Drug delivery to macrophages: A review of targeting dragorophages for inflammatory diseases

Advanced Drug Delivery Reviews 165-166, 15-40

DOI: 10.1016/j.addr.2019.12.001

Citation Report

#	Article	IF	CITATIONS
1	Nanomedicine strategies to target coronavirus. Nano Today, 2020, 35, 100961.	11.9	48
2	Increased Serum Levels of sCD14 and sCD163 Indicate a Preponderant Role for Monocytes in COVID-19 Immunopathology. Frontiers in Immunology, 2020, 11, 560381.	4.8	59
3	Bioresponsive drug delivery systems for the treatment of inflammatory diseases. Journal of Controlled Release, 2020, 327, 641-666.	9.9	97
4	Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sciences, 2020, 257, 118102.	4.3	248
5	Following the Fate of Dye-Containing Liposomes In Vitro. International Journal of Molecular Sciences, 2020, 21, 4847.	4.1	29
6	Targeting of CD163+ Macrophages in Inflammatory and Malignant Diseases. International Journal of Molecular Sciences, 2020, 21, 5497.	4.1	104
7	The Development of Hyaluronan/Fucoidan-Based Nanoparticles as Macrophages Targeting an Epigallocatechin-3-Gallate Delivery System. International Journal of Molecular Sciences, 2020, 21, 6327.	4.1	7
8	Spatially Resolved Correlation between Stiffness Increase and Actin Aggregation around Nanofibers Internalized in Living Macrophages. Materials, 2020, 13, 3235.	2.9	6
9	Deliver Anti-inflammatory Drug Baicalein to Macrophages by Using a Crystallization Strategy. Frontiers in Chemistry, 2020, 8, 787.	3.6	5
10	Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. Journal of Neuroinflammation, 2020, 17, 240.	7.2	32
11	Long-Acting Efavirenz and HIV-1 Fusion Inhibitor Peptide Co-loaded Polymer–Lipid Hybrid Nanoparticles: Statistical Optimization, Cellular Uptake, and In Vivo Biodistribution. Molecular Pharmaceutics, 2020, 17, 3990-4003.	4.6	12
12	Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. International Journal of Molecular Sciences, 2020, 21, 9585.	4.1	32
13	Nanocarrierâ€Mediated Cytosolic Delivery of Biopharmaceuticals. Advanced Functional Materials, 2020, 30, 1910566.	14.9	99
14	Biofunctional Janus particles promote phagocytosis of tumor cells by macrophages. Chemical Science, 2020, 11, 5323-5327.	7.4	12
15	Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease. Acta Pharmaceutica Sinica B, 2020, 10, 1521-1533.	12.0	39
16	Unique cellular interaction of macrophage-targeted liposomes potentiates anti-inflammatory activity. Chemical Communications, 2020, 56, 8253-8256.	4.1	7
17	Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization. International Journal of Pharmaceutics, 2020, 578, 119104.	5.2	23
18	Anti-leukemia effect associated with down-regulated CD47 and up-regulated calreticulin by stimulated macrophages in co-culture. Cancer Immunology, Immunotherapy, 2021, 70, 787-801.	4.2	7

#	ARTICLE	IF	CITATIONS
19	Protective Effects of Medicinal Plant Decoctions on Macrophages in the Context of Atherosclerosis. Nutrients, 2021, 13, 280.	4.1	6
20	Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. Journal of Materials Chemistry B, 2021, 9, 7291-7301.	5 . 8	32
21	In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy. Biomaterials, 2021, 269, 120670.	11.4	24
22	Cell therapies in the clinic. Bioengineering and Translational Medicine, 2021, 6, e10214.	7.1	68
23	Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials, 2021, 269, 120666.	11.4	23
24	Nanoâ€therapeutic strategies to target coronavirus. View, 2021, 2, 20200155.	5. 3	11
25	Drug Carriers: Classification, Administration, Release Profiles, and Industrial Approach. Processes, 2021, 9, 470.	2.8	65
26	Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response. Acta Pharmaceutica Sinica B, 2021, 11, 3272-3285.	12.0	26
27	IFN- \hat{l}^3 and TNF- \hat{l}^2 drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Medicine, 2021, 13, 64.	8.2	128
28	Biological drug and drug delivery-mediated immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 941-960.	12.0	94
29	Rapamycin-Loaded Polymeric Nanoparticles as an Advanced Formulation for Macrophage Targeting in Atherosclerosis. Pharmaceutics, 2021, 13, 503.	4.5	12
30	Phenotypic alteration of macrophages during osteoarthritis: a systematic review. Arthritis Research and Therapy, 2021, 23, 110.	3.5	27
32	A sweet spot for macrophages: Focusing on polarization. Pharmacological Research, 2021, 167, 105576.	7.1	30
33	Targeting strategies of oral nano-delivery systems for treating inflammatory bowel disease. International Journal of Pharmaceutics, 2021, 600, 120461.	5.2	19
34	Specialized pro-resolving lipid mediators in endodontics: a narrative review. BMC Oral Health, 2021, 21, 276.	2.3	9
35	Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharmaceutica Sinica B, 2021, 11, 3060-3091.	12.0	74
36	CD163â€positive cancer cells are a predictor of a worse clinical course in lung adenocarcinoma. Pathology International, 2021, 71, 666-673.	1.3	11
37	Ultrasmall Fe(III)-Tannic Acid Nanoparticles To Prevent Progression of Atherosclerotic Plaques. ACS Applied Materials & Diterfaces, 2021, 13, 33915-33925.	8.0	15

#	ARTICLE	IF	CITATIONS
38	Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nature Communications, 2021, 12, 4310.	12.8	88
39	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	14.9	17
40	Targeting fibrosis in the failing heart with nanoparticles. Advanced Drug Delivery Reviews, 2021, 174, 461-481.	13.7	20
41	Macrophage-targeted nanomedicine for chronic diseases immunotherapy. Chinese Chemical Letters, 2022, 33, 597-612.	9.0	44
42	Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharmaceutica Sinica B, 2022, 12, 600-620.	12.0	106
43	Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharmaceutica Sinica B, 2021, 11, 2220-2242.	12.0	16
44	Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharmaceutica Sinica B, 2021, 11, 2585-2604.	12.0	58
45	Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Advanced Drug Delivery Reviews, 2021, 176, 113887.	13.7	83
46	Non-spherical micro- and nanoparticles for drug delivery: Progress over 15Âyears. Advanced Drug Delivery Reviews, 2021, 177, 113807.	13.7	58
49	Modified biomimetic core–shell nanostructures enable long circulation and targeted delivery for cancer therapy. New Journal of Chemistry, 2021, 45, 21359-21368.	2.8	2
50	Oral Administration of Cryptotanshinone-Encapsulated Nanoparticles for the Amelioration of Ulcerative Colitis. Cellular and Molecular Bioengineering, 2022, 15, 129-136.	2.1	7
51	Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chinese Chemical Letters, 2022, 33, 1705-1717.	9.0	29
52	Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response. International Journal of Molecular Sciences, 2021, 22, 11374.	4.1	8
53	Macrophages in heterotopic ossification: from mechanisms to therapy. Npj Regenerative Medicine, 2021, 6, 70.	5.2	44
54	Amphiphilic galactomannan nanoparticles trigger the alternative activation of murine macrophages. Journal of Controlled Release, 2021, 339, 473-483.	9.9	15
55	Effect of a Novel Hybrid Nanocomposite of Cisplatin–Chitosan on Induced Tissue Injury as a Suggested Drug by Reducing Cisplatin Side Effects. Biological Trace Element Research, 2022, 200, 4017-4026.	3.5	7
56	Nano-engineered immune cells as "guided missiles―for cancer therapy. Journal of Controlled Release, 2022, 341, 60-79.	9.9	15
57	Reprogramming Tumorâ€Associated Macrophages via ROSâ€Mediated Novel Mechanism of Ultraâ€Small Cu _{2â^'} <i>_x</i> Se Nanoparticles to Enhance Antiâ€Tumor Immunity. Advanced Functional Materials, 2022, 32, 2108971.	14.9	31

#	ARTICLE	IF	CITATIONS
58	Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. Journal of Controlled Release, 2022, 341, 591-604.	9.9	22
59	Selective Accumulation to Tumor Cells with Coacervate Droplets Formed from a Water-Insoluble Acrylate Polymer. Biomacromolecules, 2022, 23, 1569-1580.	5.4	12
60	Current Advances in the Roles of Doped Bioactive Metal in Biodegradable Polymer Composite Scaffolds for Bone Repair: A Mini Review. Advanced Engineering Materials, 2022, 24, .	3.5	17
62	Macrophage-Associated Disorders: Pathophysiology, Treatment Challenges, and Possible Solutions., 2022, , 65-99.		2
63	H ₂ O ₂ -Responsive prodrug-nanosystem based on auto-fluorescent perylenetetracarboxylic diimide hinders the foaming progress in RAW264.7 cells. Journal of Materials Chemistry B, 2022, , .	5.8	2
66	Solid Lipid Nanoparticles-Based Drug and Gene Delivery to Macrophages. , 2022, , 203-224.		1
68	Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. Nanomaterials, 2022, 12, 783.	4.1	10
69	Harnessing antiâ€tumor and tumorâ€tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration, 2022, 2, .	11.0	64
70	Selective ablation of <scp>Nfix</scp> in macrophages attenuates muscular dystrophy by inhibiting fibroâ€adipogenic progenitorâ€dependent fibrosis. Journal of Pathology, 2022, 257, 352-366.	4.5	5
71	Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. Journal of Controlled Release, 2022, 343, 620-644.	9.9	9
72	miR-155: An Important Role in Inflammation Response. Journal of Immunology Research, 2022, 2022, 1-13.	2.2	29
73	Advanced Biomaterials for Regulating Polarization of Macrophages in Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	68
74	COVID-19 inflammation and implications in drug delivery. Journal of Controlled Release, 2022, 346, 260-274.	9.9	15
75	Zn-dipicolylamine-based reactive oxygen species-responsive lipids for siRNA delivery and in vivo colitis treatment. Acta Biomaterialia, 2022, 147, 287-298.	8.3	11
76	Metal phenolic network-stabilized nanocrystals of andrographolide to alleviate macrophage-mediated inflammation in-vitro. Chinese Chemical Letters, 2023, 34, 107453.	9.0	15
77	Liposomal codelivery of inflammation inhibitor and collagen protector to the plaque for effective anti-atherosclerosis. Chinese Chemical Letters, 2023, 34, 107483.	9.0	7
78	Stiripentol Enteric Solid Dispersion-Loaded Effervescent Tablets: Enhanced Dissolution, Stability, and Absorption. AAPS PharmSciTech, 2022, 23, 141.	3.3	4
79	Radicals Scavenging MOFs Enabling Targeting Delivery of siRNA for Rheumatoid Arthritis Therapy. Small, 2022, 18, .	10.0	34

#	ARTICLE	IF	CITATIONS
80	Cellulose Hollow Annular Nanoparticles Prepared from High-Intensity Ultrasonic Treatment. ACS Nano, 2022, 16, 8928-8938.	14.6	13
81	In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cellular Immunology, 2022, 378, 104574.	3.0	6
82	Hyaluronic Acid-Functionalized Mesoporous Silica Nanoparticles Loading Simvastatin for Targeted Therapy of Atherosclerosis. Pharmaceutics, 2022, 14, 1265.	4.5	19
83	Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Advanced Drug Delivery Reviews, 2022, 188, 114456.	13.7	19
84	Pathologically triggered in situ aggregation of nanoparticles for inflammation-targeting amplification and therapeutic potentiation. Acta Pharmaceutica Sinica B, 2023, 13, 390-409.	12.0	9
85	Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator. Acta Pharmaceutica Sinica B, 2023, 13, 3503-3517.	12.0	12
86	Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polymer Bulletin, 2023, 80, 7341-7388.	3.3	3
87	Bidirectional anisotropic palladium nanozymes reprogram macrophages to enhance collaborative chemodynamic therapy of colorectal cancer. Acta Biomaterialia, 2022, 151, 537-548.	8.3	10
88	ROS responsive nanoparticles loaded with lipid-specific AlEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials, 2022, 288, 121734.	11.4	19
89	Nanomedicine approaches to reduce cytokine storms in severe infections. Drug Discovery Today, 2022, 27, 103355.	6.4	1
90	Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances, 2022, 16, 100295.	5.2	3
91	Introduction on Integrated Science: Multidisciplinarity and Interdisciplinarity in Health. Integrated Science, 2022, , 1-40.	0.2	0
92	Therapeutic application of hydrogels for bone-related diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
93	Multifunctional nanoprobes for macrophage imaging. Biomaterials, 2022, 290, 121824.	11.4	7
94	Specialized pro-resolving lipid mediators: A future for conventional endodontics-A review. IP Indian Journal of Conservative and Endodontics, 2022, 7, 105-108.	0.1	0
95	Hyaluronic Acid-Conjugated PLGA Nanoparticles Alleviate Ulcerative Colitis via CD44-Mediated Dual Targeting to Inflamed Colitis Tissue and Macrophages. Pharmaceutics, 2022, 14, 2118.	4.5	13
96	Living Leukocyteâ€Based Drug Delivery Systems. Advanced Materials, 2023, 35, .	21.0	26
97	Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. Journal of Controlled Release, 2022, 352, 1048-1070.	9.9	10

#	Article	IF	CITATIONS
98	CAR-T cells for cancer immunotherapy. Chinese Chemical Letters, 2023, 34, 108202.	9.0	3
99	Morita-Baylis-Hillman adduct 2-(3-hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) modulates the inflammatory process during LPS-induced acute lung injury. Immunopharmacology and Immunotoxicology, 2023, 45, 485-496.	2.4	O
100	Hydrogel-mediated drug delivery for treating stroke. Chinese Chemical Letters, 2023, 34, 108205.	9.0	9
101	Preparation and evaluation <i>inÂvitro</i> and <i>inÂvivo</i> of pristinamycin enteric-coated granules based on albumin nanoparticles. Drug Development and Industrial Pharmacy, 2023, 49, 84-91.	2.0	0
102	Inflammation and Microbiota Regulation Potentiate Pneumonia Therapy by Biomimetic Bacteria and Macrophage Membrane Nanosystem. Research, 2023, 6, .	5.7	3
103	Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2023, 24, 4454.	4.1	7
104	Updated perspective of EPAS1 and the role in pulmonary hypertension. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	3
105	Approved Nanomedicine against Diseases. Pharmaceutics, 2023, 15, 774.	4.5	14
106	Macrophages as potential targets in gene therapy for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 0 , , $89-101$.	0.8	2
107	White-spotted flower chafer (<i>Protaetia brevitarsis</i>) ameliorates inflammatory responses in LPS-stimulated RAW 264.7 macrophages. Journal of Insects As Food and Feed, 2023, 9, 1037-1046.	3.9	2
108	Size-dependent macrophage-targeting of mannose-modified rosiglitazone liposomes to alleviate inflammatory bowel disease. Chinese Chemical Letters, 2024, 35, 108361.	9.0	1
109	Manganese(<scp>ii</scp>) complexes stimulate antitumor immunity <i>via</i> aggravating DNA damage and activating the cGAS-STING pathway. Chemical Science, 2023, 14, 4375-4389.	7.4	9
110	Bio-inspired glycosylated nano-hydroxyapatites enhance endogenous bone regeneration by modulating macrophage M2 polarization. Acta Biomaterialia, 2023, 162, 135-148.	8.3	6
111	Reprogramming Hypoxic Tumorâ€Associated Macrophages by Nanoglycoclusters for Boosted Cancer Immunotherapy. Advanced Materials, 2023, 35, .	21.0	5
112	A backpack-based myeloid cell therapy for multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
113	Folate Receptorâ€Targeted NIRâ€II Dualâ€Model Nanoprobes for Multiscale Visualization of Macrophages in Rheumatoid Arthritis. Advanced Functional Materials, 2023, 33, .	14.9	6
114	A spatiotemporal release hydrogel based on an M1-to-M2 immunoenvironment for wound management. Journal of Materials Chemistry B, 2023, 11, 3994-4004.	5.8	2
115	Molecular imaging of innate immunity and immunotherapy. Advanced Drug Delivery Reviews, 2023, 198, 114865.	13.7	3

#	Article	IF	CITATIONS
116	Light-responsive nanomedicine for cancer immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 2346-2368.	12.0	5
117	A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics, 2023, 15, 1504.	4.5	3
118	Inflammation responsive tofacitinib loaded albumin nanomedicine for targeted synergistic therapy in ulcerative colitis. Nano Research, 2023, 16, 9873-9884.	10.4	1
119	An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment. ACS Nano, 2023, 17, 11626-11644.	14.6	10
120	Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells. Journal of Ethnopharmacology, 2023, 317, 116851.	4.1	6
121	Monocyte-endothelial cell interactions in vascular and tissue remodeling. Frontiers in Immunology, 0, 14, .	4.8	8
122	Chronomodulated drug delivery: Challenges, benefits, and future directions in asthma treatment., 2023,,.		0
123	Biomaterials for in situ cell therapy. , 2023, 1, .		12
124	Photodynamic Anti-Inflammatory Activity of Porphyrin Derivative on In-Vitro Activated Macrophages. Pharmaceutical Chemistry Journal, 2023, 57, 513-517.	0.8	1
125	Recent advances in strategies to target the behavior of macrophages in wound healing. Biomedicine and Pharmacotherapy, 2023, 165, 115199.	5.6	2
126	Immune cells in pemphigus vulgaris and bullous Pemphigoid: From pathogenic roles to targeting therapies. International Immunopharmacology, 2023, 123, 110694.	3.8	0
127	Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. International Journal of Pharmaceutics, 2023, 644, 123321.	5.2	0
128	Nanotechnology in coronary heart disease. Acta Biomaterialia, 2023, 171, 37-67.	8.3	3
129	Yeast glucan particles: An express train for oral targeted drug delivery systems. International Journal of Biological Macromolecules, 2023, 253, 127131.	7.5	1
130	Gout therapeutics and drug delivery. Journal of Controlled Release, 2023, 362, 728-754.	9.9	1
131	Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes. Phenomics, 2023, 3, 613-638.	2.9	1
132	Overreactive macrophages in SARS-CoV-2 infection: The effects of ACEI. International Immunopharmacology, 2023, 124, 110858.	3.8	0
133	Emerging drug delivery systems with traditional routes – A roadmap to chronic inflammatory diseases. Advanced Drug Delivery Reviews, 2023, 203, 115119.	13.7	0

#	Article	IF	CITATIONS
134	Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacological Research, 2024, 199, 107022.	7.1	0
135	Construction of PLGA nanoparticles modified with RWrNM and DLPC and their application in acute rhinosinusitis. Drug Delivery and Translational Research, 2024, 14, 1063-1076.	5.8	О
136	Pulmonary arterial hypertension nanotherapeutics: New pharmacological targets and drug delivery strategies. Journal of Controlled Release, 2024, 365, 236-258.	9.9	0
137	Anti-inflammatory unimolecular micelles of redox-responsive hyperbranched polycurcumin amphiphiles with enhanced anti-inflammatory efficacy <i>in vitro</i> and <i>in vivo</i> . Polymer Chemistry, 2023, 14, 5208-5217.	3.9	O
138	Polymeric Particle BAM15 Targeting Macrophages Attenuates the Severity of LPS-Induced Sepsis: A Proof of Concept for Specific Immune Cell-Targeted Therapy. Pharmaceutics, 2023, 15, 2695.	4.5	0
139	Preparation of a Fluorescent Peptide Substrate to Target Tumor-Associated Macrophages. , 0, , .		O
140	Backpack-mediated anti-inflammatory macrophage cell therapy for the treatment of traumatic brain injury. , 2023, 3, .		1
141	Visualization of the relationship between macrophage and wound healing from the perspective of bibliometric analysis. International Wound Journal, 0, , .	2.9	O
142	The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resistance Updates, 2024, 73, 101041.	14.4	2
143	Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis. Npj Systems Biology and Applications, 2024, 10 , .	3.0	O
144	Aspherical, Nano-Structured Drug Delivery System with Tunable Release and Clearance for Pulmonary Applications. Pharmaceutics, 2024, 16, 232.	4.5	0
145	Interference in Macrophage Balance (M1/M2): The Mechanism of Action Responsible for the Anti-Inflammatory Effect of a Fluorophenyl-Substituted Imidazole. Mediators of Inflammation, 2024, 2024, 1-12.	3.0	О
146	Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. International Journal of Biological Macromolecules, 2024, 264, 130764.	7. 5	0