CRISPR-Cas12a/Cpf1-assisted precise, efficient and mul lipolytica

Metabolic Engineering Communications 10, e00112 DOI: 10.1016/j.mec.2019.e00112

Citation Report

#	Article	IF	CITATIONS
1	Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 10, e00121.	1.9	66
2	Genome editing systems across yeast species. Current Opinion in Biotechnology, 2020, 66, 255-266.	3.3	15
3	Genome Editing by CRISPR-Cas: A Game Change in the Genetic Manipulation of Chlamydomonas. Life, 2020, 10, 295.	1.1	29
4	Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresource Technology, 2020, 317, 123991.	4.8	65
5	Characterization of Met25 as a color associated genetic marker in Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 11, e00147.	1.9	6
6	Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 2020, 43, 107555.	6.0	62
7	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 711.	2.0	37
8	Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00135.	1.9	9
9	Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in <i>Yarrowia lipolytica</i> . ACS Synthetic Biology, 2020, 9, 967-971.	1.9	26
10	Refactoring Ehrlich Pathway for High-Yield 2-Phenylethanol Production in <i>Yarrowia lipolytica</i> . ACS Synthetic Biology, 2020, 9, 623-633.	1.9	55
11	Engineering <i>Yarrowia lipolytica</i> as a Chassis for <i>De Novo</i> Synthesis of Five Aromatic-Derived Natural Products and Chemicals. ACS Synthetic Biology, 2020, 9, 2096-2106.	1.9	59
12	Synthetic biology, systems biology, and metabolic engineering of <i>Yarrowia lipolytica</i> toward a sustainable biorefinery platform. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 845-862.	1.4	53
13	Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 3037-3047.	1.7	14
14	An artificial chromosome ylAC enables efficient assembly of multiple genes in Yarrowia lipolytica for biomanufacturing. Communications Biology, 2020, 3, 199.	2.0	21
15	Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnology Journal, 2020, 15, e1900432.	1.8	35
16	CRISPR/Cas genome editing to optimize pharmacologically active plant natural products. Pharmacological Research, 2021, 164, 105359.	3.1	20
17	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-159.	3.6	24
18	Lipid production by oleaginous yeasts. Advances in Applied Microbiology, 2021, 116, 1-98.	1.3	14

CITATION REPORT

#	Article	IF	CITATIONS
19	Synthetic biology is essential to unlock commercial biofuel production through hyper lipid-producing microalgae: a review. Applied Phycology, 2021, 2, 41-59.	0.6	6
20	Yarrowia lipolytica engineering as a source of microbial cell factories. , 2021, , 345-380.		3
21	Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica. Methods in Molecular Biology, 2021, 2307, 111-121.	0.4	4
22	<i>Yarrowia lipolytica</i> : a multitalented yeast species of ecological significance. FEMS Yeast Research, 2021, 21, .	1.1	27
23	Advanced Strategies for the Synthesis of Terpenoids in <i>Yarrowia lipolytica</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 2367-2381.	2.4	41
24	Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnology Advances, 2021, 53, 107722.	6.0	40
25	The Versatile Type V CRISPR Effectors and Their Application Prospects. Frontiers in Cell and Developmental Biology, 2020, 8, 622103.	1.8	16
26	A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica. Applied and Environmental Microbiology, 2021, 87, .	1.4	27
27	Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 2021, 47, 107695.	6.0	93
28	Identification and Characterization of the Mitochondrial Replication Origin for Stable and Episomal Expression in <i>Yarrowia lipolytica</i> . ACS Synthetic Biology, 2021, 10, 826-835.	1.9	11
29	Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nature Biomedical Engineering, 2021, 5, 713-725.	11.6	77
30	Editorial: Physiology, Application, and Bioengineering of Oleaginous Microorganisms. Frontiers in Microbiology, 2021, 12, 650957.	1.5	3
31	Systemsâ€level approaches for understanding and engineering of the oleaginous cell factory <i>Yarrowia lipolytica</i> . Biotechnology and Bioengineering, 2021, 118, 3640-3654.	1.7	11
32	Recent advances in biotechnological production of polyunsaturated fatty acids by <i>Yarrowia lipolytica</i> . Critical Reviews in Food Science and Nutrition, 2022, 62, 8920-8934.	5.4	21
33	Exosome/Liposome-like Nanoparticles: New Carriers for CRISPR Genome Editing in Plants. International Journal of Molecular Sciences, 2021, 22, 7456.	1.8	37
34	Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. Journal of Fungi (Basel,) Tj ETQq1 1 0.78	431\$frg81	⁻/©≉erlock
35	Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosensors and Bioelectronics, 2021, 185, 113262.	5.3	40
36	Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Frontiers in Microbiology, 2021, 12, 658284.	1.5	56

CITATION REPORT

#	Article	IF	CITATIONS
37	Visualized Multigene Editing System for <i>Aspergillus niger</i> . ACS Synthetic Biology, 2021, 10, 2607-2616.	1.9	11
38	CRISPR-based tools for microbial cell factories. , 2021, , 95-113.		0
39	Targeted genome engineering for insects control. , 2021, , 15-31.		0
40	Biosynthesis of α-Pinene by Genetically Engineered <i>Yarrowia lipolytica</i> from Low-Cost Renewable Feedstocks. Journal of Agricultural and Food Chemistry, 2021, 69, 275-285.	2.4	34
41	Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine, 2020, 7, 184954352098319.	4.4	14
42	A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for <i>Pichia pastoris</i> . ACS Synthetic Biology, 2021, 10, 2927-2937.	1.9	17
43	Advances and Opportunities of CRISPR/Cas Technology in Bioengineering Non-conventional Yeasts. Frontiers in Bioengineering and Biotechnology, 2021, 9, 765396.	2.0	13
44	Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals. Renewable and Sustainable Energy Reviews, 2021, 152, 111674.	8.2	22
49	Production of High Levels of 3 <i>S</i> ,3′ <i>S</i> -Astaxanthin in <i>Yarrowia lipolytica</i> via Iterative Metabolic Engineering. Journal of Agricultural and Food Chemistry, 2022, 70, 2673-2683.	2.4	29
50	A CRISPR–Cas12a system for multi-gene editing (CCMGE) and metabolic pathway assembly in Starmerella bombicola. Systems Microbiology and Biomanufacturing, 2022, 2, 665-675.	1.5	4
51	Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Molecular Cancer, 2022, 21, 64.	7.9	45
52	CRISPR-based metabolic engineering in non-model microorganisms. Current Opinion in Biotechnology, 2022, 75, 102698.	3.3	21
53	Applications of CRISPR/Cas gene-editing technology in yeast and fungi. Archives of Microbiology, 2022, 204, 79.	1.0	11
54	Combining CRISPR–Cpf1 and Recombineering Facilitates Fast and Efficient Genome Editing in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 1897-1907.	1.9	17
55	Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnology Advances, 2022, 59, 107984.	6.0	22
56	Recent advances in genetic technology development of oleaginous yeasts. Applied Microbiology and Biotechnology, 2022, 106, 5385-5397.	1.7	4
57	Highly efficient multiplex base editing: One-shot deactivation of eight genes in Shewanella oneidensis MR-1. Synthetic and Systems Biotechnology, 2023, 8, 1-10.	1.8	3
58	Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnology Advances, 2023, 62, 108076.	6.0	17

CITATION REPORT

#	Article	IF	CITATIONS
59	Knocking out central metabolism genes to identify new targets and alternating substrates to improve lipid synthesis in Y. lipolytica. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	1
60	Modular co-culture engineering of Yarrowia lipolytica for amorphadiene biosynthesis. Microbial Cell Factories, 2022, 21, .	1.9	3
61	Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of Microbiology, 2023, 61, 13-36.	1.3	4
63	Metabolic Engineering of <i>Yarrowia lipolytica</i> for Terpenoid Production: Tools and Strategies. ACS Synthetic Biology, 2023, 12, 639-656.	1.9	12
64	A review of synthetic biology tools in Yarrowia lipolytica. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	4
65	Application of Adaptive Laboratory Evolution in Lipid and Terpenoid Production in Yeast and Microalgae. ACS Synthetic Biology, 2023, 12, 1396-1407.	1.9	3
77	Genome Editing, Transcriptional Regulation, and Forward Genetic Screening Using CRISPR-Cas12a Systems in Yarrowia lipolytica. Methods in Molecular Biology, 2024, , 169-198.	0.4	0
78	Crispr Gene Editing for Secondary Metabolite Production: A Review. , 2024, , 437-475.		0