Comprehensive Benchmark Results for the Domain Bas Coupled Cluster Method (DLPNO-CCSD(T)) for Closed-

Journal of Physical Chemistry A 124, 90-100

DOI: 10.1021/acs.jpca.9b05734

Citation Report

#	Article	IF	CITATIONS
1	Insight into the synthesis of N-methylated polypeptides. Polymer Chemistry, 2020, 11, 6919-6927.	1.9	3
2	Chalcogen–mercury bond formation and disruption in model Rabenstein's reactions: A computational analysis. Journal of Computational Chemistry, 2020, 41, 2045-2054.	1.5	13
3	Kinetic modeling of methyl pentanoate pyrolysis based on <i>ab initio</i> calculations. Physical Chemistry Chemical Physics, 2020, 22, 17978-17986.	1.3	8
4	A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versus <i>ab initio</i> molecular dynamics. Molecular Physics, 2020, 118, e1797916.	0.8	9
5	Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. Journal of Chemical Physics, 2020, 153, 094105.	1.2	22
6	Efficient Synthesis of γâ€Lactones by Cobaltâ€Catalyzed Carbonylative Ring Expansion of Oxetanes under Syngas Atmosphere. ChemCatChem, 2020, 12, 5898-5902.	1.8	12
7	Reversible switching between housane and cyclopentanediyl isomers: an isonitrile-catalysed thermal reverse reaction. Dalton Transactions, 2020, 49, 13986-13992.	1.6	8
8	Bond Dissociation Energies in the Gas Phase for Large Molecular Ions by Threshold Collision-Induced Dissociation Experiments: Stretching the Limits. Journal of Physical Chemistry A, 2020, 124, 8692-8707.	1.1	11
9	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie, 2020, 132, 22589-22593.	1.6	7
10	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie - International Edition, 2020, 59, 22403-22407.	7.2	32
11	Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. Journal of Chemical Theory and Computation, 2020, 16, 6142-6149.	2.3	45
12	Hindered rotor benchmarks for the transition states of free radical additions to unsaturated hydrocarbons. Physical Chemistry Chemical Physics, 2020, 22, 27241-27254.	1.3	2
13	Mechanistic Insights into the <i>ortho</i> -Defluorination-Hydroxylation of 2-Halophenolates Promoted by a Bis(μ-oxo)dicopper(III) Complex. Inorganic Chemistry, 2020, 59, 17018-17027.	1.9	8
14	Canonical and DLPNO-Based G4(MP2)XK-Inspired Composite Wave Function Methods Parametrized against Large and Chemically Diverse Training Sets: Are They More Accurate and/or Robust than Double-Hybrid DFT?. Journal of Chemical Theory and Computation, 2020, 16, 4238-4255.	2.3	30
15	Hydration of Atmospheric Molecular Clusters III: Procedure for Efficient Free Energy Surface Exploration of Large Hydrated Clusters. Journal of Physical Chemistry A, 2020, 124, 5253-5261.	1.1	16
16	The ORCA quantum chemistry program package. Journal of Chemical Physics, 2020, 152, 224108.	1.2	1,915
17	Assessment of the DLPNO Binding Energies of Strongly Noncovalent Bonded Atmospheric Molecular Clusters. ACS Omega, 2020, 5, 7601-7612.	1.6	38
18	Computational study on the mechanism of CBT-Cys click reaction. Computational and Theoretical Chemistry, 2020, 1185, 112874.	1.1	3

#	Article	IF	CITATIONS
19	Remarkable Accuracy of an <i>O</i> (<i>N</i> ⁶) Perturbative Correction to Opposite-Spin CCSD: Are Triples Necessary for Chemical Accuracy in Coupled Cluster?. Journal of Chemical Theory and Computation, 2020, 16, 4014-4020.	2.3	3
20	A comparison of DLPNO-CCSD(T) and CCSD(T) method for the determination of the energetics of hydrogen atom transfer reactions. Computational and Theoretical Chemistry, 2020, 1187, 112934.	1.1	34
21	Bootstrap Embedding For Large Molecular Systems. Journal of Chemical Theory and Computation, 2020, 16, 5035-5046.	2.3	11
22	Modelling Enzymatic Mechanisms with QM/MM Approaches: Current Status and Future Challenges. Israel Journal of Chemistry, 2020, 60, 655-666.	1.0	40
23	Performance of Localized Coupled Cluster Methods in a Moderately Strong Correlation Regime: Hückel–Möbius Interconversions in Expanded Porphyrins. Journal of Chemical Theory and Computation, 2020, 16, 3641-3653.	2.3	44
24	Double hybrid <scp>DFT</scp> calculations with Slater type orbitals. Journal of Computational Chemistry, 2020, 41, 1660-1684.	1.5	16
25	Local energy decomposition of coupledâ€cluster interaction energies: Interpretation, benchmarks, and comparison with symmetryâ€adapted perturbation theory. International Journal of Quantum Chemistry, 2021, 121, e26339.	1.0	36
26	Assessing conformer energies using electronic structure and machine learning methods. International Journal of Quantum Chemistry, 2021, 121, e26381.	1.0	40
27	Quantification of Noncovalent Interactions in Azide–Pnictogen, –Chalcogen, and –Halogen Contacts. Chemistry - A European Journal, 2021, 27, 4627-4639.	1.7	25
28	In silico prediction of annihilators for triplet–triplet annihilation upconversion via auxiliary-field quantum Monte Carlo. Chemical Science, 2021, 12, 1068-1079.	3.7	7
29	New insights on the ESIPT process based on solid-state data and state-of-the-art computational methods. Physical Chemistry Chemical Physics, 2021, 23, 1146-1155.	1.3	26
30	Reactivity of Undissociated Molecular Nitric Acid at the Air–Water Interface. Journal of the American Chemical Society, 2021, 143, 453-462.	6.6	14
31	Strong bases behave as weak bases in nanoscale chemical environments: implication in humidity-swing CO2 air capture. Physical Chemistry Chemical Physics, 2021, 23, 14811-14817.	1.3	7
32	Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. Journal of Chemical Theory and Computation, 2021, 17, 902-926.	2.3	26
33	Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. Journal of Chemical Theory and Computation, 2021, 17, 860-878.	2.3	32
34	Canonical and explicitly-correlated coupled cluster correlation energies of sub-kJ mol ^{â^'1} accuracy <i>via</i> cost-effective hybrid-post-CBS extrapolation. Physical Chemistry Chemical Physics, 2021, 23, 9571-9584.	1.3	12
35	Chalcogen-Nitrogen Bond: Insights into a Key Chemical Motif. Catalysts, 2021, 11, 114.	1.6	5
36	Pairing double hybrid functionals with a tailored basis set for an accurate thermochemistry of hydrocarbons. RSC Advances. 2021, 11, 26073-26082.	1.7	4

#	Article	IF	CITATIONS
37	Transformation of various multicenter bondings within bicapped-square antiprismatic motifs: <i>Z</i> -rearrangement. Dalton Transactions, 2021, 50, 12098-12106.	1.6	4
38	Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chemical Communications, 2021, 57, 3952-3974.	2.2	24
39	Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. Journal of Physical Chemistry A, 2021, 125, 1553-1563.	1.1	48
40	Describing Polytopal Rearrangement Processes of Octacoordinate Structures. I. Renewed Insights into Fluxionality of the Rhenium Polyhydride Complex ReH ₅ (PPh ₃) ₂ (Pyridine). Inorganic Chemistry, 2021, 60, 2492-2502.	1.9	6
41	Zeolites at the Molecular Level: What Can Be Learned from Molecular Modeling. Molecules, 2021, 26, 1511.	1.7	6
42	Photochemical C–H Activation Enables Nickel-Catalyzed Olefin Dicarbofunctionalization. Journal of the American Chemical Society, 2021, 143, 3901-3910.	6.6	106
43	Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules, 2021, 26, 1875.	1.7	4
44	CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?. Journal of Chemical Theory and Computation, 2021, 17, 2783-2806.	2.3	42
45	DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. Journal of Chemical Physics, 2021, 154, 164110.	1.2	35
46	A guide to benchmarking enzymatically catalysed reactions: the importance of accurate reference energies and the chemical environment. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	6
47	Computational molecular spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	73
48	Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy. Journal of Chemical Theory and Computation, 2021, 17, 3348-3359.	2.3	7
49	Theoretical Prediction of Structures, Vibrational Circular Dichroism, and Infrared Spectra of Chiral Be4B8 Cluster at Different Temperatures. Molecules, 2021, 26, 3953.	1.7	11
50	Reductive Hydrogenation under Single-Site Control: Generation and Reactivity of a Transient NHC-Stabilized Tantalum(III) Alkoxide. Inorganic Chemistry, 2021, 60, 9785-9795.	1.9	6
51	Synthetic strategy toward ineleganolide: A cautionary tale. Tetrahedron, 2021, 93, 132289.	1.0	3
52	Antiradical Properties of N-Oxide Surfactants—Two in One. International Journal of Molecular Sciences, 2021, 22, 8040.	1.8	7
53	Development and Validation of a Parameter-Free Model Chemistry for the Computation of Reliable Reaction Rates. Journal of Chemical Theory and Computation, 2021, 17, 4913-4928.	2.3	34
54	3× Axial vs 3× Equatorial: The Δ <i>G</i> _{GA} Value Is a Robust Computational Measure of Substituent Steric Effects. Journal of the American Chemical Society, 2021, 143, 13573-13578.	6.6	6

#	ARTICLE Exploring the Limits of Second- and Third-Order MÃ,ller–Plesset Perturbation Theories for	IF	CITATIONS
55	Noncovalent Interactions: Revisiting MP2.5 and Assessing the Importance of Regularization and Reference Orbitals. Journal of Chemical Theory and Computation, 2021, 17, 5582-5599.	2.3	11
56	Energies, structures, and harmonic frequencies of small water clusters from the direct random phase approximation. Journal of Chemical Physics, 2021, 155, 084303.	1.2	1
57	Redox Isomerism in the S ₃ State of the Oxygenâ€Evolving Complex Resolved by Coupled Cluster Theory. Chemistry - A European Journal, 2021, 27, 12815-12825.	1.7	20
58	DFT Functionals for Modeling of Polyethylene Chains Cross-Linked by Metal Atoms. DLPNO–CCSD(T) Benchmark Calculations. Journal of Physical Chemistry A, 2021, 125, 7382-7395.	1.1	8
59	Can ionic effects induce α-sheet conformation of Peptides?. Chemical Physics Letters, 2021, 784, 139095.	1.2	0
60	Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. Journal of Chemical Theory and Computation, 2021, 17, 6134-6151.	2.3	75
61	GW approximation for open-shell molecules: a first-principles study. New Journal of Physics, 2021, 23, 093027.	1.2	5
62	Coupled Cluster Benchmark of New DFT and Local Correlation Methods: Mechanisms of Hydroarylation and Oxidative Coupling Catalyzed by Ru(II, III) Chloride Carbonyls. Journal of Physical Chemistry A, 2021, 125, 8987-8999.	1.1	22
63	Mechanisms, challenges, and opportunities of dual Ni/ <scp>photoredoxâ€catalyzed</scp> C(sp ²)–C(sp ³) <scp>crossâ€couplings</scp> . Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1573.	6.2	20
64	Organic acid-ammonia ion-induced nucleation pathways unveiled by quantum chemical calculation and kinetics modeling: A case study of 3-methyl-1,2,3-butanetricarboxylic acid. Chemosphere, 2021, 284, 131354.	4.2	4
65	Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. Journal of Chemical Theory and Computation, 2021, 17, 756-766.	2.3	32
66	Local energy decomposition analysis and molecular properties of encapsulated methane in fullerene (CH ₄ @C ₆₀). Physical Chemistry Chemical Physics, 2021, 23, 21554-21567.	1.3	19
67	Energetics of Formation of Cyclacenes from 2,3â€Ðidehydroacenes and Implications for Astrochemistry. Chemistry - A European Journal, 2021, 27, 4605-4616.	1.7	7
68	A <scp>DLPNO CCSD</scp> (T) benchmarking study of intermolecular interactions of ionic liquids. Journal of Computational Chemistry, 2022, 43, 106-120.	1.5	6
69	Computational Protocol to Calculate the Phosphorescence Energy of Pt(II) Complexes: Is the Lowest Triplet Excited State Always Involved in Emission? A Comprehensive Benchmark Study. Inorganic Chemistry, 2021, 60, 17230-17240.	1.9	11
70	Neosilyllithium atalyzed Hydroboration of Alkynes and Alkenes in the Presence of Pinacolborane (HBpin). European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	5
71	Removal of Cu2+, Cd2+, and Pb2+ from aqueous solution by fabricated MIL-100(Fe) and MIL-101(Cr): Experimental and molecular modeling study. Journal of Environmental Chemical Engineering, 2021, 9, 106663.	3.3	12
72	Homobinuclear compounds based on a chiral oxazolidine ligand: From solid state study to aqueous solution dynamics. Inorganica Chimica Acta, 2022, 529, 120664.	1.2	1

CITATION REPORT

#	Article	IF	CITATIONS
73	Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations. Journal of Physical Chemistry A, 2021, 125, 9932-9939.	1.1	17
74	Stability of the polyynic form of C ₁₈ , C ₂₂ , C ₂₆ , and C ₃₀ nanorings: a challenge tackled by range-separated double-hybrid density functionals. Physical Chemistry Chemical Physics, 2022, 24, 4515-4525.	1.3	12
75	Theoretical Investigation on H-Abstraction Reactions of Silanes with H and CH ₃ Attacking: A Comparative Study with Alkane Counterparts. ACS Omega, 2022, 7, 5558-5569.	1.6	3
76	Schiff base (Z)-4-((furan-2-ylmethylene)amino) benzenesulfonamide: Synthesis, solvent interactions through hydrogen bond, structural and spectral properties, quantum chemical modeling and biological studies. Journal of Molecular Liquids, 2022, 350, 118531.	2.3	42
77	Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects. Journal of Physical Chemistry A, 2022, 126, 1158-1167.	1.1	5
78	Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point?. Journal of the American Chemical Society, 2021, 143, 21079-21099.	6.6	21
79	Software update: The <scp>ORCA</scp> program system—Version 5.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	953
80	Tackling an accurate description of molecular reactivity with double-hybrid density functionals. Journal of Chemical Physics, 2022, 156, 161101.	1.2	7
81	Hydroboration of nitriles, esters, and amides catalyzed by simple neosilyllithium. Polyhedron, 2022, 219, 115784.	1.0	15
82	Versatile Fe–Sn Bonding Interactions in a Metallostannylene System: Multiple Bonding and C–H Bond Activation. Journal of the American Chemical Society, 2022, 144, 358-367.	6.6	14
83	Unusual Intramolecular Motion of ReH ₉ ^{2–} in K ₂ ReH ₉ Crystal: Circle Dance and Three-Arm Turnstile Mechanisms Revealed by Computational Studies. Inorganic Chemistry, 2022, 61, 1041-1050.	1.9	2
84	Direct orbital selection within the domain-based local pair natural orbital coupled-cluster method. Journal of Chemical Physics, 2021, 155, 224102.	1.2	9
85	Kinetic Modeling of API Oxidation: (2) Imipramine Stress Testing. Molecular Pharmaceutics, 2022, 19, 1526-1539.	2.3	6
87	Can Domain-Based Local Pair Natural Orbitals Approaches Accurately Predict Phosphorescence Energies?. Physical Chemistry Chemical Physics, 0, , .	1.3	3
88	Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts. Physical Chemistry Chemical Physics, 2022, 24, 15230-15244.	1.3	3
89	Simulating the solvation structure of low- and high-spin [Fe(bpy) ₃] ²⁺ : long-range dispersion and many-body effects. Physical Chemistry Chemical Physics, 2022, 24, 16655-16670.	1.3	3
90	Assessment of <scp>DLPNOâ€CCSD</scp> (T)â€ <scp>F12</scp> and its use for the formulation of the <scp>lowâ€cost</scp> and reliable <scp>Lâ€W1X</scp> composite method. Journal of Computational Chemistry, 2022, 43, 1394-1402.	1.5	13
91	The mechanism of biochemical NOâ€sensing: insights from computational chemistry. Chemistry - A European Journal, 0, , .	1.7	1

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
92	Machine Learning of Coupled Cluster (T)-Energy Corrections via Delta (Δ)-Learning. Journal of Chemical Theory and Computation, 2022, 18, 4846-4855.	2.3	11
93	Amino Acids Compete with Ammonia in Sulfuric Acid-Based Atmospheric Aerosol Prenucleation: The Case of Glycine and Serine. Journal of Physical Chemistry A, 2022, 126, 5195-5206.	1.1	10
94	Nonâ€physical Species in Chemical Kinetic Models: A Case Study of Diazenyl Hydroxy and Diazenyl Peroxide. ChemPhysChem, 0, , .	1.0	2
95	In the Chalcogenoxide Elimination Panorama: Systematic Insight into a Key Reaction. Journal of Organic Chemistry, 2022, 87, 11766-11775.	1.7	7
96	Quantum computational quantification of protein–ligand interactions. International Journal of Quantum Chemistry, 2022, 122, .	1.0	27
97	<i>A</i> -value revisited: ring flip energy of chair structures in halogenated cyclohexanes by quantum chemical methods. Molecular Physics, 0, , .	0.8	0
98	Performance of local G4(MP2) composite ab initio procedures for fullerene isomerization energies. Computational and Theoretical Chemistry, 2022, 1217, 113874.	1.1	3
99	Simulation and analysis of the relaxation dynamics of a photochromic furylfulgide. Physical Chemistry Chemical Physics, 2022, 24, 18103-18118.	1.3	4
100	Concerted addition of aldehydes to the singlet biradical [P(μ-NTer)] ₂ . Dalton Transactions, 2022, 51, 13479-13487.	1.6	2
101	The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. Environmental Science Atmospheres, 2022, 2, 1469-1486.	0.9	5
102	The hitchhiker's guide to dynamic ion–solvent clustering: applications in differential ion mobility spectrometry. Physical Chemistry Chemical Physics, 2022, 24, 20594-20615.	1.3	9
103	Substituent-Induced Control of <i>fac</i> / <i>mer</i> Isomerism in Azine-NHC Fe(II) Complexes. ACS Organic & Inorganic Au, 0, , .	1.9	0
104	S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Physical Chemistry Chemical Physics, 2022, 24, 25555-25570.	1.3	11
105	Single-precision CCSD and CCSD(T) Calculations with Density Fitting Approximations on Graphics Processing Units. Acta Chimica Sinica, 2022, 80, 1401.	0.5	0
106	On the potential intermediacy of PhIBr ₂ as a brominating agent. Organic and Biomolecular Chemistry, 2022, 20, 8454-8460.	1.5	5
107	Origin of Decomposition in a Family of Molybdenum Precursor Compounds. Inorganic Chemistry, 2022, 61, 16607-16621.	1.9	6
108	Reductive Elimination or Câ^'C Bond Activation with Model Ni, Pd, Pt Complexes? A Highâ€Accuracy Comparative Computational Analysis of Reactivity. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	2
109	Cluster-in-Molecule Method Combined with the Domain-Based Local Pair Natural Orbital Approach for Electron Correlation Calculations of Periodic Systems. Journal of Chemical Theory and Computation, 0, , .	2.3	5

#	Article	IF	CITATIONS
110	Barrier heights, reaction energies and bond dissociation energies for RH + HO ₂ reactions with coupled-cluster theory, density functional theory and diffusion quantum Monte Carlo methods. Physical Chemistry Chemical Physics, 2022, 25, 341-350.	1.3	2
111	Influence of the complete basis set approximation, tight weightedâ€core, and diffuse functions on the <scp>DLPNOâ€CCSD</scp> (<scp>T1</scp>) atomization energies of neutral H,C,Oâ€compounds. Journal of Computational Chemistry, 2023, 44, 687-696.	1.5	2
112	A comprehensive benchmark investigation of quantum chemical methods for carbocations. Physical Chemistry Chemical Physics, 2023, 25, 1903-1922.	1.3	3
113	S66 noncovalent interactions benchmark re-examined: Composite localized coupled cluster approaches. AIP Conference Proceedings, 2022, , .	0.3	2
114	Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer <i>n</i> -Alkane Chains. Journal of Physical Chemistry A, 2022, 126, 9375-9391.	1.1	5
115	A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. International Journal of Molecular Sciences, 2022, 23, 15773.	1.8	6
116	The Halogen Bond in Weakly Bonded Complexes and the Consequences for Aromaticity and Spin-Orbit Coupling. Molecules, 2023, 28, 772.	1.7	13
117	Photocatalytic Activity of the V2O5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process. Molecules, 2023, 28, 655.	1.7	4
118	Evaporation and thermal decomposition of 1-ethyl-3-methylimidazolium chloride. Journal of Molecular Liquids, 2023, 380, 121733.	2.3	0
119	Evaluation of tight-binding DFT performance for the description of organic photochromes properties. Journal of Chemical Physics, 2023, 158, 074303.	1.2	3
120	Counterintuitive Oxidation of Alcohols at Air–Water Interfaces. Journal of the American Chemical Society, 2023, 145, 4791-4799.	6.6	5
121	Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes. Journal of Chemical Theory and Computation, 2023, 19, 2039-2047.	2.3	5
122	Excited-State Intramolecular Proton Transfer in Salicylidene-α-Hydroxy Carboxylate Derivatives: Direct Detection of the Triplet Excited State of the <i>cis</i> -Keto Tautomer. Journal of Physical Chemistry A, 2023, 127, 2765-2778.	1.1	0
123	Mechanism of Bâ€H Redistribution during Reduction of Polyborazylene by Hydrazine. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	0
124	Access to Benzo―and Naphthoâ€Azaphospholes via Câ^'H Bond Activation of Arylâ€Substituted Isonitriles. Chemistry - A European Journal, 2023, 29, .	1.7	2
128	Looking behind the scenes of Grubbs catalysis with the Unified Reaction Valley Approach. , 2023, , 301-346.		0
140	Photophysics and Photochemistry of Transition Metal Complexes: Complex Emissive and		0

Photoreactivity Scenarios. , 2024, , 330-344.