinetics and thermodynamics of manganese-based sodium layered oxides during cationic and anionic redox. Journal of Materials Chemistry A, 2020, 8, 21142-21150.	5.2	15
2	Naâ€lon Batteries—Approaching Old and New Challenges. Advanced Energy Materials, 2020, 10, 2002055.	10.2	229
3	High-Performance NaVO ₃ with Mixed Cationic and Anionic Redox Reactions for Na-Ion Battery Applications. Chemistry of Materials, 2020, 32, 8836-8844.	3.2	14
4	Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries. Energy & Fuels, 2020, 34, 13412-13426.	2.5	35
5	Vacancy-Enhanced Oxygen Redox Reversibility in P3-Type Magnesium-Doped Sodium Manganese Oxide Na _{0.67} Mg _{0.2} Mn _{0.8} O ₂ . ACS Applied Energy Materials, 2020, 3, 10423-10434.	2.5	17
6	Solid state chemistry for developing better metal-ion batteries. Nature Communications, 2020, 11, 4976.	5.8	125
7	Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li _{1.2} Ti _{0.4} Mn _{0.4} O ₂ cathode material revealed by solid-state NMR and EPR. Journal of Materials Chemistry A, 2020, 8, 16515-16526.	5.2	37
8	How inactive d0 transition metal controls anionic redox in disordered Li-rich oxyfluoride cathodes. Energy Storage Materials, 2020, 32, 253-260.	9.5	16
9	Kinetic Rejuvenation of Li-Rich Li-Ion Battery Cathodes upon Oxygen Redox. ACS Applied Energy Materials, 2020, 3, 7931-7943.	2.5	12
10	Superiority of native vacancies in activating anionic redox in P2-type Na2/3[Mn7/9Mg1/9â–¡1/9]O2. Nano Energy, 2020, 78, 105172.	8.2	40
11	Unraveling Na and F coupling effects in stabilizing Li, Mn-rich layered oxide cathodes via local ordering modification. Energy Storage Materials, 2020, 31, 459-469.	9.5	41
12	Tuning Both Anionic and Cationic Redox Chemistry of Li-Rich Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ via a "Three-in-One―Strategy. Chemistry of Materials, 2020, 32, 9404-9414.	3.2	27
13	First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nature Energy, 2020, 5, 777-785.	19.8	282
14	Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497.	15.6	219
15	Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Letters, 2020, 5, 3212-3220.	8.8	97
16	Pseudoâ€Bonding and Electricâ€Field Harmony for Liâ€Rich Mnâ€Based Oxide Cathode. Advanced Functional Materials, 2020, 30, 2004302	7.8	149
17	Defect and structural evolution under high-energy ion irradiation informs battery materials design for extreme environments. Nature Communications, 2020, 11, 4548.	5.8	28
18	A Co―and Niâ€Free P2/O3 Biphasic Lithium Stabilized Layered Oxide for Sodiumâ€ŀon Batteries and its Cycling Behavior. Advanced Functional Materials, 2020, 30, 2003364.	7.8	80

#	Article	IF	CITATIONS
19	Redox Chemistry and the Role of Trapped Molecular O ₂ in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes. Journal of the American Chemical Society, 2020, 142, 21799-21809.	6.6	77
20	Influence of dodecyl sulfate anions doped hydroxide precursor on enhanced electrochemical properties of LiNixCoyMn1-x-yO2 as lithium-ion battery cathodes. International Journal of Electrochemical Science, 2020, 15, 10157-10172.	0.5	2
21	Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide. Nature Communications, 2020, 11, 6342.	5.8	34
22	Exploring the Charge Compensation Mechanism of P2-Type Na0.6Mg0.3Mn0.7O2 Cathode Materials for Advanced Sodium-Ion Batteries. Energies, 2020, 13, 5729.	1.6	15
23	Local Redox Reaction of High Valence Manganese in Li2MnO3-Based Lithium Battery Cathodes. Cell Reports Physical Science, 2020, 1, 100061.	2.8	25
24	Design Rules for High-Valent Redox in Intercalation Electrodes. Joule, 2020, 4, 1369-1397.	11.7	80
25	Novel structurally-stable Na-rich Na ₄ V ₂ O ₇ cathode material with high reversible capacity by utilization of anion redox activity. Chemical Communications, 2020, 56, 8245-8248.	2.2	8
26	Realizing Complete Solidâ€Solution Reaction in High Sodium Content P2â€Type Cathode for Highâ€Performance Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 14511-14516.	7.2	142
27	Realizing Complete Solidâ€Solution Reaction in High Sodium Content P2â€Type Cathode for Highâ€Performance Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 14619-14624.	1.6	65
28	Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy, 2020, 76, 104997.	8.2	54
29	Full Energy Range Resonant Inelastic X-ray Scattering of O ₂ and CO ₂ : Direct Comparison with Oxygen Redox State in Batteries. Journal of Physical Chemistry Letters, 2020, 11, 2618-2623.	2.1	30
30	Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. Energy and Environmental Science, 2020, 13, 1492-1500.	15.6	60
31	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745.	5.2	101
32	Understanding the Origin of Higher Capacity for Ni-Based Disordered Rock-Salt Cathodes. Chemistry of Materials, 2020, 32, 3447-3461.	3.2	16
33	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	1.9	25
34	Structural and Thermodynamic Understandings in Mnâ€Based Sodium Layered Oxides during Anionic Redox. Advanced Science, 2020, 7, 2001263.	5.6	38
35	Oxygen-Based Anion Redox for Lithium Batteries. Accounts of Chemical Research, 2020, 53, 1436-1444.	7.6	21
36	Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies. Materials Today Energy, 2020, 17, 100474.	2.5	32

#	Article	IF	CITATIONS
37	Harbinger of hysteresis in lithium-rich oxides: Anionic activity or defect chemistry of cation migration. Journal of Power Sources, 2020, 471, 228335.	4.0	10
38	Toward High-Energy Batteries: High-Voltage Stability via Superstructure Control. Joule, 2020, 4, 296-298.	11.7	1
39	Smoothing the Surface and Improving the Electrochemical Properties of NaxMnO2 by a Wet Chemical Method. Nanomaterials, 2020, 10, 246.	1.9	0
40	Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: Structural evolution and anion redox. Journal of Power Sources, 2021, 481, 229139.	4.0	16
41	Phosphoric acid and thermal treatments reveal the peculiar role of surface oxygen anions in lithium and manganese-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 264-273.	5.2	26
42	Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries. Energy Storage Materials, 2021, 34, 682-707.	9.5	35
43	Rocksalt type Li2Nb0·15Mn0·85O3 without structure degradation or redox evolution upon cycling. Journal of Alloys and Compounds, 2021, 853, 156984.	2.8	4
44	Stabilizing Anionic Redox Chemistry in a Mnâ€Based Layered Oxide Cathode Constructed by Liâ€Deficient Pristine State. Advanced Materials, 2021, 33, e2004280.	11.1	67
45	Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering. Energy Storage Materials, 2021, 35, 99-107.	9.5	27
46	Elucidation of Active Oxygen Sites upon Delithiation of Li ₃ IrO ₄ . ACS Energy Letters, 2021, 6, 140-147.	8.8	12
47	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie, 2021, 133, 10975-10982.	1.6	10
48	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie - International Edition, 2021, 60, 10880-10887.	7.2	32
49	Exploring oxygen anion charge compensation mechanism in P3-type Na2/3+xLi1/6Mn5/6O2 cathode material by density function theory. Chemical Physics Letters, 2021, 762, 138016.	1.2	2
50	Anionic Redox Reactions in Cathodes for Sodiumâ€lon Batteries. ChemElectroChem, 2021, 8, 625-643.	1.7	22
51	Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies. Journal of Power Sources, 2021, 481, 229010.	4.0	14
52	Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy and Environmental Science, 2021, 14, 158-179.	15.6	224
53	Intelligent phase-transition MnO ₂ single-crystal shell enabling a high-capacity Li-rich layered cathode in Li-ion batteries. RSC Advances, 2021, 11, 12771-12783.	1.7	4
54	Enhanced ORR activity of A-site deficiency engineered BaCoO·4FeO·4ZrO·1YO·1O3-δ cathode in practical YSZ fuel cells. International Journal of Hydrogen Energy, 2021, 46, 5593-5603.	3.8	37

#	Article	IF	CITATIONS
55	Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials, 2021, 20, 353-361.	13.3	155
56	Could Irradiation Introduce Oxidized Oxygen Signals in Resonant Inelastic X-ray Scattering of Battery Electrodes?. Journal of Physical Chemistry Letters, 2021, 12, 1138-1143.	2.1	7
57	Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chemical Society Reviews, 2021, 50, 3990-4030.	18.7	43
58	Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy and Environmental Science, 2021, 14, 4858-4867.	15.6	29
59	Anionic redox reaction triggered by trivalent Al ³⁺ in P3-Na _{0.65} Mn _{0.5} Al _{0.5} O ₂ . Chemical Communications, 2021, 57, 2867-2870.	2.2	7
60	Oxide-based Cathode Materials for Li- and Na-ion Batteries. New Developments in NMR, 2021, , 159-210.	0.1	Ο
61	Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes. Journal of Physical Chemistry Letters, 2021, 12, 1195-1201.	2.1	5
62	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, 2021, 12, 13.	5.8	85
63	Designing positive electrodes with high energy density for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7407-7421.	5.2	34
64	Unlocking veiled oxygen redox in Na-based earth-abundant binary layered oxide. Journal of Materials Chemistry A, 2021, 9, 15179-15187.	5.2	10
65	Delocalized Metal–Oxygen π-Redox Is the Origin of Anomalous Nonhysteretic Capacity in Li-Ion and Na-Ion Cathode Materials. Journal of the American Chemical Society, 2021, 143, 1908-1916.	6.6	62
66	Electrochemical Utilization of Iron IV in the Li _{1.3} Fe _{0.4} Nb _{0.3} O ₂ Disordered Rocksalt Cathode. Batteries and Supercaps, 2021, 4, 771-777.	2.4	6
67	A Two-Step Oxidation Mechanism Controlled by Mn Migration Explains the First-Cycle Activation Behavior of Li2MnO3-Based Li-Excess Materials. Chemistry of Materials, 2021, 33, 1625-1636.	3.2	36
68	Boosting Reversibility of Mnâ€Based Tunnelâ€Structured Cathode Materials for Sodiumâ€Ion Batteries by Magnesium Substitution. Advanced Science, 2021, 8, 2004448.	5.6	26
69	Oxygen Redox Chemistry in Rechargeable Li-Ion and Na-Ion Batteries. Matter, 2021, 4, 490-527.	5.0	47
70	Structural origin of the high-voltage instability of lithium cobalt oxide. Nature Nanotechnology, 2021, 16, 599-605.	15.6	148
71	Whither Mn Oxidation in Mn-Rich Alkali-Excess Cathodes?. ACS Energy Letters, 2021, 6, 1055-1064.	8.8	20
72	Na/Al Codoped Layered Cathode with Defects as Bifunctional Electrocatalyst for Highâ€Performance Liâ€Ion Battery and Oxygen Evolution Reaction, Small, 2021, 17, e2005605.	5.2	31

#		IE	CITATIONS
π	Highâ€ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in		107
73	sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 694-704.	8.5	107
74	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie, 2021, 133, 10144-10151.	1.6	2
75	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie - International Edition, 2021, 60, 10056-10063.	7.2	5
76	Utilizing Oxygen Redox in Layered Cathode Materials from Multiscale Perspective. Advanced Energy Materials, 2021, 11, 2003227.	10.2	39
77	The role of O2 in O-redox cathodes for Li-ion batteries. Nature Energy, 2021, 6, 781-789.	19.8	162
78	Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials. , 2021, 3, 433-441.		11
79	<pre><scp>Alâ€substituted</scp> stableâ€layered <scp> P2â€Na ₀ </scp> _. <scp> ₆ Li ₀ </scp> _. <scp> ₁₅ Al ₀ </scp> _.. _. Al ₀ _{.11338-11345.}</pre>	2.2	10
80	Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. Joule, 2021, 5, 720-736.	11.7	56
81	Unlocking the Intrinsic Origin of the Reversible Oxygen Redox Reaction in Sodiumâ€Based Layered Oxides. ChemElectroChem, 2021, 8, 1464-1472.	1.7	14
82	Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials. Applied Sciences (Switzerland), 2021, 11, 2791.	1.3	6
83	Wholeâ€Voltageâ€Range Oxygen Redox in P2‣ayered Cathode Materials for Sodiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2008194.	11.1	108
84	Recent progress in the design of anionic redox in layered oxide electrodes: A mini review. Electrochemistry Communications, 2021, 124, 106969.	2.3	2
85	Cycling mechanism of Li2MnO3: Li–CO2Âbatteries and commonality on oxygen redox in cathode materials. Joule, 2021, 5, 975-997.	11.7	88
86	Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nature Communications, 2021, 12, 2256.	5.8	183
87	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.	7.3	77
88	Exploring the Possible Anionic Redox Mechanism in Li-Rich Transition-Metal Carbodiimides. Journal of Physical Chemistry C, 2021, 125, 8479-8487.	1.5	2
89	Ionâ€Exchange: A Promising Strategy to Design Liâ€Rich and Liâ€Excess Layered Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2022, 12, 2003972.	10.2	49
90	In Situ/Operando (Soft) Xâ€ray Spectroscopy Study of Beyond Lithiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 139-157.	7.3	26

#	Article	IF	CITATIONS
91	Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Materials, 2021, 37, 87-93.	9.5	31
92	Determining the Criticality of Liâ€Excess for Disorderedâ€Rocksalt Liâ€Ion Battery Cathodes. Advanced Energy Materials, 2021, 11, 2100204.	10.2	31
93	Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2. Joule, 2021, 5, 1267-1280.	11.7	47
94	Boosting oxygen reduction activity and enhancing stability through structural transformation of layered lithium manganese oxide. Nature Communications, 2021, 12, 3136.	5.8	25
95	Pinning Effect Enhanced Structural Stability toward a Zeroâ€ S train Layered Cathode for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 13366-13371.	7.2	70
96	Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nature Communications, 2021, 12, 3071.	5.8	81
97	Pinning Effect Enhanced Structural Stability toward a Zeroâ€ S train Layered Cathode for Sodiumâ€ I on Batteries. Angewandte Chemie, 2021, 133, 13478-13483.	1.6	17
98	Oxygen anionic redox activated high-energy cathodes: Status and prospects. ETransportation, 2021, 8, 100118.	6.8	34
99	Thermally Aged Li–Mn–O Cathode with Stabilized Hybrid Cation and Anion Redox. Nano Letters, 2021, 21, 4176-4184.	4.5	6
100	Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes. Nature Communications, 2021, 12, 2975.	5.8	53
101	Electrochemical ion insertion from the atomic to the device scale. Nature Reviews Materials, 2021, 6, 847-867.	23.3	84
102	Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nature Energy, 2021, 6, 642-652.	19.8	106
103	Unveiling Oxygen Redox Activity in P2-Type Na _{<i>x</i>} Ni _{0.25} Mn _{0.68} O ₂ High-Energy Cathode for Na-Ion Batteries. ACS Energy Letters, 2021, 6, 2470-2480.	8.8	32
104	Inhibiting Oxygen Release from Liâ€rich, Mnâ€rich Layered Oxides at the Surface with a Solution Processable Oxygen Scavenger Polymer. Advanced Energy Materials, 2021, 11, 2100552.	10.2	64
105	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
106	Structural Aspects of P2â€Type Na _{0.67} Mn _{0.6} Ni _{0.2} Li _{0.2} O ₂ (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodiumâ€on Batteries. Advanced Functional Materials, 2021, 31, 2102939	7.8	35
107	Recent Advances in Electrode Materials with Anion Redox Chemistry for Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	4.7	40
108	Chemical Modulation of Local Transition Metal Environment Enables Reversible Oxygen Redox in Mn-Based Layered Cathodes. ACS Energy Letters, 2021, 6, 2882-2890.	8.8	15

#	Article	IF	CITATIONS
109	New insights on ultrafast Na[solv]+ coinserted graphite driven by an electric field. Science China Materials, 2021, 64, 2967-2975.	3.5	3
110	A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities. Nanotechnology, 2021, 32, 422501.	1.3	11
111	Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. Journal of Power Sources, 2021, 503, 230048.	4.0	20
112	Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. National Science Review, 2022, 9, nwab146.	4.6	27
113	Ultralow-strain Ti substituted Mn-vacancy layered oxides with enhanced stability for sodium-ion batteries. Journal of Energy Chemistry, 2021, 63, 351-357.	7.1	22
114	Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR. Energy Storage Materials, 2021, 39, 60-69.	9.5	35
115	Enhanced Activity and Reversibility of Anionic Redox by Tuning Lithium Vacancies in Li-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 39480-39490.	4.0	22
116	Highly Reversible Anion Redox of Manganeseâ€Based Cathode Material Realized by Electrochemical Ion Exchange for Lithiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2103594.	7.8	22
117	Intrinsic Origin of Nonhysteretic Oxygen Capacity in Conventional Na-Excess Layered Oxides. ACS Applied Materials & Interfaces, 2021, 13, 46620-46626.	4.0	5
118	Soft X-ray spectroscopy of light elements in energy storage materials. Energy Storage Materials, 2021, 40, 72-95.	9.5	10
119	Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Materials, 2021, 40, 51-71.	9.5	61
120	Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode. Cell Reports Physical Science, 2021, 2, 100547.	2.8	23
121	Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nature Chemistry, 2021, 13, 1070-1080.	6.6	75
122	Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Materials, 2021, 41, 581-587.	9.5	53
123	Inherent inhibition of oxygen loss by regulating superstructural motifs in anionic redox cathodes. Nano Energy, 2021, 88, 106252.	8.2	32
124	Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. Energy Storage Materials, 2021, 42, 209-218.	9.5	29
125	Improved electrocatalytic activity of hexagonal prisms Fe3O4 derived from metal-organic framework by covering dendritic-shaped carbon layer in Li–O2 battery. Composites Part B: Engineering, 2021, 226, 109354.	5.9	11
126	Utilizing the charge-transfer model to design promising electrocatalysts. Current Opinion in Electrochemistry, 2021, 30, 100805.	2.5	4

#	Article	IF	Citations
127	Identifying the effect of fluorination on cation and anion redox activity in Mn based cation-disordered cathode. Journal of Colloid and Interface Science, 2022, 607, 1333-1342.	5.0	5
128	Li-rich layered oxides: Structure, capacity and voltage fading mechanisms and solving strategies. Particuology, 2022, 61, 1-10.	2.0	21
129	Chemomechanics in Ni–Mn binary cathode for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24290-24298.	5.2	6
130	Rational design of Ti-based oxygen redox layered oxides for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 11762-11770.	5.2	11
131	Nonpolarizing oxygen-redox capacity without O-O dimerization in Na2Mn3O7. Nature Communications, 2021, 12, 631.	5.8	62
132	Decoupling the Voltage Hysteresis of Liâ€Rich Cathodes: Electrochemical Monitoring, Modulation Anionic Redox Chemistry and Theoretical Verifying. Advanced Functional Materials, 2021, 31, .	7.8	59
133	Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution. ACS Applied Materials & Interfaces, 2021, 13, 360-369.	4.0	38
134	Reversible densification in nano-Li ₂ MnO ₃ cation disordered rock-salt Li-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 10998-11010.	5.2	15
135	Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries. IOP SciNotes, 2020, 1, 024805.	0.4	5
136	The rise of X-ray spectroscopies for unveiling the functional mechanisms in batteries. Physical Chemistry Chemical Physics, 2021, 23, 23445-23465.	1.3	13
137	Coexistence of (O ₂) ^{<i>n</i>â^'} and Trapped Molecular O ₂ as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. Journal of the American Chemical Society, 2021, 143, 18652-18664.	6.6	55
138	High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature. Nano Research, 2022, 15, 3170-3177.	5.8	11
139	Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2â€⊺ype Manganeseâ€Rich Sodium Cathodes. Advanced Materials, 2021, 33, e2107141.	11.1	34
140	Mitigating the Kinetic Hindrance of Singleâ€Crystalline Niâ€Rich Cathode via Surface Gradient Penetration of Tantalum. Angewandte Chemie, 2021, 133, 26739-26743.	1.6	14
141	Mitigating the Kinetic Hindrance of Singleâ€Crystalline Niâ€Rich Cathode via Surface Gradient Penetration of Tantalum. Angewandte Chemie - International Edition, 2021, 60, 26535-26539.	7.2	80
142	Interface stabilization of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether to high-voltage Li-rich Mn-based layered cathode materials. Rare Metals, 2022, 41, 822-829.	3.6	9
143	Unveiling Sodium Ion Pollution in Spray-Dried Precursors and Its Implications for the Green Upcycling of Spent Lithium-Ion Batteries. Environmental Science & Technology, 2021, 55, 14897-14905.	4.6	17
144	A symmetric sodium-ion battery based on P2-Na0.67[ZnMn1-]O2 as both positive and negative electrode materials. Electrochimica Acta, 2021, 399, 139421.	2.6	8

#	Article	IF	CITATIONS
145	Selective Anionic Redox and Suppressed Structural Disordering Enabling Highâ€Energy and Longâ€Life Liâ€Rich Layeredâ€Oxide Cathode. Advanced Energy Materials, 2021, 11, 2102311.	10.2	25
146	rGO/VNTs as Cathodes for High Performance Sodium Ion Batteries with Good Cycling Performance. Electronic Materials Letters, 0, , .	1.0	0
147	Anionic Redox Regulated via Metal–Ligand Combinations in Layered Sulfides. Advanced Materials, 2022, 34, e2107353.	11.1	11
148	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	4.6	12
149	Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives. Advanced Materials, 2022, 34, e2106171.	11.1	97
150	Restraining Oxygen Release and Suppressing Structure Distortion in Singleâ€Crystal Liâ€Rich Layered Cathode Materials. Advanced Functional Materials, 2022, 32, 2110295.	7.8	62
151	On the Origin of Reversible and Irreversible Reactions in LiNi _x Co _{(1â^'x)/2} Mn _{(1â^'x)/2} O ₂ . Journal of the Electrochemical Society, 2021, 168, 120533.	1.3	15
152	Air/water/temperature-stable cathode for all-climate sodium-ion batteries. Cell Reports Physical Science, 2021, 2, 100665.	2.8	86
153	Square-Scheme Electrochemistry in Battery Electrodes. Accounts of Materials Research, 2022, 3, 33-41.	5.9	6
154	Na _{2.4} Al _{0.4} Mn _{2.6} O ₇ anionic redox cathode material for sodium-ion batteries – a combined experimental and theoretical approach to elucidate its charge storage mechanism. Journal of Materials Chemistry A, 2022, 10, 7341-7356.	5.2	8
155	Using photoelectron spectroscopy to measure resonant inelastic X-ray scattering: a computational investigation. Journal of Synchrotron Radiation, 2022, 29, 202-213.	1.0	0
156	Multidimensional VO2 nanotubes/Ti3C2 MXene composite for efficient electrochemical lithium/sodium-ion storage. Journal of Power Sources, 2022, 521, 230946.	4.0	14
157	Unlocking the origin of triggering hysteretic oxygen capacity in divalent species incorporated O-type sodium layered-oxide cathodes. Energy Storage Materials, 2022, 45, 432-441.	9.5	7
158	Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode. Energy Storage Materials, 2022, 45, 422-431.	9.5	23
159	Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature Communications, 2022, 13, 436.	5.8	29
160	Elucidating the Effect of Borate Additive in Highâ€Voltage Electrolyte for Liâ€Rich Layered Oxide Materials. Advanced Energy Materials, 2022, 12, .	10.2	38
161	Mechanisms and applications of layer/spinel phase transition in Li- and Mn-rich cathodes for lithium-ion batteries. Rare Metals, 2022, 41, 1456-1476.	3.6	41
162	Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chemical Science, 2022, 13, 726-736.	3.7	54

#	Article	IF	CITATIONS
163	Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 134944.	6.6	11
164	Detection of trapped molecular O ₂ in a charged Li-rich cathode by Neutron PDF. Energy and Environmental Science, 2022, 15, 376-383.	15.6	26
165	Adjusting Oxygen Redox Reaction and Structural Stability of Li- and Mn-Rich Cathodes by Zr-Ti Dual-Doping. ACS Applied Materials & Interfaces, 2022, 14, 5308-5317.	4.0	21
166	Enabling Anionic Redox Stability of P2â€Na _{5/6} Li _{1/4} Mn _{3/4} O ₂ by Mg Substitution. Advanced Materials, 2022, 34, e2105404.	11.1	46
167	Tuning Bulk O ₂ and Nonbonding Oxygen State for Reversible Anionic Redox Chemistry in P2‣ayered Cathodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
168	Tuning Bulk O2 and Nonbonding Oxygen State for Reversible Anionic Redox Chemistry in P2‣ayered Cathodes. Angewandte Chemie, 0, , .	1.6	2
169	Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nature Reviews Materials, 2022, 7, 522-540.	23.3	92
170	Cationic Vacancies in Anatase (TiO ₂): Synthesis, Defect Characterization, and Ion-Intercalation Properties. Accounts of Chemical Research, 2022, 55, 696-706.	7.6	13
171	Enabling Stable and Nonhysteretic Oxygen Redox Capacity in Liâ€Excess Na Layered Oxides. Advanced Energy Materials, 2022, 12, .	10.2	18
172	Reversible and Irreversible Redox Processes in Li-Rich Layered Oxides. Chemistry of Materials, 2021, 33, 9534-9545.	3.2	18
173	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	11.5	44
174	Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na _{4/7} [â–¡ _{1/7} Ti _{1/7} Mn _{5/7}]O ₂ in sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 9941-9953.	5.2	25
175	Status of Li(Na)-based anionic redox materials for better batteries. , 2023, , 6-45.		4
176	Highly ÂStableÂSurface and Structural Origin for Lithium-Rich Layered Oxide Cathode Materials. SSRN Electronic Journal, 0, , .	0.4	0
177	Lithium and Sodium Layered Oxide Cathodes for Secondary Batteries: Structural and Electronic Considerations. , 2022, , .		0
178	I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. Journal of Synchrotron Radiation, 2022, 29, 563-580.	1.0	30
179	Correlating the Voltage Hysteresis in Li- and Mn-Rich Layered Oxides to Reversible Structural Changes by Using X-ray and Neutron Powder Diffraction. Journal of the Electrochemical Society, 2022, 169, 020554.	1.3	3
180	Layered Sodium Titanium Trichalcogenide Na ₂ TiCh ₃ Framework (Ch = S, Se): A Rich Crystal and Electrochemical Chemistry. Chemistry of Materials, 2022, 34, 2382-2392.	3.2	6

#	Article	IF	CITATIONS
181	Unblocking Oxygen Charge Compensation for Stabilized Highâ€Voltage Structure in P2â€Type Sodiumâ€Ion Cathode. Advanced Science, 2022, 9, e2200498.	5.6	32
182	Anion Doping for Layered Oxides with a Solid-Solution Reaction for Potassium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 13379-13387.	4.0	11
183	Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nature Materials, 2022, 21, 664-672.	13.3	89
184	Configurationâ€dependent anionic redox in cathode materials. , 2022, 1, .		28
185	Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nature Communications, 2022, 13, 1123.	5.8	81
186	Oxygen Redox Intercalation Cathodes: The Fundamentals and Strategies to Resolve the Challenges. ACS Applied Energy Materials, 2022, 5, 4522-4535.	2.5	1
187	Modulating the Voltage Decay and Cationic Redox Kinetics of Liâ€Rich Cathodes via Controlling the Local Electronic Structure. Advanced Functional Materials, 2022, 32, .	7.8	14
188	Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes. Advanced Materials, 2022, 34, e2201152.	11.1	49
189	Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering. Nano Materials Science, 2022, 4, 322-338.	3.9	24
190	Stable electronic structure related with Mn4+Oâ^• coupling determines the anomalous nonhysteretic behavior in Na2Mn3O7. Energy Storage Materials, 2022, 48, 290-296.	9.5	16
191	New insights to build Na+/vacancy disordering for high-performance P2-type layered oxide cathodes. Nano Energy, 2022, 97, 107207.	8.2	31
192	Highly stable surface and structural origin for lithium-rich layered oxide cathode materials. Nano Energy, 2022, 98, 107169.	8.2	17
193	Multiscale computations and artificial intelligent models of electrochemical performance in Liâ€ion battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	6
194	Chemical Design of IrS ₂ Polymorphs to Understand the Charge/Discharge Asymmetry in Anionic Redox Systems. Chemistry of Materials, 2022, 34, 325-336.	3.2	1
195	Importance of Superstructure in Stabilizing Oxygen Redox in P3â€Na _{0.67} Li _{0.2} Mn _{0.8} O ₂ . Advanced Energy Materials, 2022, 12, .	10.2	25
196	Lithium-Rich O2-Type Li _{0.66} [Li _{0.22} Ru _{0.78}]O ₂ Positive Electrode Material. Journal of the Electrochemical Society, 2022, 169, 040536.	1.3	2
197	Hysteresis‣uppressed Reversible Oxygenâ€Redox Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	42
198	Enhanced Cycling Stability in the Anion Redox Material P3â€Type Znâ€Substituted Sodium Manganese Oxide. ChemElectroChem, 2022, 9,	1.7	6

#	Article	IF	CITATIONS
199	Firstâ€principles insights on anion redox activity in Na <i>_x</i> Fe _{1/8} Ni _{1/8} Mn _{3/4} O ₂ : Toward efficient highâ€energy cathodes for Naâ€ion batteries. Journal of the American Ceramic Society, 2023, 106, 109-119.	1.9	5
200	Access to Ru(IV)–Ru(V) and Ru(V)–Ru(VI) Redox in Layered Li ₇ RuO ₆ via Intercalation Reactions. Chemistry of Materials, 2022, 34, 3724-3735.	3.2	3
201	Determining Factors in Triggering Hysteretic Oxygen Capacities in Lithium-Excess Sodium Layered Oxides. ACS Applied Materials & Interfaces, 2022, 14, 19515-19523.	4.0	1
202	An orbital principle to design P2-Na _{<i>x</i>} MO ₂ cathode materials for sodium-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 13201-13209.	1.3	4
203	å±,çŠ¶æ°§åŒ–ç‰©åŠæ™®é²å£«è"类似物在é'离å电æ±çš"ç"ç©¶èį›å±•. Scientia Sinica Chimica, 2	0222, .	0
204	Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides. Joule, 2022, 6, 1049-1065.	11.7	13
205	Unravelling the Nature of the Intrinsic Complex Structure of Binaryâ€Phase Na‣ayered Oxides. Advanced Materials, 2022, 34, e2202137.	11.1	21
206	Inhibiting Mn Migration by Sbâ€Pinning Transition Metal Layers in Lithiumâ€Rich Cathode Material for Stable Highâ€Capacity Properties. Small, 2022, 18, e2200713.	5.2	13
207	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodiumâ€lon Batteries Operated at â^40°C. Advanced Materials, 2022, 34, e2202873.	11.1	28
208	Correlation of Oxygen Anion Redox Activity to Inâ€Plane Honeycomb Cation Ordering in Na _{ <i>x</i>} Ni _{<i>y</i>} Mn _{1â^' <i>y</i>} O ₂ Cathodes. Advanced Energy and Sustainability Research, 0, , 2200027.	2.8	3
209	Quantification of charge compensation in lithium- and manganese-rich Li-ion cathode materials by x-ray spectroscopies. Materials Today Physics, 2022, 24, 100687.	2.9	2
210	Coincident formation of trapped molecular O2 in oxygen-redox-active archetypical Li 3d oxide cathodes unveiled by EPR spectroscopy. Energy Storage Materials, 2022, 50, 55-62.	9.5	11
211	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41
212	Kinetic square scheme in oxygen-redox battery electrodes. Energy and Environmental Science, 2022, 15, 2591-2600.	15.6	21
213	Another view of oxygen in cathodes for high energy batteries. Joule, 2022, 6, 946-949.	11.7	0
214	In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials. Journal of Materials Research, 2022, 37, 3146-3168.	1.2	21
215	Harnessing the volume expansion of metal selenide anode by composition engineering to achieve ultrastable sodium storage. Journal of Power Sources, 2022, 540, 231636.	4.0	3
216	Synthesis, Structure, Electrochemical Mechanisms, and Atmospheric Stability of Mn-Based Layered Oxide Cathodes for Sodium Ion Batteries. Accounts of Materials Research, 2022, 3, 709-720.	5.9	32

#	Article	IF	CITATIONS
217	Structural Origin of Suppressed Voltage Decay in Singleâ€Crystalline Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Cathodes. Small, 2022, 18, .	5.2	18
218	A theoretical framework for oxygen redox chemistry for sustainable batteries. Nature Sustainability, 2022, 5, 708-716.	11.5	23
219	Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li ₃ NbO ₄ –NiO Binary System. ACS Central Science, 2022, 8, 775-794.	5.3	10
220	Capturing surface interlayer cation migration in Na0.6[Li0.2Mn0.8]O2 layered cathode materials for sodium battery. Ceramics International, 2022, 48, 25642-25646.	2.3	2
221	Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, 2022, 7, 808-817.	19.8	55
222	Unified Picture of (Non)Hysteretic Oxygen Capacity in O3â€Type Sodium 3 <i>d</i> Layered Oxides. Advanced Energy Materials, 2022, 12, .	10.2	5
223	Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a Highâ€Capacity Manganese Oxide Cathode. Advanced Materials, 2022, 34, .	11.1	15
224	Physicochemical Screen Effect of Li Ions in Oxygen Redox Cathodes for Advanced Sodium-Ion Batteries. Chemistry of Materials, 2022, 34, 5971-5979.	3.2	6
225	Toward Emerging Sodiumâ€Based Energy Storage Technologies: From Performance to Sustainability. Advanced Energy Materials, 2022, 12, .	10.2	33
226	Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7, 718-725.	19.8	137
227	Ï€-type orbital hybridization and reactive oxygen quenching induced by Se-doping for Li-rich Mn-based oxide cathode. Energy Storage Materials, 2022, 51, 671-682.	9.5	15
228	Lessons Learned from Long-Term Cycling Experiments with Pouch Cells with Li-Rich and Mn-Rich Positive Electrode Materials. Journal of the Electrochemical Society, 2022, 169, 060530.	1.3	2
229	Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodiumâ€ion batteries. , 2022, 1, 68-92.		25
230	Activating Oxygen Redox in Layered Na _x MnO ₂ to Suppress Intrinsic Deficient Behavior and Enable Phaseâ€Transitionâ€Free Sodium Ion Cathode. Advanced Functional Materials, 2022, 32, .	7.8	25
231	Anionic redox reaction mechanism in Na-ion batteries. Chinese Physics B, 2022, 31, 098801.	0.7	3
232	Dual Honeycombâ€Superlattice Enables Doubleâ€High Activity and Reversibility of Anion Redox for Sodiumâ€Ion Battery Layered Cathodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
233	Ion Substitution Strategy of Manganeseâ€Based Layered Oxide Cathodes for Advanced and Lowâ€Cost Sodium Ion Batteries. Chemical Record, 2022, 22, .	2.9	18
234	Anionic Redox Chemistry for Sodium-Ion Batteries: Mechanisms, Advances, and Challenges. Energy & amp; Fuels, 2022, 36, 8081-8095.	2.5	13

# 235	ARTICLE Dual Honeycombâ€Superlattice Enables Doubleâ€High Activity and Reversibility of Anion Redox for Sodiumâ€Ion Battery Layered Cathodes. Angewandte Chemie, 2022, 134, .	IF 1.6	CITATIONS 3
236	Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. Journal of Colloid and Interface Science, 2022, 626, 1062-1069.	5.0	26
237	Precisely modulating the structural stability and redox potential of sodium layered cathodes through the synergetic effect of co-doping strategy. Energy Storage Materials, 2022, 52, 10-18.	9.5	26
238	Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 35822-35832.	4.0	7
239	Modulation of Redox Chemistry of Na ₂ Mn ₃ O ₇ by Selective Boron Doping Prompted by Na Vacancies. ACS Applied Materials & Interfaces, 2022, 14, 38769-38777.	4.0	7
240	Achieving high-energy-density lithium-ion batteries through oxygen redox of cathode: From fundamentals to applications. Applied Physics Letters, 2022, 121, .	1.5	4
241	Stabilizing lattice oxygen in slightly Li-enriched nickel oxide cathodes toward high-energy batteries. CheM, 2022, 8, 2817-2830.	5.8	29
242	Stabilizing Interfacial Reactions for Stable Cycling of Highâ€Voltage Sodium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	19
243	Building interface bonding and shield for stable Li-rich Mn-based oxide cathode. Energy Storage Materials, 2022, 52, 736-745.	9.5	8
244	Rational design of dual catalysts towards efficient polysulfides conversion for high performance Li–S batteries. Journal of Power Sources, 2022, 545, 231950.	4.0	7
245	Polarly modulated solvent strategy for high-voltage cathode materials. Chemical Engineering Journal, 2022, 450, 138318.	6.6	3
246	Engineering d-p orbital hybridization for high-stable lithium manganate cathode. Chemical Engineering Journal, 2023, 451, 138511.	6.6	8
247	Rigid-spring-network in P2-type binary Na layered oxides for stable oxygen redox. Energy Storage Materials, 2022, 53, 340-351.	9.5	10
248	Gradational anionic redox enabling high-energy P2-type Na-layered oxide cathode. Chemical Engineering Journal, 2023, 451, 138883.	6.6	9
249	An interactive design for sustainable oxygen capacity in alkali-ion batteries. Energy and Environmental Science, 2022, 15, 4554-4560.	15.6	4
250	Electrochemical Activity Regulating by Strain Control to Achieve High-Performance Potassium-Ion-Based Dual-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
251	Charge Distribution Controls Onâ€Target Separation of Low Nucleophilicity Anions in Layered Double Hydroxides. Advanced Materials Interfaces, 2022, 9, .	1.9	2
252	Highâ€Entropy and Superstructureâ€Stabilized Layered Oxide Cathodes for Sodiumâ€lon Batteries. Advanced Energy Materials, 2022, 12,	10.2	51

#	Article	IF	CITATIONS
253	Recent Progress in Developing a LiOHâ€Based Reversible Nonaqueous Lithium–Air Battery. Advanced Materials, 2023, 35, .	11.1	7
254	Iron Sulfide Na ₂ FeS ₂ as Positive Electrode Material with High Capacity and Reversibility Derived from Anion–Cation Redox in Allâ€Solidâ€State Sodium Batteries. Small, 2022, 18, .	5.2	7
255	Redox Evolution of Li-Rich Layered Cathode Materials. Batteries, 2022, 8, 132.	2.1	10
256	Hydrogenâ€Bond Reinforced Superstructural Manganese Oxide As the Cathode for Ultra‣table Aqueous Zinc Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	52
257	Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes. Nature Communications, 2022, 13, .	5.8	31
258	Superstructure Variation and Improved Cycling of Anion Redox Active Sodium Manganese Oxides Due to Doping by Iron. Advanced Energy Materials, 2022, 12, .	10.2	13
259	Effect of Tiâ€ S ubstitution on the Properties of P3 Structure Na _{2/3} Mn _{0.8} Li _{0.2} O ₂ Showing a Ribbon Superlattice. ChemElectroChem, 2022, 9, .	1.7	2
260	Effect of Cu substitution on anion redox behaviour in P3-type sodium manganese oxides. JPhys Energy, 2022, 4, 044006.	2.3	2
261	¹⁷ O NMR Spectroscopy in Lithium-Ion Battery Cathode Materials: Challenges and Interpretation. Journal of the American Chemical Society, 2022, 144, 18714-18729.	6.6	6
262	Correlating Mg Displacement with Topologically Regulated Lattice Oxygen Redox in Na-Ion Layered Oxide Cathodes. Chemistry of Materials, 2022, 34, 9240-9250.	3.2	9
263	Understanding voltage hysteresis and decay during anionic redox reaction in layered transition metal oxide cathodes: A critical review. Nano Research, 2023, 16, 3766-3780.	5.8	8
264	Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries. Applied Surface Science, 2023, 608, 155097.	3.1	6
265	Atomic-scale insight into the lattice volume plunge of Li _{<i>x</i>} CoO ₂ upon deep delithiation. Energy Advances, 2023, 2, 103-112.	1.4	2
266	First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries. Journal of Central South University, 2022, 29, 2930-2939.	1.2	2
267	Effect of Cu Substitution in P′2- and P2-Type Sodium Manganese-Based Oxides. ACS Applied Energy Materials, 2022, 5, 12999-13010.	2.5	3
268	Fluorinated Rocksalt Cathode with Ultraâ€high Active Li Content for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
269	Unraveling Reversible Redox Chemistry and Structural Stability in Sn-Doped Li-Rich Layered Oxide Cathodes. ACS Energy Letters, 2022, 7, 3989-3996.	8.8	3
270	A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Nature Communications, 2022, 13, .	5.8	15

#	Article	IF	CITATIONS
271	Detailed Structural and Electrochemical Comparison between High Potential Layered P2-NaMnNi and Doped P2-NaMnNiMg Oxides. ACS Applied Energy Materials, 2022, 5, 13735-13750.	2.5	5
272	Fluorinated Rocksalt Cathode with Ultraâ€high Active Li Content for Lithiumâ€ion Batteries. Angewandte Chemie, 0, , .	1.6	0
273	Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature, 2022, 611, 61-67.	13.7	123
274	Electrochemical activity regulating by strain control to achieve high-performance potassium-ion-based dual-ion battery. Energy Storage Materials, 2022, 53, 890-898.	9.5	4
275	Design picture in enabling reversible oxygen capacity for O-type Na 3d layered oxides. Energy Storage Materials, 2023, 54, 330-338.	9.5	7
276	A novel P2/O3 composite cathode toward synergistic electrochemical optimization for sodium ion batteries. Journal of Power Sources, 2023, 553, 232292.	4.0	11
277	Enabling robust anionic redox structure via tuning the symmetry of locally ordered lattice in Li-rich Li-Mn-O cathodes. Chemical Engineering Journal, 2023, 454, 140327.	6.6	4
278	Oxyfluoride Cathode for All-Solid-State Fluoride-Ion Batteries with Small Volume Change Using Three-Dimensional Diffusion Paths. Chemistry of Materials, 2022, 34, 10631-10638.	3.2	8
279	Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 2201-2211.	2.4	1
280	Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chemical Reviews, 2023, 123, 811-833.	23.0	37
281	An advanced medium-entropy substituted tunnel-type Na _{0.44} MnO ₂ cathode for high-performance sodium-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 841-849.	3.0	3
282	Electrode/electrolyte additives for practical sodium-ion batteries: a mini review. Inorganic Chemistry Frontiers, 2022, 10, 37-48.	3.0	11
283	Engineering Transition Metal Layers for Long Lasting Anionic Redox in Layered Sodium Manganese Oxide. Advanced Functional Materials, 2023, 33, .	7.8	12
284	Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site‣elective Coâ€Đoping. Advanced Materials, 2023, 35, .	11.1	17
285	Capturing Oxygen-Driven Electrolyte Oxidation during High-Voltage Cycling in Li-Rich Layered Oxide Cathodes. ACS Energy Letters, 2023, 8, 417-419.	8.8	11
286	Unexpectedly High Cycling Stability Induced by a High Charge Cutâ€Off Voltage of Layered Sodium Oxide Cathodes. Advanced Energy Materials, 2023, 13, .	10.2	16
288	Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries. Science Bulletin, 2023, 68, 65-76.	4.3	15
289	Effects of cation superstructure ordering on oxygen redox stability in O2-type lithium-rich layered oxides. Energy and Environmental Science, 2023, 16, 673-686.	15.6	10

#	Article	IF	CITATIONS
290	Synthesis, structure and electrochemical properties of a new cation ordered layered Li–Ni–Mg–Mo oxide. Materials Advances, 2023, 4, 1021-1029.	2.6	1
291	Triggering reversible anion redox chemistry in O3-type cathodes by tuning Na/Mn anti-site defects. Energy and Environmental Science, 2023, 16, 584-597.	15.6	6
292	Addressing voltage hysteresis in Li-rich cathode materials <i>via</i> gas–solid interface modification. Nanoscale, 2023, 15, 3326-3336.	2.8	7
293	Building a PEC-C@MoSe2@CNT heterostructure via in-situ selenidation as highly reversible anodes for Na+ batteries. Science China Chemistry, 2023, 66, 475-491.	4.2	16
294	Nanocomposite Engineering of a Highâ€Capacity Partially Ordered Cathode for Liâ€lon Batteries. Advanced Materials, 2023, 35, .	11.1	11
295	Critical intermediate Î²â€Łi ₂ NiO ₃ phase for structural degradation of Niâ€rich layered cathodes during thermal runaway. , 2023, 2, .		4
296	Structural evolution of Na-rich spinel oxides involving anionic redox reaction for Na-ion batteries. Electrochimica Acta, 2023, 440, 141746.	2.6	0
297	Honeycombâ€Layered Oxides With Silver Atom Bilayers and Emergence of Nonâ€Abelian SU(2) Interactions. Advanced Science, 2023, 10, .	5.6	3
298	Irreversible Anion Oxidation Leads to Dynamic Charge Compensation in the Ru-Poor, Li-Rich Cathode Li ₂ Ru _{0.3} Mn _{0.7} O ₃ . ACS Energy Letters, 2023, 8, 722-730.	8.8	1
299	Oxygen Anion Redox Chemistry Correlated with Spin State in Niâ€Rich Layered Cathodes. Advanced Science, 2023, 10, .	5.6	7
300	The role of anionic processes in Li _{1â^'<i>x</i>} Ni _{0.44} Mn _{1.56} O ₄ studied by resonant inelastic X-ray scattering. Energy Advances, 0, , .	1.4	0
301	Recent Advances in Mnâ€Rich Layered Materials for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	26
302	Application of First Principles Computations Based on Density Functional Theory (DFT) in Cathode Materials of Sodium-Ion Batteries. Batteries, 2023, 9, 86.	2.1	3
303	On the disparity in reporting Li-rich layered oxide cathode materials. Chemical Communications, 2023, 59, 2888-2902.	2.2	3
304	Zn/Ti/F synergetic-doped Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ for sodium-ion batteries with high energy density. Journal of Materials Chemistry A, 2023, 11, 3608-3615.	5.2	8
305	Partially Reversible Anionic Redox for Lithium-Excess Cobalt Oxides with Cation-Disordered Rocksalt Structure. Journal of Physical Chemistry C, 2023, 127, 2194-2203.	1.5	4
306	Enabling an Excellent Ordering-Enhanced Electrochemistry and a Highly Reversible Whole-Voltage-Range Oxygen Anionic Chemistry for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 17801-17813.	4.0	2
307	Sodium-ion batteries towards practical application through gradient Mn-based layer-tunnel cathode. Nano Energy, 2023, 110, 108340.	8.2	7

#	Article	IF	CITATIONS
308	Stabilizing cathodes and interphases for next-generation Li-ion batteries. Journal of Power Sources, 2023, 561, 232738.	4.0	12
309	Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Materials, 2023, 56, 631-641.	9.5	24
310	Nitrogen as An Anionic Center/Dopant for Nextâ€Generation Highâ€Performance Lithium/Sodiumâ€lon Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	8
311	Oxygen Redox Activation at Initial Cycle to Improve Cycling Stability for the Na _{0.83} Li _{0.12} Ni _{0.22} Mn _{0.66} O ₂ System. ACS Applied Materials & Interfaces, 2023, 15, 10709-10717.	4.0	1
312	Delocalized electron holes on oxygen in a battery cathode. Nature Energy, 2023, 8, 351-360.	19.8	25
313	Capturing the hole states of oxygen. Nature Energy, 2023, 8, 323-324.	19.8	2
314	Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type Layered Oxides. ACS Applied Materials & amp; Interfaces, 2023, 15, 11691-11702.	4.0	9
315	Review—Earth-Abundant, Mn-Rich Cathodes for Vehicle Applications and Beyond: Overview of Critical Barriers. Journal of the Electrochemical Society, 2023, 170, 030509.	1.3	3
316	Machine Learning-based Comprehensive Survey on Lithium-rich Cathode Materials. Electrochemistry, 2023, 91, 037007-037007.	0.6	1
317	Realizing discrepant oxygen-redox chemistry in honeycomb superlattice cathode via manipulating oxygen-stacking sequences. Chemical Engineering Journal, 2023, 462, 141994.	6.6	6
318	Improved electrode reversibility of anionic redox with highly concentrated electrolyte solution and aramid-coated polyolefin separator. Energy Advances, 2023, 2, 508-512.	1.4	7
319	Comprehensively Strengthened Metalâ€Oxygen Bonds for Reversible Anionic Redox Reaction. Advanced Functional Materials, 2023, 33, .	7.8	15
320	The synergy of dis…ordering ensures the superior comprehensive performance of P2â€ŧype Naâ€based layered oxide cathodes. , 2023, 2, 235-244.		9
321	A Mechanistic Insight into the Oxygen Redox of Liâ€Rich Layered Cathodes and their Related Electronic/Atomic Behaviors Upon Cycling. Advanced Materials, 2023, 35, .	11.1	19
322	Voltage Decay of Liâ€Rich Layered Oxides: Mechanism, Modification Strategies, and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	9
323	Stacking Faults Inducing Oxygen Anion Activities in Li ₂ MnO ₃ . Advanced Materials, 2023, 35, .	11.1	11
324	One-step electrochemical in-situ Li doping and LiF coating enable ultra-stable cathode for sodium ion batteries. Journal of Energy Chemistry, 2023, 82, 228-238.	7.1	11
325	The Effect of Key Electronic States on Excess Lithium Intercalation in Li ₂ Ru _{<i>y</i>} Mn _{1–<i>y</i>} O ₃ . Journal of Physical Chemistry Letters, 2023, 14, 3296-3306.	2.1	0

# 326	ARTICLE Oxygen-Redox Activity in Non-Lithium-Excess Tungsten-Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>Li</mml:mi><mml:mi>Ni</mml:mi><mml:mi mathvariant="normal">O<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math 	IF	CITATIONS 8
327	Catnode. , 2023, 2, . Voltage Hysteresis in Transition Metal Oxide Cathodes for Li/Naâ€lon Batteries. Advanced Functional Materials, 2023, 33, .	7.8	4
328	Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Science China Chemistry, 2024, 67, 191-213.	4.2	10
329	Measuring <i>T</i> ₁ relaxation in paramagnetic solids with solid-state NMR: A case study on the milling induced phase transition in Li ₆ CoO ₄ . Physical Chemistry Chemical Physics, 0, , .	1.3	0
330	Accumulated Lattice Strain as an Intrinsic Trigger for the First-Cycle Voltage Decay in Li-Rich 3d Layered Oxides. ACS Applied Materials & Interfaces, 2023, 15, 20200-20207.	4.0	2
331	Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries. Journal of the American Chemical Society, 2023, 145, 9596-9606.	6.6	25
332	Quantitative Decoupling of Oxygenâ€Redox and Manganeseâ€Redox Voltage Hysteresis in a Cationâ€Disordered Rock Salt Cathode. Advanced Energy Materials, 2023, 13, .	10.2	5
333	Clarifying effects of in-plane cationic-ordering degree on anionic redox chemistry in Na-ion battery layered oxide cathodes. Materials Today Chemistry, 2023, 30, 101532.	1.7	1
334	Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. Journal of Materials Science and Technology, 2023, 160, 9-17.	5.6	16
335	Heat Generation during the First Activation Cycle of Li-Ion Batteries with Li- and Mn-Rich Layered Oxides Measured by Isothermal Micro-Calorimetry. Journal of the Electrochemical Society, 2023, 170, 050506.	1.3	2
345	Durable Manganese-Based Li-Excess Electrode Material without Voltage Decay: Metastable and Nanosized Li ₂ MnO _{1.5} F _{1.5} . ACS Energy Letters, 2023, 8, 2753-2761.	8.8	6
346	Building Better Full Manganese-Based Cathode Materials for Next-Generation Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	10
353	First-principles design of nanostructured electrode materials for Na-ion batteries: challenges and perspectives. Physical Chemistry Chemical Physics, 2023, 25, 18623-18641.	1.3	2
368	Mn-based cathode materials for rechargeable batteries. Science China Chemistry, 2024, 67, 87-105.	4.2	3
374	Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Materials Horizons, 2023, 10, 4686-4709.	6.4	0
378	Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17, 1441-1464.	5.8	3
382	In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nature Communications, 2023, 14, .	5.8	7
417	Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , .	4.2	0

#	Article	IF	CITATIONS
432	A comprehensive review of various carbonaceous materials for anodes in lithium-ion batteries. Dalton Transactions, 2024, 53, 4900-4921.	1.6	0
445	Oxygen vacancy chemistry in oxide cathodes. Chemical Society Reviews, 2024, 53, 3302-3326.	18.7	0