Molecular magnetism: from chemical design to spin cor devices

Nature Reviews Materials 5, 87-104 DOI: 10.1038/s41578-019-0146-8

Citation Report

#	Article	IF	CITATIONS
1	Bow in awe to the new nanographene. Nature Nanotechnology, 2020, 15, 8-9.	15.6	5
2	Guest Modulated Spin States of Metal Complex Assemblies. European Journal of Inorganic Chemistry, 2020, 2020, 3709-3719.	1.0	13
3	Long-Range Spin-Selective Transport in Chiral Metal–Organic Crystals with Temperature-Activated Magnetization. ACS Nano, 2020, 14, 16624-16633.	7.3	51
4	2,7-Di-tert-butyl-9,9′(10H,10′H)-spirobiacridine-10,10′-dioxyl as a ground triplet biradical: The role of tert-butylation. Tetrahedron Letters, 2020, 61, 152428.	0.7	5
5	Stepwise spin-state switching in a manganese(<scp>iii</scp>) complex. Dalton Transactions, 2020, 49, 14776-14780.	1.6	19
6	Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Transactions, 2020, 49, 14320-14337.	1.6	44
7	Recent advances in the chemistry of benzo[<i>e</i>][1,2,4]triazinyl radicals. Organic and Biomolecular Chemistry, 2020, 18, 8255-8277.	1.5	52
8	Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chemical Science, 2020, 11, 8350-8372.	3.7	45
9	Odd–Even Effect on the Spin-Crossover Temperature in Iron(II) Complex Series Involving an Alkylated or Acyloxylated Tripodal Ligand. Inorganic Chemistry, 2020, 59, 10163-10171.	1.9	7
10	Assembling Nano–Microarchitecture for Electromagnetic Absorbers and Smart Devices. Advanced Materials, 2020, 32, e2002112.	11.1	259
11	Strangely attractive: Collaboration and feedback in the field of molecular magnetism. International Journal of Quantum Chemistry, 2020, 120, e26248.	1.0	6
12	Spin and Phonon Design in Modular Arrays of Molecular Qubits. Chemistry of Materials, 2020, 32, 10200-10206.	3.2	37
13	Experimental Evidence of the Coexistence of Proper Magnetic and Structural Incommensurability on the [CH ₃ NH ₃][Ni(COOH) ₃] Compound. Inorganic Chemistry, 2020, 59, 17896-17905.	1.9	6
14	Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. Nanomaterials, 2020, 10, 2393.	1.9	12
15	Reversible Spin-State Switching and Tuning of Nuclearity and Dimensionality via Nonlinear Pseudohalides in Cobalt(II) Complexes. Inorganic Chemistry, 2020, 59, 17638-17649.	1.9	17
16	Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py2TTF) ligand. Chemical Communications, 2020, 56, 10469-10472.	2.2	10
17	Fine tuning of intra-lattice electron transfers through site doping in tetraoxolene-bridged iron honeycomb layers. Chemical Communications, 2020, 56, 10867-10870.	2.2	6
18	Magnetic, Structural and Spectroscopic Properties of Iron(II)-Octacyanoniobate(IV) Crystalline Film Obtained by Ion-Exchange Synthesis. Materials, 2020, 13, 3029.	1.3	3

TION RED

#	Article	IF	CITATIONS
19	External stimuli modulate the magnetic relaxation of lanthanide single-molecule magnets. Inorganic Chemistry Frontiers, 2020, 7, 3315-3326.	3.0	57
20	Thermo- and electro-switchable CsâŠ,{Fe ₄ –Fe ₄ } cubic cage: spin-transition and electrochromism. Chemical Communications, 2020, 56, 10950-10953.	2.2	20
21	Co(<scp>ii</scp>)-Based single-ion magnets with 1,1′-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Transactions, 2020, 49, 11697-11707.	1.6	11
22	Field-induced SIM behaviour of a Co(<scp>ii</scp>) complex with a 1,1′-diacetylferrocene-derived ligand. Dalton Transactions, 2020, 49, 15592-15596.	1.6	3
23	Thermally-induced hysteretic valence tautomeric conversions in the solid state via two-step labile electron transfers in manganese-nitronyl nitroxide 2D-frameworks. Dalton Transactions, 2020, 49, 15646-15662.	1.6	13
24	Transition metal(II) complexes featuring push-pull dianionic Schiff base ligands: synthesis, crystal structure, electrochemical, and NLO studies. Journal of Coordination Chemistry, 2020, 73, 3079-3094.	0.8	7
25	Low-Temperature Magnetocaloric Properties of V12 Polyoxovanadate Molecular Magnet: A Theoretical Study. Materials, 2020, 13, 4399.	1.3	5
26	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46
27	Exchange Spin Coupling from Gaussian Process Regression. Journal of Physical Chemistry A, 2020, 124, 8708-8723.	1.1	16
28	Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework. Nanomaterials, 2020, 10, 1698.	1.9	3
29	ON/OFF Photoswitching and Thermoinduced Spin Crossover with Cooperative Luminescence in a 2D Iron(II) Coordination Polymer. Inorganic Chemistry, 2020, 59, 13009-13013.	1.9	37
30	A Hidden Coordination-Bond Torsional Deformation as a Sign of Possible Spin Transition in Nickel(II)-Bis(nitroxide) Compounds. Molecules, 2020, 25, 3790.	1.7	4
31	Imaging the Thermal Hysteresis of Single Spin-Crossover Nanoparticles. Journal of the American Chemical Society, 2020, 142, 15852-15859.	6.6	23
32	Electron spin polarization transfer induced by triplet–radical interactions in the weakly coupled regime. Physical Chemistry Chemical Physics, 2020, 22, 19982-19991.	1.3	14
33	Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymer micelles. Nanoscale Advances, 2020, 2, 4557-4565.	2.2	4
34	Effect of increasing pressure on the structure and temperature-induced changes in magnetic properties of heterospin complexes. Russian Chemical Bulletin, 2020, 69, 1530-1536.	0.4	7
35	Clar Goblet and Aromaticity Driven Multiradical Nanographenes. Chemistry - A European Journal, 2020, 26, 16138-16143.	1.7	9
36	Tuning of Spin Crossover Properties in a Series of Mononuclear Cobalt(II) Complexes Based on Macrocyclic Tetradentate Ligand and Pseudohalide Coligands. Dalton Transactions, 2020, , .	1.6	11

#	Article	IF	CITATIONS
37	Tetra-Mn ^{III} -Containing 30-Tungsto-4-phosphate, [Mn ^{III} ₄ (H ₂ O) ₂ (P ₂ W ₁₅ O _{5 Synthesis, Structure, XPS, Magnetism, and Electrochemical Study. Inorganic Chemistry, 2020, 59, 13034-13041.}	;6)< 1.9	sub>2]
38	When Molecular Magnetism Meets Supramolecular Chemistry: Multifunctional and Multiresponsive Dicopper(II) Metallacyclophanes as Proof-of-Concept for Single-Molecule Spintronics and Quantum Computing Technologies?. Magnetochemistry, 2020, 6, 69.	1.0	9
39	Fine-Tuning of Uniaxial Anisotropy and Slow Relaxation of Magnetization in the Hexacoordinate Co(II) Complexes with Acidoligands. Journal of Physical Chemistry C, 2020, 124, 25957-25966.	1.5	12
40	Combining Molecular Spintronics with Electron Paramagnetic Resonance: The Path Towards Single-Molecule Pulsed Spin Spectroscopy. Applied Magnetic Resonance, 2020, 51, 1357-1409.	0.6	9
41	Characteristics of Single-Molecule Magnet Dimers ([Mn ₃] ₂) on Graphene and <i>h</i> -BN. Journal of Physical Chemistry C, 2020, 124, 28186-28200.	1.5	11
42	Magnetic hexamers interacting in layers in the (Na,K)2Cu3O(SO4)3 minerals. Physical Review B, 2020, 102, .	1.1	11
43	Moleculeâ€Based Transistors: From Macroscale to Single Molecule Chemical Record, 2021, 21, 1284-1299.	2.9	19
44	Ground state and thermodynamic properties of spin-1/2 isosceles Heisenberg triangles for V6 -like magnetic molecules. Physical Review E, 2020, 102, 062116.	0.8	6
45	Tuning magnetic anisotropy by the π-bonding features of the axial ligands and the electronic effects of gold(i) atoms in 2D {Co(L)2[Au(CN)2]2}n metal–organic frameworks with field-induced single-ion magnet behaviour. Inorganic Chemistry Frontiers, 2020, 7, 4611-4630.	3.0	13
46	2D magnetic MOFs with micron-lateral size by liquid exfoliation. Chemical Communications, 2020, 56, 7657-7660.	2.2	21
47	Electrospray ionization: an efficient approach to deposit polymetallic molecular switches onto gold surfaces. Chemical Communications, 2020, 56, 6587-6589.	2.2	3
48	Understanding the Origin of One- or Two-Step Valence Tautomeric Transitions in Bis(dioxolene)-Bridged Dinuclear Cobalt Complexes. Journal of the American Chemical Society, 2020, 142, 10692-10704.	6.6	70
49	Stochastic equation of motion approach to fermionic dissipative dynamics. II. Numerical implementation. Journal of Chemical Physics, 2020, 152, 204106.	1.2	12
50	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	6.2	49
51	Markedly different magnetic properties of two analogous Ni(II) complexes with 2-aminoethylpyridine: [Ni(2aepy)2Cl(H2O)]Clâ‹H2O and [Ni(2aepy)2(NO3)]NO3. Polyhedron, 2020, 187, 114654.	1.0	3
52	Iron(II) Spin Crossover Complexes Based on a Redox Active Equatorial Schiff-Base-Like Ligand. Inorganic Chemistry, 2020, 59, 8320-8333.	1.9	21
53	Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. Inorganic Chemistry, 2020, 59, 8505-8513.	1.9	32
54	Experimental evidence for the elastic long-range character of the spin crossover transition in cooperative single crystals. Physical Review B, 2020, 101, .	1.1	8

#	Article	IF	CITATIONS
55	Smart Ligands for Efficient 3d-, 4d- and 5d-Metal Single-Molecule Magnets and Single-Ion Magnets. Inorganics, 2020, 8, 39.	1.2	26
56	Modelling the properties of magnetic clusters with complex structures: how symmetry can help us. International Reviews in Physical Chemistry, 2020, 39, 217-265.	0.9	7
57	Spin dynamics in single-molecule magnets and molecular qubits. Dalton Transactions, 2020, 49, 9916-9928.	1.6	82
58	Enhanced single-molecule magnetism in dysprosium complexes of a pristine cyclobutadienyl ligand. Chemical Communications, 2020, 56, 4708-4711.	2.2	30
59	Computational predictions of twoâ€dimensional anode materials of metalâ€ion batteries. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1473.	6.2	30
60	Dynamical nuclear decoupling of electron spins in molecular graphenoid radicals and biradicals. Physical Review B, 2020, 101, .	1.1	7
61	Topological Spin–Charge Gearbox on a Real Molecular Magnet. Journal of Physical Chemistry Letters, 2020, 11, 2592-2597.	2.1	11
62	Exploiting clock transitions for the chemical design of resilient molecular spin qubits. Chemical Science, 2020, 11, 10718-10728.	3.7	21
63	Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 2020, 4, 490-504.	13.8	247
64	Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH ₃) ₂ NH ₂]Mn(HCOO) ₃ . Inorganic Chemistry, 2020, 59, 10083-10090.	1.9	15
65	Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chemical Society Reviews, 2020, 49, 5601-5638.	18.7	122
66	Magnetic phase transitions and spin density distribution in the molecular multiferroic system GaV4S8. Physical Review B, 2020, 102, .	1.1	10
67	Magnetic Correlation Engineering in Spin‣andwiched Layered Magnetic Frameworks. Chemistry - A European Journal, 2020, 26, 16755-16766.	1.7	4
68	Proton Conductive Luminescent Thermometer Based on Near-Infrared Emissive {YbCo ₂ } Molecular Nanomagnets. Journal of the American Chemical Society, 2020, 142, 3970-3979.	6.6	106
69	Magnetocaloric Effect in Cu5-NIPA Molecular Magnet: A Theoretical Study. Materials, 2020, 13, 485.	1.3	13
70	Iron(II) Spin Crossover Complexes with 4,4′-Dipyridylethyne—Crystal Structures and Spin Crossover with Hysteresis. Molecules, 2020, 25, 581.	1.7	6
71	Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry - A European Journal, 2020, 26, 10912-10935.	1.7	53
72	A new spin crossover Fe ^{II} coordination environment in a two-fold interpenetrated 3-D Hofmann-type framework material. Chemical Communications, 2021, 57, 85-88.	2.2	11

#	Article	IF	CITATIONS
73	Spin crossover and cooperativity in nanocrystalline [Fe(pyrazine)Pt(CN)4] thin films deposited by matrix-assisted laser evaporation. Applied Surface Science, 2021, 541, 148419.	3.1	9
74	Accessing water processable cyanido bridged chiral heterobimetallic Co(ii)–Fe(iii) one dimensional network. Chemical Communications, 2021, 57, 207-210.	2.2	10
75	Running in the Family: Molecular Factors controlling Spin Crossover of Iron(II) Complexes with Schiffâ€base like Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 905-914.	0.6	6
76	Hexakis-adducts of [60]fullerene as molecular scaffolds of polynuclear spin-crossover molecules. Chemical Science, 2021, 12, 757-766.	3.7	7
77	Thermo- and light-triggered reversible interconversion of dysprosium–anthracene complexes and their responsive optical, magnetic and dielectric properties. Chemical Science, 2021, 12, 929-937.	3.7	43
78	An Iron(II) Spin Crossover Complex with a Maleonitrile Schiff baseâ€like Ligand and Scan Rateâ€dependent Hysteresis above Room Temperature. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 896-904.	0.6	4
79	Jahn–Teller and Pseudo-Jahn–Teller Effects: From Particular Features to General Tools in Exploring Molecular and Solid State Properties. Chemical Reviews, 2021, 121, 1463-1512.	23.0	67
80	Mixed Spinâ€(3/2,7/2) Isingâ€Type Ferrimagnet: Monte Carlo–Mean Field Treatment. Physica Status Solidi (B): Basic Research, 2021, 258, 2000536.	0.7	6
81	Spin States of 1D Iron(II) Coordination Polymers with Redox Active TTF(py) ₂ as Bridging Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 295-305.	0.6	5
82	Roomâ€Temperature Bistability in a Ni–Fe Chain: Electron Transfer Controlled by Temperature, Pressure, Light, and Humidity. Angewandte Chemie - International Edition, 2021, 60, 2330-2338.	7.2	30
83	Roomâ€Temperature Bistability in a Ni–Fe Chain: Electron Transfer Controlled by Temperature, Pressure, Light, and Humidity. Angewandte Chemie, 2021, 133, 2360-2368.	1.6	2
84	Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry - A European Journal, 2021, 27, 3608-3637.	1.7	33
85	Spin crossover crystalline materials engineered <i>via</i> single-crystal-to-single-crystal transformations. CrystEngComm, 2021, 23, 7899-7915.	1.3	14
86	Island formation of Er(trensal) single-ion magnets on graphene observed on the micrometer scale. RSC Advances, 2021, 11, 9421-9425.	1.7	5
87	One-way photoisomerization of ligands for permanent switching of metal complexes. Journal of Materials Chemistry C, 2021, 9, 4757-4763.	2.7	5
88	Metallic-based magnetic switches under confinement. Advances in Organometallic Chemistry, 2021, , 149-191.	0.5	0
89	All-boron planar ferromagnetic structures: from clusters to monolayers. Nanoscale, 2021, 13, 9881-9887.	2.8	7
90	SHG-active NIR-emissive molecular nanomagnets generated in layered neodymium(<scp>iii</scp>)–octacyanidometallate(<scp>iv</scp>) frameworks. Journal of Materials Chemistry C, 2021, 9, 10705-10717.	2.7	15

#	Article	IF	CITATIONS
91	Coordination sphere hydrogen bonding as a structural element in metal–organic Frameworks. Dalton Transactions, 2021, 50, 6034-6049.	1.6	21
92	Recent progresses in luminescent metal–organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Transactions, 2021, 50, 1950-1972.	1.6	74
93	Magnetic anisotropy in Yb ^{III} complex candidates for molecular qubits: a theoretical analysis. Physical Chemistry Chemical Physics, 2021, 23, 1976-1983.	1.3	4
94	Molecular S = 2 High-Spin, S = 0 Low-Spin and S = 0 â‡,, 2 Spin-Transition/-Crossover Nickel(II)-Bis(nitroxide) Coordination Compounds. Inorganics, 2021, 9, 10.	1.2	6
95	Materials for molecular electronics and magnetism. Journal of Materials Chemistry C, 2021, 9, 10521-10523.	2.7	6
96	Carboxylic acid-tuned nickel(<scp>ii</scp>) clusters: syntheses, structures, solution behaviours and magnetic properties. Dalton Transactions, 2021, 50, 4355-4362.	1.6	7
97	Molecular magnetism in nanodomains of isoreticular MIL-88(Fe)-MOFs. Physical Chemistry Chemical Physics, 2021, 23, 21677-21689.	1.3	10
98	Pseudo-tetrahedral <i>vs</i> . pseudo-octahedral Er ^{III} single molecule magnets and the disruptive role of coordinated TEMPO radical. Inorganic Chemistry Frontiers, 2021, 8, 2817-2828.	3.0	10
99	The effect of tether groups on the spin states of iron(<scp>ii</scp>)/bis[2,6-di(pyrazol-1-yl)pyridine] complexes. Dalton Transactions, 2021, 50, 7417-7426.	1.6	4
100	Slow magnetic relaxation in distorted tetrahedral Dy(<scp>iii</scp>) aryloxide complexes. Chemical Communications, 2021, 57, 9208-9211.	2.2	17
101	Enhancing the magnetic performance of pyrazine- <i>N</i> -oxide bridged dysprosium chains through controlled variation of ligand coordination modes. Dalton Transactions, 2021, 50, 7048-7055.	1.6	2
102	A reaction-coordinate perspective of magnetic relaxation. Chemical Society Reviews, 2021, 50, 6684-6699.	18.7	37
103	Pitfalls on evaluating pair exchange interactions for modelling molecule-based magnetism. Journal of Materials Chemistry C, 2021, 9, 10647-10660.	2.7	7
104	Predicting the Electronic and Structural Properties of Two-Dimensional Materials Using Machine Learning. Computers, Materials and Continua, 2021, 67, 1287-1300.	1.5	3
105	The flexibility of long chain substituents influences spin-crossover in isomorphous lipid bilayer crystals. Chemical Communications, 2021, 57, 4039-4042.	2.2	13
106	A Journey in Lanthanide Coordination Chemistry: From Evaporable Dimers to Magnetic Materials and Luminescent Devices. Accounts of Chemical Research, 2021, 54, 427-440.	7.6	54
107	Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets. Dalton Transactions, 2021, 50, 11071-11076.	1.6	2
108	Spin Transition in the Cobalt(II) Clathrochelate Films From Electron Spectroscopy Data. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 52-57.	0.3	4

#	Article	IF	CITATIONS
109	Concomitant Photoresponsive Chiroptics and Magnetism in Metal-Organic Frameworks at Room Temperature. Research, 2021, 2021, 5490482.	2.8	18
110	Density functional theory study of single-molecule ferroelectricity in Preyssler-type polyoxometalates. APL Materials, 2021, 9, .	2.2	5
111	A Fluorescence-Detected Coordination-Induced Spin State Switch. Journal of the American Chemical Society, 2021, 143, 3466-3480.	6.6	37
112	Versatile Reactivity of MnII Complexes in Reactions with N-Donor Heterocycles: Metamorphosis of Labile Homometallic Pivalates vs. Assembling of Endurable Heterometallic Acetates. Molecules, 2021, 26, 1021.	1.7	4
114	Organic magnetoelectric and optomagnetic couplings: perspectives for organic spin optoelectronics. NPG Asia Materials, 2021, 13, .	3.8	12
115	Coherent manipulation and quantum phase interference in a fullerene-based electron triplet molecular qutrit. Npj Quantum Information, 2021, 7, .	2.8	20
116	57Fe M¶ssbauer Spectroscopy as a Tool for Study of Spin States and Magnetic Interactions in Inorganic Chemistry. Molecules, 2021, 26, 1062.	1.7	12
117	Controlling the Dynamics of Three Electron Spin Qubits in a Donor–Acceptor–Radical Molecule Using Dielectric Environment Changes. Journal of Physical Chemistry Letters, 2021, 12, 2213-2218.	2.1	9
118	A Selfâ€Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angewandte Chemie, 2021, 133, 9940-9946.	1.6	5
119	New Family of Heptanuclear Lanthanide {Ln 7 } Clusters: Synthesis, Structure, and Magnetic Studies. ChemistrySelect, 2021, 6, 2456-2463.	0.7	4
120	Resonant Plasmonâ€Enhanced Absorption of Charge Transfer Complexes in a Metal–Organic Monolayer. Advanced Optical Materials, 2021, 9, 2100065.	3.6	4
121	Deuteration and Polymers: Rich History with Great Potential. Macromolecules, 2021, 54, 3555-3584.	2.2	31
122	A chromium(III) bis-acetylide complex containing a trans-diethyl-ethylenedithio-substituted tetrathiafulvalene (TTF) derivative: synthesis, crystal structures, and magnetic properties. Transition Metal Chemistry, 2021, 46, 373-380.	0.7	3
123	1D spin-crossover molecular chain with degenerate states. Journal of Applied Physics, 2021, 129, .	1.1	7
124	A Selfâ€Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angewandte Chemie - International Edition, 2021, 60, 9852-9858.	7.2	36
125	Magnetic Improvement and Relaxation Mechanism of the Tb-Phthalocyanine Single-Molecule Magnet by Absorbing CH ₂ Cl ₂ Molecules. Journal of Physical Chemistry C, 2021, 125, 10165-10172.	1.5	5
126	Cobalt(II)â€dianthracene Frameworks: Assembly, Exfoliation and Properties. Chemistry - an Asian Journal, 2021, 16, 1456-1465.	1.7	8
127	Dysprosium Coordination Polymer Incorporating Dianthracene: Thermoâ€induced Phase Transition Accompanied with Magnetic and Optical Changes. European Journal of Inorganic Chemistry, 2021, 2021, 1565-1570.	1.0	8

	CITATI	ON REPORT	
#	Article	IF	CITATIONS
128	Cross-Linking and Charging Molecular Magnetoelectronics. Nano Letters, 2021, 21, 4099-4105.	4.5	6
129	Isomorphism between the electro-elastic modeling of the spin transition and Ising-like model with competing interactions: Elastic generation of self-organized spin states. Journal of Applied Physics, 2021, 129, 153901.	1.1	11
130	Reversible Photo- and Thermo-Induced Spin-State Switching in a Heterometallic { <i>5d-3d</i> } W ₂ Fe ₂ Molecular Square Complex. Inorganic Chemistry, 2021, 60, 7545-7552.	1.9	15
131	A Multifunctional Dysprosiumâ€Carboxylato 2D Metall–Organic Framework. Angewandte Chemie, 2021 133, 12108-12113.	' 1.6	0
132	Modeling Spin-Crossover Dynamics. Annual Review of Physical Chemistry, 2021, 72, 515-540.	4.8	16
133	Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catalysis, 2021, 11, 4739-4769.	5.5	173
134	A First Order Phase Transition Studied by an Ising-Like Model Solved by Entropic Sampling Monte Carlo Method. Symmetry, 2021, 13, 587.	1.1	3
135	A Multifunctional Dysprosium arboxylato 2D Metall–Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 12001-12006.	7.2	27
136	Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. JPhys Energy, 2021, 3, 032010.	2.3	51
137	Monte Carlo Simulation of a Mixed Spinâ€1/2 and Spinâ€3/2 Ising Ferrimagnetic System with Site Dilution Physica Status Solidi (B): Basic Research, 2021, 258, 2100044.	. 0.7	4
138	Synthetic tuning of the quantum properties of open-shell radicaloids. CheM, 2021, 7, 1363-1378.	5.8	6
139	Spinâ€Crossover Molecules on Surfaces: From Isolated Molecules to Ultrathin Films. Advanced Materials, 2021, 33, e2008141.	11.1	49
140	Magnetic Switching in Vapochromic Oxalato-Bridged 2D Copper(II)-Pyrazole Compounds for Biogenic Amine Sensing. Magnetochemistry, 2021, 7, 65.	1.0	5
141	Electronic structure and magnetic properties of pyridinophane complexes of iron with radical-bearing catecholates: a quantum chemical study. Russian Chemical Bulletin, 2021, 70, 811-817.	0.4	7
142	Electronic and magnetic properties of twisted silver and palladium nanorods using density functional theory. Chemical Physics Letters, 2021, 771, 138549.	1.2	1
143	Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover. Nature Chemistry, 2021, 13, 698-704.	6.6	61
144	Magnetoelectricity in Jahn–Teller Elastics. Magnetochemistry, 2021, 7, 95.	1.0	0
145	Synthesis, Structure, and Surface Adsorption Characteristics of a Polynuclear Mn ^{II,IV} –Yb ^{III} Complex. Inorganic Chemistry, 2021, 60, 10415-10425.	1.9	2

#	Article	IF	CITATIONS
146	Electronic Lability of Quinonoidâ€Bridged Dinuclear 3 dâ€Metal Complexes with Tetradentate Nâ€Donor Bases. European Journal of Inorganic Chemistry, 2021, 2021, 2684-2695.	1.0	17
147	Zn(II)/Cd(II)-Based Metal–Organic Frameworks as Bifunctional Materials for Dye Scavenging and Catalysis of Fructose/Glucose to 5-Hydroxymethylfurfural. Inorganic Chemistry, 2021, 60, 9181-9191.	1.9	33
148	Acoustic Properties of Metal-Organic Frameworks. Research, 2021, 2021, 9850151.	2.8	10
149	Near Isotropic <i>D</i> _{4<i>d</i>} Spin Qubits as Nodes of a Gd(III)-Based Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 8575-8580.	1.9	6
150	Electron-Induced Spin-Crossover in Self-Assembled Tetramers. ACS Nano, 2021, 15, 11770-11778.	7.3	10
151	Effect of compression in molecular spin-crossover chains. Low Temperature Physics, 2021, 47, 457-465.	0.2	2
152	Iron/2,6â€Di(pyrazolâ€1â€yl)pyridine Complexes with a Discotic Pattern of Alkyl or Alkynyl Substituents. European Journal of Inorganic Chemistry, 2021, 2021, 2999-3007.	1.0	2
153	Effect of Hydrostatic pressure on structural, electronic, optical and mechanical properties of Lanthanum Oxide (La ₂ O ₃). Physica Scripta, 2021, 96, 115702.	1.2	11
154	First Iron(II) Clathrochelate with a Temperature-Induced Spin Crossover to an Elusive High-Spin State. Crystal Growth and Design, 2021, 21, 4594-4606.	1.4	7
155	Spin propensity in resonant photoemission of transition metal complexes. Physical Review Research, 2021, 3, .	1.3	5
156	Lattice-Directed Stabilization of Different Spin-State Phases in Metallo-Supramolecular Chains on Au Surfaces. Chemistry of Materials, 2021, 33, 6166-6175.	3.2	4
157	Synthesis, structure, and magnetic properties of a family of Mn(II) compounds with substituted 2-aminopyridinium ions. Polyhedron, 2021, 202, 115200.	1.0	2
158	Engineering of the <i>XY</i> Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. Inorganic Chemistry, 2021, 60, 10186-10198.	1.9	2
159	Measuring molecular magnets for quantum technologies. Nature Reviews Physics, 2021, 3, 645-659.	11.9	87
160	Resolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems. Journal of Physical Chemistry Letters, 2021, 12, 6320-6325.	2.1	14
161	A Complete <i>Ab Initio</i> View of Orbach and Raman Spin–Lattice Relaxation in a Dysprosium Coordination Compound. Journal of the American Chemical Society, 2021, 143, 13633-13645.	6.6	116
162	Quenched Lewis Acidity: Studies on the Medium Dependent Fluorescence of Zinc(II) Complexes. Chemistry - A European Journal, 2021, 27, 15159-15171.	1.7	7
163	New Materials and Effects in Molecular Nanomagnets. Applied Sciences (Switzerland), 2021, 11, 7510.	1.3	12

#	Article	IF	CITATIONS
164	Hyperfine-mediated transitions between electronic spin-1/2 levels of transition metal defects in SiC. New Journal of Physics, 2021, 23, 083010.	1.2	5
165	Enhancing Steric Hindrance via Ligand Design in Dysprosium Complexes: From Induced Slow Relaxation to Zero-Field Single-Molecule Magnet Properties. Inorganic Chemistry, 2021, 60, 13982-13989.	1.9	5
166	Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coordination Chemistry Reviews, 2021, 441, 213984.	9.5	200
167	3d/4f Sandwich Complex Based on Metallacrowns. Inorganic Chemistry, 2021, 60, 14031-14037.	1.9	5
168	Insights from Adsorption and Electron Modification Studies of Polyoxometalates on Surfaces for Molecular Memory Applications. Accounts of Chemical Research, 2021, 54, 3377-3389.	7.6	21
169	Molecular Valence Tautomeric Metal Complexes for Chemosensing. Inorganic Chemistry, 2021, 60, 14230-14237.	1.9	7
170	Boosting Catalytic Efficiency of Metalâ€Organic Frameworks with Electronâ€Withdrawing Effect for Lewisâ€Acid Catalysis. ChemistrySelect, 2021, 6, 7732-7735.	0.7	5
171	Spectroscopic Analysis of Vibronic Relaxation Pathways in Molecular Spin Qubit [Ho(W ₅ O ₁₈) ₂] ^{9–} : Sparse Spectra Are Key. Inorganic Chemistry, 2021, 60, 14096-14104.	1.9	22
173	The Magnetism of Metal–Organic Frameworks for Spintronics. Bulletin of the Korean Chemical Society, 2021, 42, 1170-1183.	1.0	18
174	Manipulating electron redistribution to achieve electronic pyroelectricity in molecular [FeCo] crystals. Nature Communications, 2021, 12, 4836.	5.8	21
175	Sterically Encumbered Coordination Sites. Iron(II) Complexes of JÃgerâ€ŧype ligands with a Terphenyl Backbone. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2088-2097.	0.6	1
176	Spinâ€Phonon Coupling and Slowâ€Magnetic Relaxation in Pristine Ferrocenium. Chemistry - A European Journal, 2021, 27, 16440-16447.	1.7	8
177	A Convenient DFT-Based Strategy for Predicting Transition Temperatures of Valence Tautomeric Molecular Switches. Inorganic Chemistry, 2021, 60, 14475-14487.	1.9	14
178	EPR, Magnetic, and Computational Characterization of Linear and Zigzag Ladderâ€ŧype Chains of Exchange Coupled Cu(II) Complexes with Picolinic and Dipicolinic Acid Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 4183-4195.	1.0	2
179	Structures and Spin States of Iron(II) Complexes of Isomeric 2,6-Di(1,2,3-triazolyl)pyridine Ligands. Inorganic Chemistry, 2021, 60, 14988-15000.	1.9	4
180	Quantum Chemical Study of Spin Transitions in the Bimetallic Fe/Co Complexes with the Bis(catecholate) Bridging Ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 601-609.	0.3	3
181	Luminescent and Magnetic Tb-MOF Flakes Deposited on Silicon. Molecules, 2021, 26, 5503.	1.7	6
182	Photogenerated Spin-Correlated Radical Pairs: From Photosynthetic Energy Transduction to Quantum Information Science, Journal of the American Chemical Society, 2021, 143, 15508-15529.	6.6	52

#	Article	IF	CITATIONS
183	Synthesis and Investigation of Magnetic Properties of Rod Shaped Micron Sized Ni 4 and Co 2 Ni 2 Cluster based MOFs. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1939.	0.6	0
184	Ni ^{II} ₃₆ â€Containing 54â€Tungstoâ€6â€Silicate: Synthesis, Structure, Magnetic and Electrochemical Studies. Chemistry - A European Journal, 2021, 27, 15081-15085.	1.7	12
185	Synthesis of a porous MOF, UiO-67-NSO2CF3, through post-synthetic method. Inorganic Chemistry Communication, 2021, 131, 108794.	1.8	1
186	Two-dimensional materials for electrochromic applications. EnergyChem, 2021, 3, 100060.	10.1	21
187	Spinâ€Stateâ€Switching Rearrangements of Bis(dioxolene)â€Bridged CrCo Complexes: A DFT Study. European Journal of Inorganic Chemistry, 2021, 2021, 4113-4121.	1.0	2
188	New heterobimetallic Cu(II)/Mn(II) complexes with trans-1,8-cyclam derivatives: Synthesis, characterization, magnetic properties and crystal structures of (µ2-Chloro)-(dpc)-copper(II)-trichloro-manganese(II) and two polymorphs of (µ2-Chloro)-(dac)-copper(II)-trichloro-manganese(II). Journal of Molecular Structure, 2021, 1241,	1.8	1
189	The self-assembled, atomically defined, flexible and highly tunable bilayered Au/L-cysteine/Cu(II/I) junctions capable of voltage-gated coherent multiple electron/hole exchange. Nano Futures, 2021, 5, 015001.	1.0	1
190	Effect of ligand substituents and tuning the spin-state switching in manganese(<scp>iii</scp>) complexes. Dalton Transactions, 2021, 50, 4634-4642.	1.6	20
191	2D hybrid CrCl2(N2C4H4)2 with tunable ferromagnetic half-metallicity. Journal of Materials Chemistry C, 2021, 9, 5985-5991.	2.7	1
192	Thermo- and photoinduced spin state switching in an iron(<scp>ii</scp>) 2D coordination network associated with large light-induced thermal hysteresis and tuning of dimensionality <i>via</i> ligand modulation. Dalton Transactions, 2021, 50, 7725-7735.	1.6	12
193	Acetylene coupler builds strong and tunable diradical organic molecular magnets. New Journal of Chemistry, 2021, 45, 9137-9142.	1.4	0
194	Field-induced single-ion magnets exhibiting tri-axial anisotropy in a 1D Co(<scp>ii</scp>) coordination polymer with a rigid ligand 4,4′-(buta-1,3-diyne-1,4-diyl)dibenzoate. Dalton Transactions, 2021, 50, 15003-15014.	1.6	4
195	The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles. Chemical Communications, 2021, 57, 1903-1906.	2.2	6
196	The number and shape of lattice solvent molecules controls spin-crossover in an isomorphous series of crystalline solvate salts. Chemical Communications, 2021, 57, 6566-6569.	2.2	19
197	Gadolinium as an accelerator for reaching thermal equilibrium and its influence on the ground state of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Dy</mml:mi><mml:m mathvariant="normal">C<mml:mn>80</mml:mn></mml:m </mml:msub></mml:mrow></mml:math 	nn 12 <td>nl:man></td>	nl:man>
198	single-molecule magnets. Physical Review B, 2021, 103, . Cornerstone of molecular spintronics: Strategies for reliable organic spin valves. Nano Research, 2021, 14, 3653-3668.	5.8	15
199	Dysprosium–dianthracene framework showing thermo-responsive magnetic and luminescence properties. Journal of Materials Chemistry C, 2021, 9, 10749-10758.	2.7	12
200	From radical to triradical thin film processes: the Blatter radical derivatives. Journal of Materials Chemistry C, 2021, 9, 10787-10793.	2.7	13

#	Article	IF	CITATIONS
201	Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm, 2021, 23, 3063-3083.	1.3	50
204	Selected polyazole based coordination polymers displaying functional properties. Advances in Inorganic Chemistry, 2020, 76, 81-113.	0.4	7
205	Emerging 2D Organic-Inorganic Heterojunctions. Cell Reports Physical Science, 2020, 1, 100166.	2.8	23
206	Single molecule magnets of cobalt and zinc homo- and heterometallic coordination polymers prepared by a one-step synthetic procedure. RSC Advances, 2020, 10, 45090-45104.	1.7	8
207	Modulation of Jahn–Teller distortion and electromechanical response in a Mn ³⁺ spin crossover complex. Journal of Physics Condensed Matter, 2020, 32, 404002.	0.7	13
208	Molecular magnetism in the multi-configurational self-consistent field method. Journal of Physics Condensed Matter, 2021, 33, 075803.	0.7	4
209	Origin of the magnetic exchange in insulators: Localized vs. delocalized electrons. Journal of Physics: Conference Series, 2021, 1762, 012019.	0.3	2
210	Theoretical investigations on the pressure effects in spin-crossover materials: Reentrant phase transitions and other behavior. Physical Review B, 2020, 101, .	1.1	16
211	Collective magnetic fluctuations in Hubbard plaquettes captured by fluctuating local field method. Physical Review B, 2020, 102, .	1.1	10
212	Tunable magnetic anisotropy in luminescent cyanido-bridged {Dy ₂ Pt ₃ } molecules incorporating heteroligand Pt ^{IV} linkers. Dalton Transactions, 2021, 50, 16242-16253.	1.6	5
214	Crystal Structure and Magnetic Properties of Trinuclear Transition Metal Complexes (MnII, CoII, NiII) Tj ETQq0 0 C	rgBT /Ove	erląck 10 Tf 5
215	The Flexible On-Surface Self-Assembly of a Low-Symmetry Mabiq Ligand: An Unconventional Metal-Assisted Phase Transformation on Ag(111). Journal of Physical Chemistry C, 2021, 125, 23178-23191.	1.5	2
216	Integrating spin-based technologies with atomically controlled van der Waals interfaces. Materials Today, 2021, 51, 350-364.	8.3	8
217	Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching. Nature Chemistry, 2021, 13, 1101-1109.	6.6	52
218	The average value of the spin squared operator as an order parameter for spin phase transitions without spontaneous lowering of symmetry. Journal of Physics Communications, 2020, 4, 095024.	0.5	3
219	Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal–Organic Frameworks (MOFs). Journal of the American Chemical Society, 2021, 143, 18502-18510.	6.6	22
220	High nuclearity structurally – related Mn supertetrahedral T4 aggregates. Chemical Communications, 2021, 57, 12484-12487.	2.2	5
221	A hybrid bioinspired catechol-alloxazine triangular nickel complex stabilizing protons and electrons. Inorganic Chemistry Frontiers, 2021, 8, 5286-5298.	3.0	2

#	Article	IF	CITATIONS
222	Improving stability of stochastic algorithms being applied to spin Hamiltonians. AIP Conference Proceedings, 2020, , .	0.3	0
223	Voltage-Induced Bistability of Single Spin-Crossover Molecules in a Two-Dimensional Monolayer. Journal of Physical Chemistry Letters, 2021, 12, 11029-11034.	2.1	14
224	Two-spin and multi-spin quantum entanglement in V12 polyoxovanadate molecular nanomagnet. Journal of Magnetism and Magnetic Materials, 2022, 546, 168782.	1.0	5
225	Controlling the Entropy of a Single-Molecule Junction. Nano Letters, 2021, 21, 9715-9719.	4.5	9
226	Structural, magnetic, and cryogenic magnetocaloric properties in the quaternary rare earths (RE) based RECr2Si2C (RE = Gd, Tb, Dy) compounds. Journal of Alloys and Compounds, 2021, , 162777.	2.8	4
227	Designing Two-Dimensional Versatile Room-Temperature Ferromagnets via Assembling Large-Scale Magnetic Quantum Dots. Nano Letters, 2021, 21, 9816-9823.	4.5	11
228	Voltage-controlled Hubbard spin transistor. Physical Review Research, 2021, 3, .	1.3	4
229	Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Transactions, 2021, 50, 17129-17139.	1.6	9
230	Redox-active benzoquinones as challenging " <i>non-innocent</i> ―linkers to construct 2D frameworks and nanostructures with tunable physical properties. Journal of Materials Chemistry C, 2022, 10, 1548-1572.	2.7	12
231	Field-induced single-ion magnet behavior in a hydrogen-bonded supramolecular cobalt(II) complex. Polyhedron, 2022, 213, 115614.	1.0	18
232	Study on the relationship between structure and fluorescence properties of anthracene derivatives. Journal of Molecular Structure, 2022, 1252, 132029.	1.8	1
233	Dynamic ring-opening polymerization, D-ROP: Applications in coordination polymers. Coordination Chemistry Reviews, 2022, 454, 214342.	9.5	4
234	f-Element Organometallic Single-Molecule Magnets. , 2022, , 211-248.		1
235	The magnetic anisotropy of Tb-phthalocyanine films effected by molecular orientation. Applied Surface Science, 2022, 585, 152445.	3.1	4
236	Cation modulated spin state and near room temperature transition within a family of compounds containing the same [FeL ₂] ^{2â~'} center. Dalton Transactions, 2022, 51, 3894-3901.	1.6	2
237	Magnetic properties of coordination clusters with {Mn4} and {Co4} antiferromagnetic cores. Physical Chemistry Chemical Physics, 2022, 24, 3780-3787.	1.3	3
238	Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes. Nanoscale, 2022, 14, 1978-1989.	2.8	4
239	Extreme g -Tensor Anisotropy and Its Insensitivity to Structural Distortions in a Family of Linear Two-Coordinate Ni(I) Bis-N-heterocyclic Carbene Complexes. Inorganic Chemistry, 2022, 61, 1308-1315.	1.9	8

#	Article	IF	CITATIONS
240	Harnessing the Quantum Behavior of Spins on Surfaces. Advanced Materials, 2023, 35, e2107534.	11.1	16
241	Manipulating Selective Metalâ€ŧoâ€Metal Electron Transfer to Achieve Multiâ€Phase Transitions in an Asymmetric [Fe ₂ Co]â€Assembled Mixedâ€Valence Chain. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
242	Manipulating Selective Metalâ€ŧoâ€Metal Electron Transfer to Achieve Multiâ€Phase Transitions in an Asymmetric [Fe 2 Co]â€Assembled Mixedâ€Valence Chain. Angewandte Chemie, 0, , .	1.6	4
243	Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Singleâ€Molecule Magnets. Angewandte Chemie, 2022, 134, .	1.6	6
244	Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Singleâ€Molecule Magnets. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
245	Capturing the Trajectory of Metal-Ion-Cluster Formation: Stepwise Accumulation of Zn(II) Ions in a Robust Coordination Space Formed by a Rigid Tridentate Carboxylate Ligand. Inorganic Chemistry, 2022, 61, 3649-3654.	1.9	1
246	Magnetooptical Properties of Lanthanide(III) Metal–Organic Frameworks Based on an Iridium(III) Metalloligand. Inorganic Chemistry, 2022, 61, 3097-3102.	1.9	5
247	Magnetic behavior in metal-free radical thin films. CheM, 2022, 8, 801-814.	5.8	11
248	Slow spin relaxation in single endohedral fullerene molecules. Physical Review B, 2021, 104, .	1.1	6
249	Iron(II) Clathrochelates in Molecular Spintronic Devices: A Vertical Spin Valve. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 33-40.	0.3	3
250	Large easy-axis magnetic anisotropy in a series of trigonal prismatic mononuclear cobalt(<scp>ii</scp>) complexes with zero-field hidden single-molecule magnet behaviour: the important role of the distortion of the coordination sphere and intermolecular interactions in the slow relaxation. Inorganic Chemistry Frontiers, 2022, 9, 2810-2831.	3.0	32
251	Sample Holders for Sub-THz Electron Spin Resonance Spectroscopy. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	8
252	Electronic pyroelectricity: the interplay of valence tautomerism and spin transition. Journal of Materials Chemistry C, 2022, 10, 4980-4984.	2.7	7
253	A Computational Search for Spin-Crossover in Bis(Catecholate) Diiron Complexes. SSRN Electronic Journal, 0, , .	0.4	0
254	Heteroleptic iron(<scp>ii</scp>) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands – the interplay of two different ligands on the metal ion spin sate. Dalton Transactions, 2022, 51, 4262-4274.	1.6	6
255	Mechanism and Application of Magnetic Anisotropy of a Single-Molecule Magnet Modulated by a Molecular Junction. Journal of Physical Chemistry C, 2022, 126, 4577-4583.	1.5	1
257	Unveiling ferromagnetism and antiferromagnetism in two dimensions at room temperature. Journal Physics D: Applied Physics, 2022, 55, 283003.	1.3	7
258	Competition between Spin Excitation and Kondo Correlation in Magnetic Molecular Junctions: Theoretical Insight from First-principles-based Simulations. Current Chinese Science, 2022, 2, 310-324.	0.2	0

#	Article	IF	CITATIONS
259	Magnetic Characterization of Open-Shell Donor–Acceptor Conjugated Polymers. Journal of Physical Chemistry C, 2022, 126, 5701-5710.	1.5	9
260	Magnetostructural Dependencies in 3 <i>d</i> ² Systems: The Trigonal Bipyramidal V ³⁺ Complex. Physica Status Solidi (B): Basic Research, 0, , 2100645.	0.7	5
261	Localized π Surface States on 2D Molybdenum Disulfide from Carbene-Functionalization as a Qubit Design Strategy. ACS Physical Chemistry Au, 0, , .	1.9	1
262	A computational search for spin-crossover in bis(catecholate) diiron complexes. Computational and Theoretical Chemistry, 2022, 1211, 113693.	1.1	1
263	Study of the ground state and thermodynamic properties of Cu5-NIPA-like molecular nanomagnets. Journal of Magnetism and Magnetic Materials, 2022, 552, 169151.	1.0	3
264	Carbon-rich organometallics: Application to molecular electronics. Coordination Chemistry Reviews, 2022, 461, 214501.	9.5	10
265	Novel organic magnet derived from pyrazine-fused furazans. Mendeleev Communications, 2021, 31, 784-788.	0.6	12
266	Heterospin iron complexes with dioxolenes functionalized with stable radicals: quantum chemical study. Russian Chemical Bulletin, 2021, 70, 2315-2323.	0.4	5
267	Polyfluorinated organic paramagnets. Russian Chemical Bulletin, 2021, 70, 2298-2314.	0.4	11
268	Isolation of the elusive bisbenzimidazole Bbim ^{3â^'} Ë™ radical anion and its employment in a metal complex. Chemical Science, 2022, 13, 5818-5829.	3.7	6
269	2D/3D spin crossover porous coordination polymers based on isomeric tetrapyridyl benzene ligands. CrystEngComm, 0, , .	1.3	2
270	Impact of counter anions on spin-state switching of manganese(<scp>iii</scp>) complexes containing an azobenzene ligand. Dalton Transactions, 2022, 51, 7681-7694.	1.6	7
271	Discovery of a Dysprosium Metallocene Single-Molecule Magnet with Two High-Temperature Orbach Processes. Inorganic Chemistry, 2022, 61, 6017-6025.	1.9	28
272	Anisotropy of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>f</mml:mi> states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>d</mml:mi></mml:mrow></mml:math </mml:mrow></mmi:math 	1.1 <mml:mc< td=""><td>ow>1 >>â^'</td></mml:mc<>	ow>1 >>â^'
273	Single-molecule magnets. Physical Review 9, 2022, 105, . Three-State Switching of an Fe Spin Crossover Complex. Journal of Physical Chemistry C, 2022, 126, 7238-7244.	1.5	2
274	o-Benzoquinone Cobalt Complexes Bearing Organosilicon Radicals: Quantum-Chemical Study. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 233-241.	0.3	3
275	Synthesis and structural characterization of aÂluminescent cadmium(II) complex with bis(4-(1H-imidazole-1-yl)phenyl)amine and 4,4′-sulfonyldibenzoate ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, .	0.3	0
276	Partial thermalisation of a two-state system coupled to a finite quantum bath. SciPost Physics, 2022, 12, .	1.5	6

#	Article	IF	CITATIONS
277	Tuning chain topologies and magnetic anisotropy in one-dimensional cobalt(<scp>ii</scp>) coordination polymers <i>via</i> distinct dicarboxylates. CrystEngComm, 2022, 24, 3928-3937.	1.3	11
278	Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex. Dalton Transactions, 2022, 51, 8208-8216.	1.6	20
279	A Generalized Ising-like Model for Spin Crossover Nanoparticles. Magnetochemistry, 2022, 8, 49.	1.0	1
280	Single electrons on solid neon as a solid-state qubit platform. Nature, 2022, 605, 46-50.	13.7	22
281	Spin-Electric Coupling with Anisotropy-Induced Vanishment and Enhancement in Molecular Ferroelectrics. Journal of the American Chemical Society, 2022, 144, 8605-8612.	6.6	15
282	Singly and Triply Linked Magnetic Porphyrin Lanthanide Arrays. Journal of the American Chemical Society, 2022, 144, 8693-8706.	6.6	13
283	Adenine-incorporated metal–organic frameworks. Coordination Chemistry Reviews, 2022, 464, 214558.	9.5	20
284	Synthesis, Characterization, and Catalytic Reactivity of Dithiolate-Bridged Diiron Complexes Supported by Bulky Cyclopentadienyl Ligands. Organometallics, 2022, 41, 1334-1343.	1.1	2
285	Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electronic Advances, 2022, 5, 210094-210094.	6.4	12
286	Light-induced thermal hysteresis and high-spin low-spin domain formation evidenced by optical microscopy in a spin-crossover single crystal. Physical Review B, 2022, 105, .	1.1	10
287	Single-molecule nano-optoelectronics: insights from physics. Reports on Progress in Physics, 2022, 85, 086401.	8.1	9
288	Effect of Ligand Chain Length for Tuning of Molecular Dimensionality and Magnetic Relaxation in Redox Active Cobalt(II) EDOT Complexes (EDOT=3,4â€Ethylenedioxythiophene). Chemistry - an Asian Journal, 2022, 17, .	1.7	2
289	Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angewandte Chemie, 2022, 134, .	1.6	3
290	Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
291	Fluctuating local field approach to the description of lattice models in the strong coupling regime. Journal of Superconductivity and Novel Magnetism, 0, , .	0.8	2
292	Integration of Trinuclear Triangle Copper(II) Secondary Building Units in Octacyanidometallates(IV)-Based Frameworks. Inorganic Chemistry, 2022, 61, 8930-8939.	1.9	3
293	Towards large area surface functionalization with luminescent and magnetic lanthanoid complexes. Inorganic Chemistry Frontiers, 2022, 9, 4160-4170.	3.0	3
294	Paramagnetic encoding of molecules. Nature Communications, 2022, 13, .	5.8	7

#	Article	IF	CITATIONS
295	<scp>Fineâ€Tuning</scp> of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(<scp>II</scp>) Complexes. Chinese Journal of Chemistry, 2022, 40, 2193-2202.	2.6	12
296	Donor–Acceptor Conjugated Copolymers Containing Transition-Metal Complex: Intrachain Magnetic Exchange Interactions and Magneto-Óptical Activity. Chemistry of Materials, 0, , .	3.2	2
297	Multifunctional molecular spintronic device based on zigzag-edged trigonal graphene: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 445, 128244.	0.9	0
298	Effect of Proton Irradiation on Magnetic Properties of Two-Dimensional Ni(li) Molecular Magnet. SSRN Electronic Journal, 0, , .	0.4	0
299	Giant magnetic anisotropy in single-molecule magnet with transition-metal adatom. International Journal of Modern Physics C, 0, , .	0.8	0
300	The High-Temperature Soft Ferromagnetic Molecular Materials Based on [W(CN)6(bpy)]2â^'/â^' System. Molecules, 2022, 27, 4525.	1.7	3
301	Proposal for All-Electrical Spin Manipulation and Detection for a Single Molecule on Boron-Substituted Graphene. Physical Review Letters, 2022, 129, .	2.9	1
302	Electrical Sensing of the Thermal and Lightâ€Induced Spin Transition in Robust Contactless Spinâ€Crossover/Graphene Hybrid Devices. Advanced Materials, 2022, 34, .	11.1	23
303	Magnetic control over the fundamental structure of atomic wires. Nature Communications, 2022, 13, .	5.8	4
304	Edaravone-Based Mononuclear Dysprosium(III) Single-Molecule Magnets. Crystal Growth and Design, 0, , .	1.4	4
305	Rare-Earth (RE = Y, Gd, Tb, Dy, Ho, and Er) Chains Bridged with a Triplet Biradical and Magnetic Hysteresis Recorded for RE = Tb. Inorganic Chemistry, 2022, 61, 10619-10623.	1.9	6
306	Field-Induced Single Molecule Magnetic Behavior of Mononuclear Cobalt(II) Schiff Base Complex Derived from 5-Bromo Vanillin. Inorganics, 2022, 10, 105.	1.2	1
307	Magnetocaloric effect and slow magnetic relaxation in peroxide-assisted tetranuclear lanthanide assemblies. Inorganic Chemistry Frontiers, 0, , .	3.0	9
308	Electric field tuning of magnetic states in single magnetic molecules. Physical Review B, 2022, 106, .	1.1	1
309	Antiferromagnetically coupled iso-structural CrIII, MnIII and FeIII complexes of a tetradentate Schiff base ligand derived from o-phenylenediamine. Transition Metal Chemistry, 2022, 47, 265-274.	0.7	1
310	Dipole Switching by Intramolecular Electron Transfer in Single-Molecule Magnetic Complex [Mn ₁₂ O ₁₂ (O ₂ CR) ₁₆ (H ₂ O) ₄]. Journal of Physical Chemistry A, 2022, 126, 5265-5272.	1.1	0
311	Molecular Compounds in Spintronic Devices: An Intricate Marriage of Chemistry and Physics. Inorganic Chemistry, 2022, 61, 12919-12930.	1.9	11
312	Carbon-based nanostructures as a versatile platform for tunable π-magnetism. Journal of Physics Condensed Matter, 2022, 34, 443001.	0.7	31

#	Article	IF	CITATIONS
313	Multiqudit interactions in molecular spins. Physical Review A, 2022, 106, .	1.0	4
314	Theoretical and Experimental Studies of the Magnetostructural Correlations in Mononuclear Dy ^{III} Compounds Evidenced by Quantum Tunneling of Magnetization Time, Crystal Field Parameters, and Point Charge Electrostatic Model. Crystal Growth and Design, 0, , .	1.4	2
315	Thickness-dependent spin bistable transitions in single-crystalline molecular 2D material. Npj 2D Materials and Applications, 2022, 6, .	3.9	3
316	Review of Fe-based spin crossover metal complexes in multiscale device architectures. Inorganica Chimica Acta, 2023, 544, 121168.	1.2	14
317	Understanding the effect of structural changes on slow magnetic relaxation in mononuclear octahedral copper(<scp>ii</scp>) complexes. Dalton Transactions, 2022, 51, 12041-12055.	1.6	6
318	Highly interface-dependent spin transport in an Fe–Mn(DBTAA)–Fe single molecule spintronic device. Nanoscale, 2022, 14, 15799-15803.	2.8	6
319	Bis-pyrazolone-based dysprosium(<scp>iii</scp>) complexes: zero-field single-molecule magnet behavior in the [2 × 2] grid DyIII4 cluster. CrystEngComm, 2022, 24, 6688-6695.	1.3	3
320	Phase transitions induced by exchange coupling, magnetic field, and temperature in a strongly correlated molecular trimer with a triangular topology. Physical Chemistry Chemical Physics, 2022, 24, 22546-22556.	1.3	1
321	Luminescence thermometry in a Dy ₄ single molecule magnet. Dalton Transactions, 2022, 51, 15593-15600.	1.6	5
322	Photoinduced magnetic hysteresis in a cyanide-bridged two-dimensional [Mn2W] coordination polymer. Inorganic Chemistry Frontiers, 2022, 9, 4974-4981.	3.0	1
323	Synthesis, structure, and magnetism of a novel series of trinuclear nickel(<scp>ii</scp>) clusters. CrystEngComm, 2022, 24, 5987-5994.	1.3	7
324	Coordination-driven opto-electroactive molecular thin films in electronic circuits. Journal of Materials Chemistry C, 2022, 10, 14532-14541.	2.7	8
325	Structural cutting and recombining in a layered sodium dysprosium phosphonate: key roles of flexible pyrazinyl hydrazone molecular tools. CrystEngComm, 0, , .	1.3	0
326	Synthesis, crystal structure and magnetic properties of <i>mer</i> -tricyanidoiron(III) precursor-based 1D heterobimetallic complexes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 703-711.	0.3	0
327	Multireference Study of Optically Addressable Vanadium-Based Molecular Qubit Candidates. Journal of Physical Chemistry A, 2022, 126, 6329-6335.	1.1	4
328	Spin-Crossover in a New Iron(II)/Di(pyrazolyl)pyridine Complex with a Terpyridine Embrace Lattice. Thermally Induced Excited Spin State Trapping and Clarification of a Structure–Function Correlation. Crystal Growth and Design, 2022, 22, 6809-6817.	1.4	5
329	On-Surface Synthesis and Spectroscopy of Aluminum Phthalocyanine on Superconducting Lead. ACS Nano, 2022, 16, 16987-16995.	7.3	7
330	ORGANOMETALLIC MAGNETS BASED ON COMPLEXES OF IRON WITH 1-NITROSO-2-NAPHTHOL. Proceedings of the Shevchenko Scientific Society Series Đ;hemical Sciences, 2022, 2022, 43-52.	0.2	0

#	Article	IF	CITATIONS
331	Cu(hfac) ₂ Complexes with Acyclic Nitroxide Prone to Single-Crystal to Single-Crystal Transformation and Showing Mechanical Activity. Crystal Growth and Design, 2022, 22, 6148-6167.	1.4	4
332	Two-Dimensional Metal Azides Constructed by a Ln@Co ₆ Cluster and Disordered Co ₃ (N ₃) ₁₁ Units. Crystal Growth and Design, 0, , .	1.4	0
333	Exploring the influence of counterions on a hysteretic spin-transition in isomorphous iron(<scp>ii</scp>) complex salts. Journal of Materials Chemistry C, 0, , .	2.7	0
334	Effect of intermolecular anionic interactions on spin crossover of two triple-stranded dinuclear Fe(<scp>ii</scp>) complexes showing above room temperature spin transition. Dalton Transactions, 2022, 51, 16706-16713.	1.6	4
335	Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chemical Society Reviews, 2022, 51, 9262-9339.	18.7	27
336	Magnetically bistable cobalt-dioxolene complexes with a tetradentate N-donor base. Dalton Transactions, 2022, 51, 16876-16889.	1.6	3
337	Dy ³⁺ single ion magnet in the extended inorganic solid Ca(Y,Dy)AlO ₄ . Chemical Communications, 2022, 58, 12572-12575.	2.2	1
338	Two-step spin crossover by guest-disorder induced local symmetry breaking within a 3D Hofmann-like framework. Chemical Communications, 0, , .	2.2	0
339	Effects of strong coordination bonds at the axial or equatorial positions on magnetic relaxation for pentagonal bipyramidal dysprosium(<scp>iii</scp>) single-ion magnets. Dalton Transactions, 2022, 51, 16964-16972.	1.6	1
340	Polyoxometalate‧oft Matter Composite Materials: Design Strategies, Applications, and Future Directions. Advanced Functional Materials, 2022, 32, .	7.8	33
341	1,10-Phenanthroline-5,6-dione-bridged FeCo complexes: a DFT investigation of the electronic lability. Structural Chemistry, 0, , .	1.0	0
342	Multiprocessing Quantum Computing through Hyperfine Couplings in Endohedral Fullerene Derivatives. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
343	Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit. Nature Nanotechnology, 2022, 17, 1165-1170.	15.6	11
344	Polynuclear Cyanide-Bridged Heterobimetallic Complexes Based-on Pentacyanometallates: Synthesis, Crystal Structure and Magnetic Property. Journal of Chemical Crystallography, 0, , .	0.5	0
345	Impact of Counteranion on Reversible Spin-State Switching in a Series of Cobalt(II) Complexes Containing a Redox-Active Ethylenedioxythiophene-Based Terpyridine Ligand. Inorganic Chemistry, 2022, 61, 17080-17088.	1.9	7
346	Finite-temperature properties of extended Nagaoka ferromagnetism: Ordering processes and precursor of a quantum phase transition between itinerant ferromagnetic and Mott antiferromagnetic states. Physical Review B, 2022, 106, .	1.1	0
347	Solvent Modification of the Structures and Magnetic Properties of a Series of Dysprosium(III) Single-Molecule Magnets. Inorganic Chemistry, 2022, 61, 17537-17549.	1.9	5
348	CESIUM SALTS WITH THE DIFURAZANOPYRAZINE RADICAL ANION. Journal of Structural Chemistry, 2022, 63, 1697-1707.	0.3	2

#	Article	IF	CITATIONS
349	Comprehensive Studies of Magnetic Transitions and Spin–Phonon Couplings in the Tetrahedral Cobalt Complex Co(AsPh ₃) ₂ 1 ₂ . Inorganic Chemistry, 2022, 61, 17123-17136.	1.9	5
350	Multiprocessing Quantum Computing through Hyperfine Couplings in Endohedral Fullerene Derivatives. Angewandte Chemie, 0, , .	1.6	1
351	Ferrimagnetic behavior in a naphthalene templated manganese(II) 1,1-cyclohexanediacetate compound. Journal of Coordination Chemistry, 0, , 1-13.	0.8	0
352	Host Spin rossover Thermodynamics Indicate Guest Fit. Angewandte Chemie, 0, , .	1.6	0
353	Topological magnons in one-dimensional ferromagnetic Su–Schrieffer–Heeger model with anisotropic interaction. Journal of Physics Condensed Matter, 2022, 34, 495801.	0.7	0
354	Spin-orbital Yu-Shiba-Rusinov states in single Kondo molecular magnet. Nature Communications, 2022, 13, .	5.8	4
355	Host Spin rossover Thermodynamics Indicate Guest Fit. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
356	Field-induced single-ion magnet behavior in a cobalt(II) coordination polymer constructed by a mixed bipyridyl-tetracarboxylate strategy. Polyhedron, 2023, 229, 116175.	1.0	4
357	Intercalation of [Ni(bpy)3]2+ complex cation into synthetic saponite: Preparation, characterization and magnetic properties. Applied Clay Science, 2023, 231, 106728.	2.6	0
358	Syntheses, structures and magnetic properties of mononuclear, dinuclear and tetranuclear dysprosium(III) complexes based on azotetrazole-3-hydroxy-2-naphthoic acid. CrystEngComm, 0, , .	1.3	2
359	Metal–metal bond in lanthanide single-molecule magnets. Chemical Society Reviews, 2022, 51, 9469-9481.	18.7	54
360	The exact solution of the edge-modified graphene nanoribbon-like structure Ising-Heisenberg spin (1,1/2) system. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115569.	1.3	2
361	Synthesis and Crystal Structure of an Adjoined Metallacrown: An Archetypal 12-Metallacrown-4 Connected to a Collapsed 11-Metallacrown-4. Journal of Chemical Crystallography, 0, , .	0.5	0
362	Diâ€Iron(II) [2+2] Helicates of Bisâ€(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry - A European Journal, 2023, 29, .	1.7	5
363	Mononuclear Heptacoordinated 3d-Metal Helicates as a New Family of Single Ion Magnets. Magnetochemistry, 2022, 8, 153.	1.0	3
364	Chemical Tuning Meets 2D Molecular Magnets. Advanced Materials, 2023, 35, .	11.1	4
365	Quantum entanglement in low-dimensional metal complexes: an outlook. Physica B: Condensed Matter, 2023, 653, 414485.	1.3	4
367	Spin Selectivity in Chiral Hybrid Cobalt Halide Films with Ultrasmooth Surface. Small Methods, 2022, 6, .	4.6	5

#	Article	IF	CITATIONS
368	Molecular dynamics simulation of adsorption and separation of xylene isomers by Cu-HKUST-1. RSC Advances, 2022, 12, 35290-35299.	1.7	2
369	Spin-Electric Coupling, Magnetoelectricity, and Quantum Dynamics of Toroidal Moment in Lanthanide-Based Single Molecule Toroics. , 2022, , 133-187.		0
370	Pentagonal-bipyramidal 4d and 5d complexes with unquenched orbital angular momentum as a unique platform for advanced single-molecule magnets: current state and perspectives. Dalton Transactions, 2023, 52, 509-539.	1.6	4
371	Broad-range spin-crossover modulation in guest-responsive 2D Hofmann-type coordination polymers. Inorganic Chemistry Frontiers, 2023, 10, 600-611.	3.0	4
372	Room-temperature bistability in a cobalt-octacyanidotungstate framework showing a charge-transfer phase transition with a red-blue color change. Inorganic Chemistry Frontiers, 2023, 10, 850-859.	3.0	2
373	A multi-responsive luminescent Co(<scp>ii</scp>) coordination polymer assembled from amide-functionalized organic units for effective pH and cation sensing. Journal of Materials Chemistry C, 2023, 11, 1812-1823.	2.7	12
374	New members of radical bridged Ln ₂ metallocene single-molecule magnets based on the unsubstituted 1,2,4,5-tetrazine ligand. Inorganic Chemistry Frontiers, 2022, 10, 259-266.	3.0	11
375	Synergistic valence tautomerism and fluorescence emission in a two-dimensional coordination polymer. Chemical Communications, 2022, 58, 13903-13906.	2.2	2
376	A single-ion magnet building block strategy toward Dy ₂ single-molecule magnets with enhanced magnetic performance. Dalton Transactions, 2022, 51, 18610-18621.	1.6	8
377	Synergistic photocatalysis of bimetal mixed ZIFs in enhancing degradation of organic pollutants: Experimental and computational studies. Journal of Industrial and Engineering Chemistry, 2023, 119, 274-285.	2.9	5
378	Probing the aromaticity of bis(diazolo)pyrazine radical anions. Mendeleev Communications, 2022, 32, 732-734.	0.6	0
379	Xâ€Ray Triggered Coordinationâ€Bond Breakage in Dysprosiumâ€Organic Framework and its Impact on Magnetic Properties. Chemistry - A European Journal, 2023, 29, .	1.7	3
380	Magnet-Free Time-Resolved Magnetic Circular Dichroism with Pulsed Vector Beams. Journal of Physical Chemistry Letters, 2022, 13, 11300-11306.	2.1	5
381	Reaching the Maximal Unquenched Orbital Angular Momentum L = 3 in Mononuclear Transition-Metal Complexes: Where, When and How?. Inorganics, 2022, 10, 227.	1.2	4
382	Five-Coordinated Dysprosium Single-Molecule Magnet Functionalized by the SMe Group. Inorganic Chemistry, 2022, 61, 20547-20551.	1.9	3
383	Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. Journal of Chemical Theory and Computation, 2023, 19, 157-173.	2.3	4
384	Design of Heterometallic {Ln ^{III} –M ^V } (Ln = Dy, Er; M = W, Mo) Molecular Nanomagnets: Protonation Induced Structural Diversification. Crystal Growth and Design, 2023, 23, 450-464.	1.4	3
385	Hybrid Molecular Magnets with Lanthanide- and Countercation-Mediated Interfacial Electron Transfer between Phthalocyanine and Polyoxovanadate. Inorganic Chemistry, 2023, 62, 3761-3775.	1.9	9

#	Article	IF	CITATIONS
386	Unraveling the Contributions to Spin–Lattice Relaxation in Kramers Single-Molecule Magnets. Journal of the American Chemical Society, 2022, 144, 22965-22975.	6.6	21
387	Fine Structure and the Huge Zero-Field Splitting in Ni2+ Complexes. Molecules, 2022, 27, 8887.	1.7	2
388	Supramolecular Self-Assembly Process during Gelation and Crystallization of Cefradine. Industrial & amp; Engineering Chemistry Research, 2023, 62, 405-415.	1.8	2
389	Spin transition materials: Molecular and solid-state. Journal of Applied Physics, 2022, 132, 220402.	1.1	0
390	<i>Colloquium</i> : Cavity-enhanced quantum network nodes. Reviews of Modern Physics, 2022, 94, .	16.4	15
391	Thin Films of Solvatomagnetic CNâ€Bridged Coordination Polymers: From Micro to Nanoscale. Advanced Materials Interfaces, 2023, 10, .	1.9	3
392	Inter-layer magnetic tuning by gas adsorption in π-stacked pillared-layer framework magnets. Chemical Science, 2023, 14, 791-800.	3.7	2
393	Optimized Local Synthetic Conditions Induce Size Reduction and Phase Purification in {[Fe(Htrz) ₂ (trz)](BF ₄)} _{<i>n</i>} Spin Crossover Particles. Crystal Growth and Design, 0, , .	1.4	0
394	Low-Dimensional Metal–Organic Magnets as a Route toward the <i>S</i> = 2 Haldane Phase. Journal of the American Chemical Society, 2023, 145, 1783-1792.	6.6	2
395	Electrical Contacts With 2D Materials: Current Developments and Future Prospects. Small, 2023, 19, .	5.2	9
396	Influence of ligand substitution and the solvent effect on the structures and magnetic properties of dinuclear Dy ₂ supramolecular architectures constructed with the bis-β-diketonate-Dy ₂ building block as a metalloligand. Dalton Transactions, 2023, 52, 1366-1377.	1.6	3
397	Molecular Lanthanide Switches for Magnetism and Photoluminescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
398	Redoxâ€Active Mixed‣inker Metal–Organic Frameworks with Switchable Semiconductive Characteristics for Tailorable Chemiresistive Sensing. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
399	Redoxâ€Active Mixedâ€Linker Metal–Organic Frameworks with Switchable Semiconductive Characteristics for Tailorable Chemiresistive Sensing. Angewandte Chemie, 2023, 135, .	1.6	0
400	A pentagonal bipyramidal Co(II) single-ion magnet based on an asymmetric tetradentate ligand with easy plane anisotropy. Polyhedron, 2023, 232, 116275.	1.0	3
401	Spin State of Iron(II) Clathrochelate in the Cocrystallization Products with 2-Aminopyridine and 2-Hydroxypyridine. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 799-807.	0.3	0
402	Strategies to quench quantum tunneling of magnetization in lanthanide single molecule magnets. Chemical Communications, 2023, 59, 3206-3228.	2.2	13
403	Two Co-Based Metal–Organic Framework Isomers with Similar Metal-Carboxylate Sheets: Turn-On Ratiometric Luminescence Sensing Activities toward Biomarker N-Acetylneuraminic Acid and Discrimination of Ga ³⁺ and In ³⁺ . Inorganic Chemistry, 2023, 62, 2083-2094.	1.9	11

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
404	Molecular Lanthanide Switches for Magnetism and Photoluminescence. Angewandte Chemie, 0, , .	1.6	1
405	Heterometallic clusters based on an uncommon asymmetric "V-shaped―[Fe3+(μ-OR)Ln3+(μ-OR)2Fe3+]6- (Ln = Gd, Tb, Dy, Ho) structural core and the investigation of the slow relaxation of the magnetization behaviour of the [Fe2Dy] analogue. Dalton Transactions, 0, , .	- 1.6	0
406	Template-directed 2D nanopatterning of <i>S</i> = 1/2 molecular spins. Nanoscale Horizons, 2023, 8, 624-631.	4.1	2
407	Magnetic anisotropy and structural flexibility in the field-induced single ion magnets [Co{(OPPh ₂)(EPPh ₂)N} ₂], E = S, Se, explored by experimental and computational methods. Dalton Transactions, 2023, 52, 2036-2050.	1.6	2
408	Synthesis, X-ray structure and magnetic properties of the apically functionalized monocapped cobalt(<scp>ii</scp>) tris-pyridineoximates possessing SMM behaviour. Dalton Transactions, 2023, 52, 2928-2932.	1.6	5
409	Vanadyl(IV) Porphyrin Dimers with Palladium(II) and Platinum(II) Linkages: Syntheses, Electronic Properties, and Magnetic Interactions between the Two Moieties. Crystal Growth and Design, 0, , .	1.4	1
410	Enhanced Electronic <i>g</i> -Factors in Magic Number Main Group Bimetallic Nanoclusters. Journal of the American Chemical Society, 2023, 145, 2070-2074.	6.6	4
411	Guanidinate Rare-Earth Tetraphenylborate Complexes and Their Prospects in Single-Molecule Magnetism. Crystal Growth and Design, 2023, 23, 3134-3143.	1.4	2
412	Photoinduced Significant Magnetization Enhancement in a Viologen-Based Photochromic Compound. Crystal Growth and Design, 2023, 23, 1592-1597.	1.4	6
413	Radicalâ€Bridged Heterometallic Singleâ€Molecule Magnets Incorporating Four Lanthanoceniums. Angewandte Chemie, 0, , .	1.6	0
414	Nonlinear Optical and Magnetic Properties of Fe ^{II} -SCN-Hg ^{II} Isomers: Centrosymmetric Layers and Chiral Networks. Inorganic Chemistry, 0, , .	1.9	2
415	A photochromic metallacycle with highly anisotropic Dy–F magnetic units. Chemical Communications, 2023, 59, 5265-5268.	2.2	1
416	Asymmetric and zwitterionic Blatter diradicals. Chemical Science, 2023, 14, 2698-2705.	3.7	8
417	Recent advances in fermionic hierarchical equations of motion method for strongly correlated quantum impurity systems. , 2023, 53, 0302.		0
418	Effect of Nonconstituent Additive Ions on the Controlled Crystallization of Lanthanide-Based Preyssler Polyoxometalates. Crystal Growth and Design, 2023, 23, 3544-3548.	1.4	1
419	Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coordination Chemistry Reviews, 2023, 480, 215025.	9.5	25
420	Nearly perfect spin-filtering effect with tunable spin-polarization direction and huge magnetoresistance in molecular spin valves. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 470, 128784.	0.9	0
421	Crystal structure, photomagnetic and dielectric properties of a cyanido-bridged Cu-Mo assembly film. Inorganica Chimica Acta, 2023, 550, 121434.	1.2	0

#	Article	IF	CITATIONS
422	Quantum Stirling engine based on dinuclear metal complexes. Quantum Science and Technology, 2023, 8, 035010.	2.6	3
423	Radicalâ€Bridged Heterometallic Singleâ€Molecule Magnets Incorporating Four Lanthanoceniums. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
424	Effect of sintering temperature on re-distribution of cations, electronic structure and tuning of optical band gap and ferromagnetism in Mn _{0.1} Co _{0.9} Fe ₂ O ₄ spinel ferrites. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78, 281-295.	0.7	0
425	Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex. Molecules, 2023, 28, 1516.	1.7	1
426	Vibronic Relaxation Pathways in Molecular Spin Qubit Na9[Ho(W5O18)2]·35H2O under Pressure. Magnetochemistry, 2023, 9, 53.	1.0	0
427	Distant Magnon-Magnon Coupling Mediated by Nonresonant Photon. Symmetry, 2023, 15, 518.	1.1	0
428	Spin-Flop Transition in a Nickel–Octacyanidotungstate Chain Magnet. Crystal Growth and Design, 2023, 23, 1972-1979.	1.4	2
429	Supercritical CO ₂ â€induced New Chemical Bond of Câ^'Oâ^'Si in Graphdiyne to Achieve Robust Roomâ€Temperature Ferromagnetism. ChemPhysChem, 0, , .	1.0	1
430	Redox and guest tunable spin-crossover properties in a polymeric polyoxometalate. Chemical Science, 2023, 14, 3048-3055.	3.7	3
431	Iron(II) Complexes of 2,6-Di[4-(ethylcarboxy)pyrazol-1-yl]pyridine with Reversible Guest-Modulated Spin-Crossover Behavior. Crystal Growth and Design, 2023, 23, 2730-2738.	1.4	0
432	ON/OFF Photo(switching) along with Reversible Spin-State Change and Single-Crystal-to-Single-Crystal Transformation in a Mixed-Valence Fe(II)Fe(III) Molecular System. Inorganic Chemistry, 2023, 62, 8794-8802.	1.9	5
434	Magnetic Switchability via Thermal-Induced Structural Phase Transitions in Molecular Solids. Magnetochemistry, 2023, 9, 80.	1.0	0
435	Quantum Gate Operations on a Spectrally Addressable Photogenerated Molecular Electron Spin-Qubit Pair. Journal of the American Chemical Society, 2023, 145, 6585-6593.	6.6	8
436	Deterministic Magnetic Switching in Perpendicular Magnetic Trilayers Through Sunlightâ€Induced Photoelectron Injection. Small, 2023, 19, .	5.2	5
437	Cooperative Spin Crossover Near Room Temperature in Fe(II) Complexes Based on Acylhydrazone Ligands. Crystal Growth and Design, 0, , .	1.4	3
438	Three new Mn ^{II} –[Mo ^{III} (CN) ₇] ^{4â^'} molecular magnets constructed from chiral bidentate chelating ligands. Dalton Transactions, 0, , .	1.6	1
439	Dynamical Behavior of Pure Spin Current in Organic Materials. Advanced Science, 2023, 10, .	5.6	4
440	Lanthanide metal–organic network featuring strong perpendicular magnetic anisotropy. Nanoscale, 2023, 15, 7267-7271.	2.8	2

-			-		
C_{1}		ON	Dr		DT
	IAL			- 20	IK I

#	Article	IF	CITATIONS
441	In situ amplification of spin echoes within a kinetic inductance parametric amplifier. Science Advances, 2023, 9, .	4.7	3
442	Coordination Compounds in Devices of Molecular Spintronics. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2023, 49, 1-9.	0.3	0
443	Synthesis, X-ray structures, and magnetic properties of seven polynuclear Cu(II) complexes containing pyrazole-3,5-dicarboxylate with various ancillary ligands. New Journal of Chemistry, 0, , .	1.4	1
444	Sheathed Molecular Junctions for Unambiguous Determination of Chargeâ€Transport Properties. Advanced Materials Interfaces, 2023, 10, .	1.9	2
445	Chemical Manipulation of the Spin-Crossover Dynamics through Judicious Metal-Ion Dilution. Journal of the American Chemical Society, 2023, 145, 9564-9570.	6.6	8
446	Magnetic relaxation in unique nitronyl nitroxide biradical-Ln–Cu chains with Ln-bis(NIT)–Cu-bis(NIT)–Ln units. Dalton Transactions, 2023, 52, 6853-6859.	1.6	1
455	Actinide-based single-molecule magnets: alone or in a group?. Inorganic Chemistry Frontiers, 2023, 10, 3742-3755.	3.0	5
456	Low Temperature Behavior of Itinerant Ferromagnet Realized in Extended Nagaoka Mechanism. , 2023, , .		0
480	Single-ion magnetism behaviors in lanthanide(<scp>iii</scp>) based coordination frameworks. Inorganic Chemistry Frontiers, 2023, 10, 5212-5224.	3.0	4
486	Ab Initio Investigation of Anisotropic Magnetism and Magnetization Blocking in Metal Complexes. Challenges and Advances in Computational Chemistry and Physics, 2023, , 1-62.	0.6	0
487	Theoretical Approaches for Electron Transport Through Magnetic Molecules. Challenges and Advances in Computational Chemistry and Physics, 2023, , 445-494.	0.6	0
488	Molecular Magnets on Surfaces: In Silico Recipes for a Successful Marriage. Challenges and Advances in Computational Chemistry and Physics, 2023, , 395-444.	0.6	0
490	A review on Fe-based spin crossover complexes with synergetic conductive and fluorescent properties. Chemical Papers, 0, , .	1.0	0
499	Disentangle electronic, structural, and spin dynamics using transient extreme ultraviolet spectroscopy. Journal of Materials Chemistry C, 2023, 11, 12128-12146.	2.7	0
500	Current progress in metal–organic frameworks and their derivatives for electrocatalytic water splitting. Inorganic Chemistry Frontiers, 2023, 10, 6489-6505.	3.0	2
529	Probing the magnetic and magneto-optical properties of a radical-bridged Tb ₄ single-molecule magnet. Chemical Communications, 2023, 59, 13970-13973.	2.2	0
540	The green synthesis and applications of biological metal–organic frameworks for targeted drug delivery and tumor treatments. Journal of Materials Chemistry B, O, , .	2.9	0
544	Dynamics of Paramagnetic Centers in Organometallic Nanosystems and Their Application in Biomedical Research. , 2023, , .		0

#	Article	IF	CITATIONS
550	Multistate switching of scanning tunnelling microscopy machined polyoxovanadate–dysprosium–phthalocyanine nanopatterns on graphite. Nanoscale Horizons, 2024, 9, 233-237.	4.1	2
563	Polymer–Magnet Nanosystems. Springer Proceedings in Physics, 2023, , 155-176.	0.1	0
585	Endohedral metallofullerene molecular nanomagnets. Chemical Society Reviews, 2024, 53, 2863-2897.	18.7	1