Solarâ€"Thermal Water Evaporation: A Review

ACS Energy Letters 5, 437-456 DOI: 10.1021/acsenergylett.9b02611

Citation Report

#	Article	IF	CITATIONS
1	Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications. Materials Today Communications, 2020, 25, 101656.	0.9	47
2	Plasma-Made Graphene Nanostructures with Molecularly Dispersed F and Na Sites for Solar Desalination of Oil-Contaminated Seawater with Complete In-Water and In-Air Oil Rejection. ACS Applied Materials & Interfaces, 2020, 12, 38512-38521.	4.0	32
3	Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy, 2020, 77, 105102.	8.2	148
4	A Passive High-Temperature High-Pressure Solar Steam Generator for Medical Sterilization. Joule, 2020, 4, 2733-2745.	11.7	76
5	Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. ACS Nano, 2020, 14, 17419-17427.	7.3	150
6	Recent advances in solar-driven evaporation systems. Journal of Materials Chemistry A, 2020, 8, 25571-25600.	5.2	77
7	Energy Matching for Boosting Water Evaporation in Direct Solar Steam Generation. Solar Rrl, 2020, 4, 2000341.	3.1	50
8	Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy, 2020, 78, 105269.	8.2	215
9	Solar passive distiller with high productivity and Marangoni effect-driven salt rejection. Energy and Environmental Science, 2020, 13, 3646-3655.	15.6	101
10	Biocompatible Direct Deposition of Functionalized Nanoparticles Using Shrinking Surface Plasmonic Bubble. Advanced Materials Interfaces, 2020, 7, 2000597.	1.9	14
11	Broadband Nickel Sulfide/Nickel Foam-Based Solar Evaporator for Highly Efficient Water Purification and Electricity Generation. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	9
12	Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges. Water Research, 2020, 177, 115770.	5.3	131
13	Solar-Driven Interfacial Water Evaporation Using Open-Porous PDMS Embedded with Carbon Nanoparticles. ACS Applied Energy Materials, 2020, 3, 3378-3386.	2.5	37
14	Salt Mitigation Strategies of Solarâ€Driven Interfacial Desalination. Advanced Functional Materials, 2021, 31, 2007855.	7.8	149
15	Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Materials Today, 2021, 42, 178-191.	8.3	274
16	A three-dimensional numerical study of coupled photothermal and photoelectrical processes for plasmonic solar cells with nanoparticles. Renewable Energy, 2021, 165, 278-287.	4.3	11
17	Intensifying sustainable solar water production by steam heat internal circulation. Materials Advances, 2021, 2, 1731-1738.	2.6	0
18	Black Au-Decorated TiO ₂ Produced via Laser Ablation in Liquid. ACS Applied Materials & Interfaces, 2021, 13, 6522-6531.	4.0	32

#	Article	IF	CITATIONS
19	Multifunctional oligomer sponge for efficient solar water purification and oil cleanup. Journal of Materials Chemistry A, 2021, 9, 2104-2110.	5.2	11
20	Carbon nanotubes@silicone solar evaporators with controllable salt-tolerance for efficient water evaporation in a closed system. Journal of Materials Chemistry A, 2021, 9, 17502-17511.	5.2	35
21	Sustainable Solar Evaporation while Salt Accumulation. ACS Applied Materials & Interfaces, 2021, 13, 4935-4942.	4.0	46
22	Ionic liquid enables highly efficient low temperature desalination by directional solvent extraction. Nature Communications, 2021, 12, 437.	5.8	42
23	Stimuli-responsive nanobubbles for biomedical applications. Chemical Society Reviews, 2021, 50, 5746-5776.	18.7	141
24	Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Materials Chemistry Frontiers, 2021, 5, 1510-1524.	3.2	42
25	Recent advances in the photothermal applications of two-dimensional nanomaterials: photothermal therapy and beyond. Journal of Materials Chemistry A, 2021, 9, 17569-17591.	5.2	84
26	Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures. Plasmonics, 2021, 16, 799-809.	1.8	5
27	A Nature-Inspired Monolithic Integrated Cellulose Aerogel-Based Evaporator for Efficient Solar Desalination. ACS Applied Materials & Interfaces, 2021, 13, 10612-10622.	4.0	61
28	Photothermal Membrane Distillation toward Solar Water Production. Small Methods, 2021, 5, e2001200.	4.6	137
29	Efficient and antifouling interfacial solar desalination guided by a transient salt capacitance model. Cell Reports Physical Science, 2021, 2, 100330.	2.8	9
30	Solar Driven Interfacial Steam Generation Derived from Biodegradable Luffa Sponge. Advanced Sustainable Systems, 2021, 5, 2000291.	2.7	35
32	Solar thermal evaporation using bubbly nanofluids with recyclable magnetic particles. Materials Today Communications, 2021, 26, 102084.	0.9	3
33	A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss. Solar Rrl, 2021, 5, 2100053.	3.1	127
34	Stable and Efficient Nanofilm Pure Evaporation on Nanopillar Surfaces. Langmuir, 2021, 37, 3731-3739.	1.6	5
35	Defectâ€Induced Selfâ€Cleaning Solar Absorber with Fullâ€Spectrum Light Absorption for Efficient Dye Wastewater Purification. Solar Rrl, 2021, 5, 2100105.	3.1	23
36	Gradient Heating Effect Modulated by Hydrophobic/Hydrophilic Carbon Nanotube Network Structures for Ultrafast Solar Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 19109-19116.	4.0	55
37	Self-contained Janus Aerogel with Antifouling and Salt-Rejecting Properties for Stable Solar Evaporation. ACS Applied Materials & Amp; Interfaces, 2021, 13, 18829-18837.	4.0	86

#	Article	IF	CITATIONS
38	Continuous solar desalination based on restricted salt crystallization zone. Desalination, 2021, 501, 114911.	4.0	25
39	Thermal Transport in Polymers: A Review. Journal of Heat Transfer, 2021, 143, .	1.2	32
40	Two Birds One Stone: Facile and Controllable Synthesis of the Ag Quantum Dots/Reduced Graphene Oxide Composite with Significantly Improved Solar Evaporation Efficiency and Bactericidal Performance. ACS Applied Materials & Interfaces, 2021, 13, 17649-17657.	4.0	22
41	Modeling the solar absorption performance of Copper@Carbon core–shell nanoparticles. Journal of Materials Science, 2021, 56, 13659-13672.	1.7	15
42	Thermal Conductivity of Pentiptycene-Based Poly(o-hydroxyimide) Copolymers: A Study via Integrated Experiments and Simulations. ACS Applied Polymer Materials, 2021, 3, 2979-2987.	2.0	6
43	Aligned Millineedle Arrays for Solar Power Seawater Desalination with Siteâ€ S pecific Salt Formation. Small, 2021, 17, e2101487.	5.2	36
44	A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. Journal of Colloid and Interface Science, 2021, 592, 77-86.	5.0	62
45	Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination, 2021, 505, 114982.	4.0	103
46	Ultra-broadband high solar absorption in checkerboard-shaped titanium nitride plasmonic metastructures. Optical Materials, 2021, 116, 111117.	1.7	6
47	Carbon Materials for Solar Water Evaporation and Desalination. Small, 2021, 17, e2007176.	5.2	186
48	Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight–Energy–Water Nexus. ACS Nano, 2021, 15, 12535-12566.	7.3	220
49	Side Areaâ€Assisted 3D Evaporator with Antibiofouling Function for Ultraâ€Efficient Solar Steam Generation. Advanced Materials, 2021, 33, e2102258.	11.1	79
50	Volcanic relationship between wettability of the interface and water migration rate in solar steam generation systems. Nano Research, 0, , 1.	5.8	3
51	Covalent Organic Framework Sponges for Efficient Solar Desalination and Selective Uranium Recovery. ACS Applied Materials & Interfaces, 2021, 13, 31561-31568.	4.0	49
52	Design and Utilization of Infrared Light for Interfacial Solar Water Purification. ACS Energy Letters, 2021, 6, 2645-2657.	8.8	29
53	Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation. Ceramics International, 2021, 47, 19800-19808.	2.3	15
54	Carbon composite membranes for thermal-driven membrane processes. Carbon, 2021, 179, 600-626.	5.4	12
55	Starch as a Sustainable Fuel for Solution Combustion Synthesis: Nanomaterials for Energy and Environmental Applications. Current Nanoscience, 2021, 17, 505-524.	0.7	3

#	Article	IF	Citations
56	Architecting a bifunctional solar evaporator of perovskite La0.5Sr0.5CoO3 for solar evaporation and degradation. Journal of Materials Science, 2021, 56, 18625-18635.	1.7	7
57	Enhancing solar desalination performance based on restricted salt ions transport. Journal of Environmental Chemical Engineering, 2021, 9, 105272.	3.3	4
58	Carbon materials for solar-powered seawater desalination. New Carbon Materials, 2021, 36, 683-701.	2.9	22
59	Donor–Acceptorâ€Type Organicâ€&mallâ€Moleculeâ€Based Solarâ€Energyâ€Absorbing Material for Highly Efficient Water Evaporation and Thermoelectric Power Generation. Advanced Functional Materials, 2021, 31, 2106247.	7.8	46
60	Heat-concentrating solar steam generation and salt extraction based on water-repellent germanium nanoparticles-coated oxidized copper foams. Solar Energy Materials and Solar Cells, 2021, 230, 111191.	3.0	9
61	Photovoltaic-multistage desalination of hypersaline waters for simultaneous electricity, water and salt harvesting via automatic rinsing. Nano Energy, 2021, 87, 106163.	8.2	30
62	Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation. Desalination, 2021, 511, 115113.	4.0	43
63	Enhancing solar steam generation using a highly thermally conductive evaporator support. Science Bulletin, 2021, 66, 2479-2488.	4.3	159
64	Amorphous Highâ€Entropy Hydroxides of Tunable Wide Solar Absorption for Solar Water Evaporation. Particle and Particle Systems Characterization, 2021, 38, 2100094.	1.2	3
65	Salt-tolerant and low-cost flame-treated aerogel for continuously efficient solar steam generation. Solar Energy, 2021, 227, 303-311.	2.9	29
66	Constructing built-in electric field in graphitic carbon nitride hollow nanospheres by co-doping and modified in-situ Ni2P for broad spectrum photocatalytic activity. Journal of Materials Science and Technology, 2021, 90, 143-149.	5.6	8
67	The energy efficiency of interfacial solar desalination. Applied Energy, 2021, 302, 117581.	5.1	60
68	Reduced graphene oxide aerogel with the dual-cross-linked framework for efficient solar steam evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127440.	2.3	25
69	Rendering utility water with solar still and efficiency of solar stills with different geometry – A review. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100534.	1.7	2
70	Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification. Chemical Engineering Journal, 2021, 425, 130118.	6.6	45
71	Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance. Carbohydrate Polymers, 2021, 273, 118536.	5.1	34
72	Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chemical Engineering Journal, 2022, 429, 132014.	6.6	20
73	Achieving steam and electrical power from solar energy by MoS2-based composites. Chemical Engineering Journal, 2022, 427, 131008.	6.6	55

#	Article	IF	CITATIONS
74	Efficient solar domestic and industrial sewage purification via polymer wastewater collector. Chemical Engineering Journal, 2022, 428, 131199.	6.6	16
75	Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation. Journal of Materials Chemistry A, 2021, 9, 23140-23148.	5.2	26
76	Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/Electric Conversion. ACS Applied Materials & Interfaces, 2021, 13, 4305-4315.	4.0	29
77	Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy and Environmental Science, 2021, 14, 5347-5357.	15.6	133
78	Synergistic solar-powered water-electricity generation <i>via</i> rational integration of semitransparent photovoltaics and interfacial steam generators. Journal of Materials Chemistry A, 2021, 9, 21197-21208.	5.2	28
79	Passive, high-efficiency thermally-localized solar desalination. Energy and Environmental Science, 2021, 14, 1771-1793.	15.6	142
80	Polymeric materials for solar water purification. Journal of Polymer Science, 2021, 59, 3084-3099.	2.0	21
81	Plasmonic Nanobubbles–A Perspective. Journal of Physical Chemistry C, 2021, 125, 25357-25368.	1.5	19
82	Robustly Inorganic Solar Steam Generator Derived from Hollow Glass Microspheres Based Composites for Desalination. Solar Rrl, 2021, 5, 2100771.	3.1	13
83	Multiscale investigation of the plasmonic solar cell in the spectral splitting concentrating photovoltaic-thermal system. Energy Conversion and Management, 2021, 250, 114846.	4.4	6
84	Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material. Nanomaterials, 2021, 11, 76.	1.9	7
85	Solid–Liquid–Vapor Triphase Gel. Langmuir, 2021, 37, 13501-13511.	1.6	4
86	The gorgeous transformation of paper: from cellulose paper to inorganic paper to 2D paper materials with multifunctional properties. Journal of Materials Chemistry A, 2021, 10, 122-156.	5.2	19
87	Negative optical force field on supercavitating titanium nitride nanoparticles by a single plane wave. Nanophotonics, 2021, 11, 79-86.	2.9	2
88	Efficient solar steam generator using black SnOx cored PANI polymeric mesh under one Sun illumination. Journal of Industrial and Engineering Chemistry, 2022, 107, 45-52.	2.9	9
89	CuS Hollow Nanospheres/Cellulose Composite Film as a Recyclable Interfacial Photothermal Evaporator for Solar Steam Generation. Energy Technology, 2022, 10, 2100805.	1.8	9
90	Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies. Journal of Materials Chemistry A, 2021, 9, 27121-27139.	5.2	63
91	Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chemical Engineering Journal, 2022, 431, 134245.	6.6	39

#	Article	IF	CITATIONS
92	Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal, 2022, 431, 134024.	6.6	85
93	Hierarchically structured evaporator with integrated water supply and evaporation layers to retard salt accumulation. International Journal of Heat and Mass Transfer, 2022, 185, 122447.	2.5	19
94	Fabrication of high-performance graphene oxide/CuO/Cu2O film-coated copper foam for interfacial solar-driven water evaporation. Journal of Materials Science, 2022, 57, 3322-3336.	1.7	9
95	Flexible vacancy-mediated MoS2-x nanosheet arrays for solar-driven interfacial water evaporation, photothermal-enhanced photodegradation, and thermoelectric generation. Energy Conversion and Management, 2022, 252, 115070.	4.4	28
96	Interfacial Solar Steam/Vapor Generation for Heating and Cooling. Advanced Science, 2022, 9, e2104181.	5.6	42
97	Natural Porous Materials for Interfacial Solar Steam Generation toward Clean Water Production. Solar Rrl, 2022, 6, .	3.1	37
98	Waste Egg Tray and Toner-Derived Highly Efficient 3D Solar Evaporator for Freshwater Generation. ACS Applied Materials & Interfaces, 2022, 14, 7936-7948.	4.0	39
99	Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation. Journal of Colloid and Interface Science, 2022, 615, 707-715.	5.0	23
100	Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nature Communications, 2022, 13, 849.	5.8	101
101	rGOâ€CuO _x Composites Reduced by Solidâ€Phase Microwave Thermal Shock for Highâ€Efficient Seawater Desalination and Purification. Advanced Sustainable Systems, 0, , 2100500.	2.7	3
102	Leveraging Hydrophilic Hierarchical Channels to Regulate Excessive Water for High-Efficiency Solar Steam Yield. ACS Applied Materials & Interfaces, 2022, 14, 12927-12935.	4.0	29
103	Nature-Inspired Polyethylenimine-Modified Calcium Alginate Blended Waterborne Polyurethane Graded Functional Materials for Multiple Water Purification. ACS Applied Materials & Interfaces, 2022, 14, 17826-17836.	4.0	7
104	Harvesting conductive heat loss of interfacial solar evaporator for thermoelectric power generation. Applied Thermal Engineering, 2022, 208, 118279.	3.0	19
105	Enhancing the solar absorption performance of nanoparticle suspensions by tuning the scattering effect and incident light location. International Journal of Thermal Sciences, 2022, 177, 107547.	2.6	6
106	Electrochemical oxidation reconstructs graphene oxides on sponge for unprecedentedly high solar water evaporation. Carbon, 2022, 194, 267-273.	5.4	17
107	Numerical simulation of the formation of dry spots during film evaporation. Journal of Physics: Conference Series, 2021, 2119, 012086.	0.3	0
108	Melamine/Silicone Hybrid Sponges with Controllable Microstructure and Wettability for Efficient Solar-Driven Interfacial Desalination. ACS Applied Materials & Interfaces, 2022, 14, 2360-2368.	4.0	35
109	Pbat/Mxene Monolithic Solar Vapor Generator with High Efficiency on Seawater Evaporation and Swage Purification. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
110	Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid. Journal of Cleaner Production, 2022, 360, 132194.	4.6	64
111	Laser thermal synthesis of reduced graphene oxide/CuS nanocomposites for efficient solar-driven water purification. Separation and Purification Technology, 2022, 294, 121168.	3.9	9
112	Facile preparation of high strength aerogel evaporator for efficient solar-driven water purification. Sustainable Materials and Technologies, 2022, 32, e00443.	1.7	4
113	Direct laser writing carbonization of polyimide films enabled multilayer structures for the use in interfacial solar-driven water evaporation. Journal of Materials Chemistry A, 2022, 10, 12692-12701.	5.2	7
114	Enhanced water evaporation under spatially gradient electric Fields: A molecular dynamics study. Journal of Molecular Liquids, 2022, 360, 119410.	2.3	6
115	Janus 3D solar crystallizer enabling an eco-friendly zero liquid discharge of high-salinity concentrated seawater with antiscalant. Desalination, 2022, 537, 115862.	4.0	15
116	Revealing interfacial heating effects on water evaporation during surface distillation. Desalination, 2022, 537, 115867.	4.0	0
117	Janus interpenetrating structure based on optimized water supply for solar-driven water evaporation. Applied Physics Letters, 2022, 120, .	1.5	5
118	Au–Ag Alloy Nanocorals with Optimal Broadband Absorption for Sunlight-Driven Thermoplasmonic Applications. ACS Applied Materials & Interfaces, 2022, 14, 28924-28935.	4.0	9
119	Synchronously managed water and heat transportation for highly efficient interfacial solar desalination. Desalination, 2022, 538, 115897.	4.0	6
120	A waterbomb origami tower for convertible photothermal evaporation. Journal of Materials Chemistry A, 2022, 10, 18657-18670.	5.2	20
121	Technology assessment of solar disinfection for drinking water treatment. Nature Sustainability, 2022, 5, 801-808.	11.5	30
122	Effect of electric field on water free energy in graphene nanochannel. Journal of Applied Physics, 2022, 132, .	1.1	2
123	Aerogels in passive solar thermal desalination: a review. Journal of Materials Chemistry A, 2022, 10, 17857-17877.	5.2	30
124	Mixed temperature gradient evaporator for solar steam generation. Cell Reports Physical Science, 2022, 3, 101014.	2.8	4
125	Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Research, 2022, 223, 119011.	5.3	68
126	Investigating the potentials and limitations of capillary-fed vapor generators: A heat and mass transfer study. International Communications in Heat and Mass Transfer, 2022, 137, 106309.	2.9	4
127	PBAT/MXene monolithic solar vapor generator with high efficiency on seawater evaporation and swage purification. Desalination, 2022, 541, 116015.	4.0	8

#	Article	IF	CITATIONS
128	Thermal design strategy for enhanced freshwater harvesting with interfacial evaporation. Applied Thermal Engineering, 2022, 216, 119104.	3.0	9
129	Potato-based microporous carbon cake: Solar radiation induced water treatment. Journal of Environmental Chemical Engineering, 2022, 10, 108502.	3.3	11
130	Flexible wearable hybrid nanogenerator to harvest solar energy and human kinetic energy. Nano Energy, 2022, 103, 107808.	8.2	16
131	Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and its Performance for Desalination and Water Purification. SSRN Electronic Journal, 0, , .	0.4	0
132	Transparent thermal insulation ceramic aerogel materials for solar thermal conversion. Nanoscale Advances, 2022, 4, 4291-4295.	2.2	2
133	Zero Energy Heating of Solvent with Network-Structured Solar-Thermal Material: Eco-Friendly Palladium Catalysis of the Suzuki Reaction. ACS Applied Materials & Interfaces, 2022, 14, 40967-40974.	4.0	1
134	From Materials to Devices: Rationally Designing Solar Steam System for Advanced Applications. Small Methods, 2022, 6, .	4.6	17
135	Highâ€Entropyâ€Alloyâ€Nanoparticles Enabled Wood Evaporator for Efficient Photothermal Conversion and Sustainable Solar Desalination. Advanced Energy Materials, 2022, 12, .	10.2	26
136	Freshwater Production Towards Microgrid Integration: Physics, Progress, and Prospects of Solar-Thermal Evaporation. , 2022, , 100037.		1
137	Using Rooftop Solar Heating to Supply Part of a High-Rise Residential Building Heat in the Cold Climate of Iran: One-Year Dynamic Analysis. International Transactions on Electrical Energy Systems, 2022, 2022, 1-11.	1.2	1
138	Performance of the solar/peroxymonosulfate process in (waste)water treatment: Abatement of micropollutants, roles of reactive oxygen species, and formation of disinfection by-products. Environmental Science: Water Research and Technology, 0, , .	1.2	0
139	3D-printed chiral torsion Janus evaporator with enhanced light utilization towards ultrafast and stable solar-water desalination. Carbon, 2023, 202, 159-168.	5.4	8
140	Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chemical Engineering Journal, 2023, 454, 140383.	6.6	44
141	Structural features and solar absorption characteristics of sucrose derived spherical carbons: A case study towards solar-thermal water evaporation. Cleaner Engineering and Technology, 2022, 11, 100585.	2.1	0
142	Heat-localized solar evaporation: Transport processes and applications. Nano Energy, 2023, 107, 108086.	8.2	27
143	Full cattail leaf-based solar evaporator with square water transport channels for cost-effective solar vapor production. Cellulose, 2023, 30, 1103-1115.	2.4	4
144	Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers. Nano Energy, 2023, 108, 108115.	8.2	28
145	A 3D pillar hydrogel assembled from multi-metallic oxides nanoparticles for plasmon-enhanced solar interfacial evaporation. Journal of Materials Science, 2023, 58, 880-889.	1.7	8

#	Article	IF	CITATIONS
146	Systematic Review of Material and Structural Design in Interfacial Solar Evaporators for Clean Water Production. Solar Rrl, 2023, 7, .	3.1	8
147	Solar interfacial evaporation based oil/water separation from emulsion using a wood-melamine/calcium alginate composite structure. Solar Energy, 2023, 250, 59-69.	2.9	2
148	Architecting the Water State of Polypyrrole/Polyvinyl Alocholâ€Wood Evaporator to Enhance Water Yield in Multistage Solar Stiller. Solar Rrl, 2023, 7, .	3.1	8
149	Solar steam generation using hybrid nanomaterials to address global environmental pollution and water shortage crisis. Materials Today Sustainability, 2023, 21, 100319.	1.9	20
150	Simultaneous solar-driven seawater desalination and continuous oil recovery. Nano Energy, 2023, 107, 108160.	8.2	7
151	Advances in flexible hydrogels for light-thermal-electricity energy conversion and storage. Journal of Energy Storage, 2023, 60, 106618.	3.9	7
152	Improved Photoâ€Excited Carriers Transportation of WS ₂ â€Oâ€Dopedâ€Graphene Heterostructures for Solar Steam Generation. Small, 2023, 19, .	5.2	8
153	Designing high-efficiency light-to-thermal conversion materials for solar desalination and photothermal catalysis. Journal of Energy Chemistry, 2023, 79, 581-600.	7.1	28
154	Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach. Energy Advances, 2023, 2, 574-605.	1.4	3
155	Reversed vapor generation with Janus fabric evaporator and comprehensive thermal management for efficient interfacial solar distillation. Chemical Engineering Journal, 2023, 463, 142002.	6.6	8
156	Multistage interfacial thermal desalination system with metallic evaporators. Desalination, 2023, 556, 116576.	4.0	0
157	Evaporator fabricated with accessible photothermal material derived from waste fallen leaves for highly efficient desalination. Applied Surface Science, 2023, 619, 156728.	3.1	9
158	BC/GO-Ag composite aerogel with synergistic enhanced photothermal performance for efficient solar water evaporation. Solar Energy, 2023, 255, 26-35.	2.9	6
159	Hofmeister effect mediated hydrogel evaporator for simultaneous solar evaporation and thermoelectric power generation. Chemical Engineering Journal, 2023, 458, 141511.	6.6	37
160	Personal Thermoregulation by Moistureâ€Engineered Materials. Advanced Materials, 2024, 36, .	11.1	7
161	Recent advances in interfacial solar vapor generation: clean water production and beyond. Journal of Materials Chemistry A, 2023, 11, 5978-6015.	5.2	19
162	Bioinspired Aerogel with Vertically Ordered Channels and Low Water Evaporation Enthalpy for Highâ€Efficiency Saltâ€Rejecting Solar Seawater Desalination and Wastewater Purification. Small, 2023, 19, .	5.2	32
163	Threeâ€Dimensional Coffeeâ€Ring Effect Induced Deposition on Foam Surface for Enhanced Photothermal Conversion. Small, 2023, 19, .	5.2	3

#	Article	IF	CITATIONS
164	Understanding Interfacial Properties for Enhanced Solar Evaporation Devices: From Geometrical to Physical Interfaces. ACS Energy Letters, 2023, 8, 1680-1687.	8.8	24
165	Recyclable Monolithic Vitrimer Foam for High-Efficiency Solar-Driven Interfacial Evaporation. ACS Applied Materials & Interfaces, 0, , .	4.0	0
166	Environmental concerns and bioaccumulation of psychiatric drugs in water bodies – Conventional versus biocatalytic systems of mitigation. Environmental Research, 2023, 229, 115892.	3.7	1
186	Biomimetic surface engineering for sustainable water harvesting systems. , 2023, 1, 587-601.		9
220	Photothermal Water Evaporation via Hollow-CuS Embedded PDMS Sponge Under UV, Visible, and IR Irradiation. Korean Journal of Chemical Engineering, 2024, 41, 1001-1004.	1.2	0