Preparation of porous sulfonated poly(styrene-divinylb application in hydrophilic and chiral separation

Talanta 210, 120586

DOI: 10.1016/j.talanta.2019.120586

Citation Report

#	Article	IF	CITATIONS
1	Chiral stationary phase based on cellulose derivative coated polymer microspheres and its separation performance. Journal of Chromatography A, 2020, 1623, 461154.	3.7	16
2	Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst, The, 2021, 146, 1320-1325.	3.5	13
3	Synthesis of Shape-Controllable Anisotropic Microparticles and "Walnut-like―Microparticles via Emulsion Interfacial Polymerization. Langmuir, 2021, 37, 6007-6015.	3.5	3
4	Preparation of Pyridine Polyionic Liquid Porous Microspheres and Their Application in Organic Dye Adsorption. Journal of Polymers and the Environment, 2022, 30, 385-400.	5.0	16
5	Strategies for Preparation of Chiral Stationary Phases: Progress on Coating and Immobilization Methods. Molecules, 2021, 26, 5477.	3.8	10
6	Effect of Micro-/Nanoparticle Hybrid Hydrogel Platform on the Treatment of Articular Cartilage-Related Diseases. Gels, 2021, 7, 155.	4.5	3
7	Synthesis of boric acid-functionalized microspheres and their adsorption properties for flavonoids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126656.	4.7	5
8	Amino-acid-substituted polyacetylene-based chiral core–shell microspheres: helix structure induction and application for chiral resolution and adsorption. Polymer Chemistry, 2021, 12, 6404-6416.	3.9	4
9	Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules, 2022, 27, 907.	3.8	13
10	Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. Polymer Reviews, 2022, 62, 826-859.	10.9	10
11	Therapeutic Application of Microsponges-based Drug Delivery Systems. Current Pharmaceutical Design, 2022, 28, 595-608.	1.9	2
12	Homochiral Metal-Organic Framework Based Mixed Matrix Membrane for Chiral Resolution. Membranes, 2022, 12, 357.	3.0	10
13	Enantioselective Separation of Amino Acids Using Chiral Polystyrene Microspheres Synthesized by a Post-Polymer Modification Approach. ACS Polymers Au, 2022, 2, 257-265.	4.1	3
14	Porous Polymeric Substrates Based on a Styrene–Divinylbenzene Copolymer for Reversed-Phase and Ion Chromatography. Moscow University Chemistry Bulletin, 2022, 77, 68-89.	0.6	1
15	Preparation of Modified Porous Polyionic Liquid Microspheres and Their Application in High Performance Liquid Chromatography. Integrated Ferroelectrics, 2022, 226, 140-147.	0.7	1
16	Fabrication of Fe ₃ O ₄ @poly(methyl methacrylate- <i>co</i> glycidyl) Tj ETQq1 1 0.784 templates for removal of cationic dyes. New Journal of Chemistry, 2022, 46, 13442-13453.	314 rgBT / 2.8	Overlock 101 3
17	Preparation, application and development of poly(ionic liquid) microspheres. Journal of Molecular Liquids, 2022, 362, 119706.	4.9	8
18	Preparation and modification of monodisperse large particle size crosslinked polystyrene microspheres and their application in high performance liquid chromatography. Reactive and Functional Polymers, 2022, 178, 105357.	4.1	2

#	Article	IF	CITATIONS
19	Amphiphilic block copolymer with diazonium salt pendant groups: Synthesis, self-assembly and post-modification. Reactive and Functional Polymers, 2022, 179, 105377.	4.1	1
20	Adsorption of flavonoids with glycosides: Design and synthesis of chitosan-functionalized microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130221.	4.7	3
21	Preparation and modification of PS–PMMA microspheres and their application in high performance liquid chromatography. Analytical Methods, 0, , .	2.7	O
22	Preparation and chromatographic application of $\langle i \rangle \hat{l}^2 \langle i \rangle$ $\hat{a} \in cyclodextrin modified poly (styrene\hat{a} \in divinylbenzene) microspheres. Journal of Applied Polymer Science, 0, , .$	2.6	O
23	Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample. Food Chemistry, 2023, 404, 134645.	8.2	O
24	Four Kinds of Polymer Microspheres Prepared by the Seed Swelling Method Used to Purify the Industrial Production of Phytol. Journal of Chromatographic Science, 0, , .	1.4	1
25	Preparation of High Flux GO/PS-DVB/PAN Membrane by Filtering Layer-by-Layer Assembly Method for Adsorption of Antibiotics from Water. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 2292-2304.	3.7	2
26	Modified Column Lamography Silicone Powder Separates Thiophene and its Derivatives. Integrated Ferroelectrics, 2023, 233, 110-116.	0.7	O
29	Pyridinium and trifluoromethanesulfonate bifunctional poly(ionic liquid)s for highly efficient and selective adsorption of anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682, 132883.	4.7	0
31	Facile and green synthesis of a hydrophilic imprinted resin in a deep eutectic solvent–water medium for the specific molecular recognition of tumor biomarkers in complex biological matrices. Green Chemistry, 2024, 26, 2000-2010.	9.0	O
32	Constructing multiple hydrogen bonds in adsorbent for selective adsorption of acteoside. Journal of Molecular Liquids, 2024, 398, 124234.	4.9	O