Bidentate Directing Groups: An Efficient Tool in C–H for the Expedient Construction of C–C Bonds

Chemical Reviews 120, 1788-1887

DOI: 10.1021/acs.chemrev.9b00495

Citation Report

#	Article	IF	CITATIONS
1	Late-stage functionalization of peptides <i>via</i> a palladium-catalyzed C(sp ³)–H activation strategy. Chemical Communications, 2020, 56, 13950-13958.	4.1	70
2	Nickel-Catalyzed C–F/N–H Annulation of Aromatic Amides with Alkynes: Activation of C–F Bonds under Mild Reaction Conditions. Journal of the American Chemical Society, 2020, 142, 17306-17311.	13.7	51
3	Synthesis of Substituted Naphtho[1,8- <i>bc</i>]thiopyrans by Sulfhydryl-Directed Rhodium-Catalyzed <i>peri</i> -Selective C–H Bond Activation and Cyclization of Naphthalene-1-thiols. Organic Letters, 2020, 22, 7825-7830.	4.6	29
4	Rh(III)-catalyzed C–H acylmethylation of 2H-indazoles with sulfoxonium ylides. Journal of Saudi Chemical Society, 2020, 24, 850-856.	5.2	8
5	Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catalysis, 2020, 10, 12898-12919.	11.2	88
6	Vinylogous Elimination/C–H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Organic Letters, 2020, 22, 8313-8319.	4.6	8
7	Rh(III)â€Catalyzed Nâ€Nitroso Directed Câ€H Arylation for Facile Construction of Diverse Nâ€Hetero Biaryl Compounds. Chemistry - an Asian Journal, 2020, 15, 3825-3828.	3.3	6
8	Crossâ€Dehydrogenative Coupling/Annulation of Arene Carboxylic Acids and Alkenes in Water with Ruthenium(II) Catalyst and Air. Chemistry - an Asian Journal, 2020, 15, 4009-4013.	3.3	16
9	Site-selective aqueous C–H acylation of tyrosine-containing oligopeptides with aldehydes. Chemical Science, 2020, 11, 11531-11538.	7.4	19
10	Transition-metal-catalyzed C–H functionalization of pyrazoles. Organic and Biomolecular Chemistry, 2020, 18, 6192-6210.	2.8	35
11	Regiodivergent Câ^'H and Decarboxylative Câ^'C Alkylation by Ruthenium Catalysis: <i>ortho</i> versus <i>meta</i> Positionâ€6electivity. Angewandte Chemie - International Edition, 2020, 59, 18795-18803.	13.8	52
12	C(sp ²)–H Activation with Pyridine Dicarbene Iron Dialkyl Complexes: Hydrogen Isotope Exchange of Arenes Using Benzene- <i>d</i> ₆ as a Deuterium Source. ACS Catalysis, 2020, 10, 8640-8647.	11.2	28
13	Copper-Mediated Regioselective C–H Sulfenylation and Selenation of Phenols with Phenanthroline Bidentate Auxiliary. Organic Letters, 2020, 22, 5915-5919.	4.6	22
14	Transition Metalâ€Catalyzed Enantioselective Câ^'H Functionalization via Chiral Transient Directing Group Strategies. Angewandte Chemie - International Edition, 2020, 59, 19773-19786.	13.8	223
15	Photoâ€Induced Rutheniumâ€Catalyzed Câ^'H Arylations at Ambient Temperature. Angewandte Chemie - International Edition, 2020, 59, 18103-18109.	13.8	58
16	Peptide Late-Stage Diversifications by Rhodium-Catalyzed Tryptophan C7 Amidation. CheM, 2020, 6, 3428-3439.	11.7	57
17	Selectively Oxidative C(sp2)–H/C(sp3)–H Cross-Coupling of Benzamides with Amides by Nickel Catalysis. Organic Letters, 2020, 22, 9308-9312.	4.6	11
18	Iron-Catalyzed Highly para-Selective Difluoromethylation of Arenes. Journal of the American Chemical Society, 2020, 142, 20524-20530.	13.7	43

#	Article	IF	CITATIONS
19	Palladium-Catalyzed C(sp ³)–H Nitrooxylation with ⟨i>tert-Butyl Nitrite and Molecular Oxygen. Organic Letters, 2020, 22, 9719-9723.	4.6	19
20	C(sp ³)â€"H activation-enabled cross-coupling of two aryl halides: an approach to 9,10-dihydrophenanthrenes. Chemical Communications, 2020, 56, 10942-10945.	4.1	23
21	Ru(<scp>ii</scp>)-Catalyzed and acidity-controlled tunable [5+1]/[5+2] annulation for building ring-fused quinazolines and 1,3-benzodiazepines. Chemical Communications, 2020, 56, 11315-11318.	4.1	14
22	Rhodium-catalyzed multiple C–H activation/highly <i>meta</i> -selective C–H amination between amidines and alkynes. Chemical Communications, 2020, 56, 11227-11230.	4.1	13
23	Transition Metalâ€Catalyzed Enantioselective Câ^'H Functionalization via Chiral Transient Directing Group Strategies. Angewandte Chemie, 2020, 132, 19941-19954.	2.0	37
24	Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular C(sp ³)â€"H Arylation of <i>N</i> Methyl Alanine at C-Termini. Organic Letters, 2020, 22, 6209-6213.	4.6	24
25	Synthesis of Acyclic Aliphatic Amides with Contiguous Stereogenic Centers via Palladiumâ€Catalyzed Enantioâ€, Chemo―and Diastereoselective Methylene C(sp ³)â~H arylation. Angewandte Chemie - International Edition, 2020, 59, 20455-20458.	13.8	22
26	Renewable resources for sustainable metallaelectro-catalysed C–H activation. Chemical Science, 2020, 11, 8657-8670.	7.4	69
27	Synthesis of Acyclic Aliphatic Amides with Contiguous Stereogenic Centers via Palladiumâ€Catalyzed Enantioâ€, Chemo†and Diastereoselective Methylene C(sp ³)â H arylation. Angewandte Chemie, 2020, 132, 20635-20638.	2.0	0
28	Regiodivergente Câ€H―und decarboxylierende Câ€Câ€Alkylierung mittels Rutheniumkatalyse: <i>orthoâ€</i> versus <i>metaâ€</i> Regioselektivitä Angewandte Chemie, 2020, 132, 18956-18965.	2.0	13
29	Peptide late-stage C(sp ³)–H arylation by native asparagine assistance without exogenous directing groups. Chemical Science, 2020, 11, 9290-9295.	7.4	28
30	Photoinduzierte Rutheniumkatalysierte Câ€Hâ€Arylierungen bei Umgebungstemperatur. Angewandte Chemie, 2020, 132, 18259-18265.	2.0	11
31	Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C–H Activation. Journal of Organic Chemistry, 2020, 85, 15287-15304.	3.2	34
32	Tuning Reactivity in Pdâ€catalysed C(<i>sp</i> ³)â€H Arylations via Directing Group Modifications and Solvent Selection. Advanced Synthesis and Catalysis, 2020, 362, 5105-5115.	4.3	5
33	Temperature-modulated selective C(sp ³)â€"H or C(sp ²)â€"H arylation through palladium catalysis. Chemical Science, 2020, 11, 11461-11467.	7.4	14
34	Direct C–H bond halogenation and pseudohalogenation of hydrocarbons mediated by high-valent 3d metal-oxo species. Dalton Transactions, 2020, 49, 14344-14360.	3.3	9
35	On the Mechanism of Cross-Dehydrogenative Couplings between <i>N</i> -aryl Glycinates and Indoles: A Computational Study. Journal of Organic Chemistry, 2020, 85, 13133-13140.	3.2	17
36	lridium/Copperâ€Catalyzed Oxidative Câ^'H/Oâ^'H Annulation of Benzoic Acids with Saturated Ketones for Accessing 3â€Substituted Phthalides. ChemCatChem, 2020, 12, 5907-5911.	3.7	8

3

#	Article	IF	CITATIONS
37	Reductive Carbon–Carbon Bond Forming Reactions with Carbonyls Mediated by Rh–H Complexes. European Journal of Organic Chemistry, 2020, 2020, 6503-6511.	2.4	5
38	Investigation of Stepwise and Stoichiometric Palladium-Mediated <i>ortho</i> -C–H Bond Arylation and Alkylation of 9(10 <i>H</i>)-Acridinone. Organometallics, 2020, 39, 3168-3179.	2.3	6
39	A heterogeneous and recoverable palladium catalyst to access the regioselective C–H alkenylation of quinoline <i>N</i> -oxides. Green Chemistry, 2020, 22, 6560-6566.	9.0	28
40	Access to 5 <i>H</i> -benzo[<i>a</i>]carbazol-6-ols and benzo[6,7]cyclohepta[1,2- <i>b</i>]indol-6-ols <i>via</i> rhodium-catalyzed Câ€"H activation/carbenoid insertion/aldol-type cyclization. Organic Chemistry Frontiers, 2020, 7, 3146-3159.	4.5	14
41	Directing-Group-Assisted C(sp2)–H Arylsulfonylation from Sulfur Dioxide. Organic Letters, 2020, 22, 7094-7097.	4.6	28
42	Synthesis of Indenopyrazole Frameworks via Cascade C–H Functionalization/[3 + 2] Dipolar Cycloaddition/Aromatization Rearrangement Reactions. Organic Letters, 2020, 22, 7152-7157.	4.6	29
43	Direct remote δ-C(sp ²)–H olefination of β-aryl-substituted aliphatic aldehydes <i>via</i> palladium/enamine co-catalysis. Organic Chemistry Frontiers, 2020, 7, 2965-2974.	4.5	8
44	Ruthenium(<scp>ii</scp>)-catalyzed acyloxylation of the <i>ortho</i> -C–H bond in 2-aroyl-imidazoles with carboxylic acids. Organic Chemistry Frontiers, 2020, 7, 2955-2959.	4.5	15
45	8-Aminoquinoline as a bidentate traceless directing group for Cu-catalyzed selective B(4,5)–H disulfenylation of <i>>o</i> -carboranes. Chemical Communications, 2020, 56, 12997-13000.	4.1	31
46	A chiral porous organic polymer as a heterogeneous ligand for enantioselective Pd-catalyzed C(sp ³)–H functionalization. Catalysis Science and Technology, 2020, 10, 7697-7705.	4.1	13
47	Transient imine directing groups for the Câ \in "H functionalisation of aldehydes, ketones and amines: an update 2018â \in "2020. Organic and Biomolecular Chemistry, 2020, 18, 7291-7315.	2.8	84
48	Ruthenium(II)-Catalyzed C–H Arylation of N,N-Dialkyl Thiobenzamides with Boronic Acids by Sulfur Coordination in 2-MeTHF. Organic Letters, 2020, 22, 6884-6890.	4.6	22
49	N-Iminopyridinium ylide-directed, cobalt-catalysed coupling of sp ² C–H bonds with alkynes. Chemical Communications, 2020, 56, 11070-11073.	4.1	19
50	Chiral Transient Directing Group Strategies in Asymmetric Synthesis. Chemistry - an Asian Journal, 2020, 15, 3225-3238.	3.3	14
51	Pdâ€Catalyzed Directed Thiocyanation Reaction by Câ^'H Bond Activation. Chemistry - A European Journal, 2020, 26, 15497-15500.	3.3	16
52	Rh(III)-catalyzed direct cross-dehydrogenative coupling of aromatic nitriles with heteroarenes: Rapid access to biheteroaryl-2-carbonitriles. Green Synthesis and Catalysis, 2020, 1, 167-170.	6.8	21
53	Ruthenium-Catalyzed C(sp ²)–H Bond Bisallylation with Imidazopyridines as Directing Groups. Journal of Organic Chemistry, 2020, 85, 15167-15182.	3.2	19
54	Pd-Catalyzed Regioselective C–H Alkenylation and Alkynylation of Allylic Alcohols with the Assistance of a Bidentate Phenanthroline Auxiliary. Organic Letters, 2020, 22, 9059-9064.	4.6	15

#	Article	IF	Citations
55	Recent progress of transition metal-catalysed regioselective C–H transformations based on noncovalent interactions. Organic and Biomolecular Chemistry, 2020, 18, 4126-4134.	2.8	39
56	Regioselective B(3,4)–H arylation of <i>o</i> -carboranes by weak amide coordination at room temperature. Chemical Science, 2020, 11, 10764-10769.	7.4	52
57	A directing group-assisted ruthenium-catalyzed approach to access <i>meta</i> -nitrated phenols. Chemical Communications, 2020, 56, 7100-7103.	4.1	24
58	Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes <i>via</i> dynamic kinetic resolution: a computational study. Organic Chemistry Frontiers, 2020, 7, 1502-1511.	4.5	21
59	Cobalta-Electrocatalyzed C–H Allylation with Unactivated Alkenes. ACS Catalysis, 2020, 10, 6457-6462.	11.2	48
60	Directed Cobalt-Catalyzed <i>anti</i> -Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by "Co–H―Catalysis. Organic Letters, 2020, 22, 4333-4338.	4.6	33
61	Remote and Selective C(sp ^{)â€"H Olefination for Sequential Regioselective Linkage of Phenanthrenes. Organic Letters, 2020, 22, 4129-4134.}	4.6	11
62	Pd(II)â€Catalyzed, Bidentate Directing Groupâ€aided Alkylation of sp ³ γâ€Câ^'H Bonds: Access to 3â€Alkylated Thiophene/Furan and Benzothiophene/Benzofuran Motifs. Asian Journal of Organic Chemistry, 2020, 9, 1225-1233.	2.7	19
63	Synthesis of Functionalized Arylacetamido-2-pyridones through ortho-C(sp2)–H-Activated Installation of Olefins and Alkynes. Journal of Organic Chemistry, 2020, 85, 8563-8579.	3.2	10
64	Recent advances in photoelectrochemical cells (PECs) for organic synthesis. Organic Chemistry Frontiers, 2020, 7, 1895-1902.	4.5	67
65	Transition Metalâ€Catalysed Direct Câ^'H Bond Functionalizations of 2â€Pyridone Beyond C3â€Selectivity. Chemistry - an Asian Journal, 2020, 15, 2092-2109.	3.3	35
66	Rh(I)-catalyzed Addition of the <i>ortho</i> C-H Bond in Aryl Sulfonamides to Maleimides. Chemistry Letters, 2020, 49, 1053-1057.	1.3	6
67	Palladiumâ€Catalyzed Câ^'H Iodination of Arenes by Means of Sulfinyl Directing Groups. Chemistry - an Asian Journal, 2020, 15, 2442-2446.	3.3	12
68	Synthesis of 3,4-Fused Tricyclic Indoles through Cascade Carbopalladation and C–H Amination: Development and Total Synthesis of Rucaparib. Organic Letters, 2020, 22, 4985-4989.	4.6	47
69	Transition Metal Promoted Cascade Heterocycle Synthesis through Câ ⁻ 'H Functionalization. Chemistry - A European Journal, 2020, 26, 9749-9783.	3.3	66
70	Remote C–H Functionalization of 8-Aminoquinoline Ring. Topics in Current Chemistry, 2020, 378, 42.	5.8	13
71	Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C–H/N–H Coupling for N-Arylation of Sulfoximines. Organic Letters, 2020, 22, 2606-2610.	4.6	25
72	Insights into Cobalta(III/IV/II)â€Electrocatalysis: Oxidationâ€Induced Reductive Elimination for Twofold Câ^'H Activation. Angewandte Chemie - International Edition, 2020, 59, 10955-10960.	13.8	65

#	Article	IF	Citations
73	Mechanistische Studien zu Cobalta(III/IV/II)â€Elektrokatalyse: Oxidativâ€induzierte reduktive Eliminierung zur zweifachen Câ€Hâ€Aktivierung. Angewandte Chemie, 2020, 132, 11048-11053.	2.0	16
74	Late-stage C(sp ²)â€"H and C(sp ³)â€"H glycosylation of <i>C</i> aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chemical Science, 2020, 11, 6521-6526.	7.4	76
75	Ruthenium(II)â€Catalyzed Double Annulation of Quinones: Stepâ€Economical Access to Valuable Bioactive Compounds. Chemistry - A European Journal, 2020, 26, 10981-10986.	3.3	22
76	Synthesis of isoquinolones by visible-light-induced deaminative [4+2] annulation reactions. Chemical Communications, 2020, 56, 5259-5262.	4.1	27
77	Rh ^{III} -Catalyzed one-pot cascade synthesis of quinazolines with <i>N</i> -alkoxyamide as an amidating reagent. Organic Chemistry Frontiers, 2020, 7, 1230-1234.	4.5	12
78	Enantioselective Palladaâ€Electrocatalyzed Câ^'H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angewandte Chemie - International Edition, 2020, 59, 13451-13457.	13.8	177
79	Copper-Catalyzed Electrochemical Selective B–H Oxygenation of <i>o</i> -Carboranes at Room Temperature. Journal of the American Chemical Society, 2020, 142, 6940-6945.	13.7	56
80	Oxidative C–H/N–H Annulation of Aromatic Amides with Dialkyl Malonates: Access to Isoindolinones and Dihydrobenzoindoles. Journal of Organic Chemistry, 2020, 85, 5741-5749.	3.2	7
81	Azaruthena(II)â€bicyclo[3.2.0]heptadien: Schlüsselintermediat für Ruthenaelektro(II/III/I)â€katalysierte Alkinanellierungen. Angewandte Chemie, 2020, 132, 11223-11229.	2.0	18
82	Azaruthena(II)â€bicyclo[3.2.0]heptadiene: Key Intermediate for Ruthenaelectro(II/III/I)â€catalyzed Alkyne Annulations. Angewandte Chemie - International Edition, 2020, 59, 11130-11135.	13.8	61
83	Insights into Ruthenium(II/IV) atalyzed Distal Câ^'H Oxygenation by Weak Coordination. Chemistry - A European Journal, 2020, 26, 16450-16454.	3.3	15
84	N–H and C–H Bond Activations of an Isoindoline Promoted by Iridium- and Osmium-Polyhydride Complexes: A Noninnocent Bridge Ligand for Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics, 2020, 39, 2719-2731.	2.3	14
85	Palladium-catalyzed direct asymmetric Câ€"H bond functionalization enabled by the directing group strategy. Chemical Science, 2020, 11, 12616-12632.	7.4	71
86	Transition-Metal-Free Site-Selective γ-C(sp ²)–H Monoiodination of Arenes Directed by an Aliphatic Keto Group. Organic Letters, 2020, 22, 5314-5319.	4.6	13
87	Copper-Catalyzed Intramolecular C–H Alkoxylation of Diaryltriazoles: Synthesis of Tricyclic Triazole Benzoxazines. Organic Letters, 2020, 22, 5320-5325.	4.6	22
88	Selective metalation of phenol-type proligands for preparative organometallic chemistry. Chemical Communications, 2020, 56, 3987-3990.	4.1	7
89	Direct Base-Assisted C‒H Cyclonickelation of 6-Phenyl-2,2′-bipyridine. Molecules, 2020, 25, 997.	3.8	9
90	Development of a Traceless Directing Group: Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations to Access Isoquinolinones. Journal of Organic Chemistry, 2020, 85, 4067-4078.	3.2	30

#	Article	IF	CITATIONS
91	Nickelaelektrokatalysierte, milde Câ€Hâ€Alkylierungen bei Raumtemperatur. Angewandte Chemie, 2020, 132, 14258-14263.	2.0	8
92	Enantioselektive Palladaâ €e lektrokatalysierte Câ€Hâ€Aktivierung durch transiente dirigierende Gruppen: Ein nützlicher Zugang zu Helicenen. Angewandte Chemie, 2020, 132, 13553-13559.	2.0	42
93	Rh ^{III} â€Catalyzed Double Dehydrogenative Coupling of Free 1â€Naphthylamines with α,βâ€Unsaturated Esters. Chemistry - A European Journal, 2020, 26, 11093-11098.	3.3	17
94	The Direct Rh(III)-Catalyzed Câ€"H Amidation of Aniline Derivatives Using a Pyrimidine Directing Group: The Selective Solvent Controlled Synthesis of 1,2-Diaminobenzenes and Benzimidazoles. Organic Letters, 2020, 22, 3655-3660.	4.6	31
95	Merging Cu-catalysed C–H functionalisation and intramolecular annulations: computational and experimental studies on an expedient construction of complex fused heterocycles. Organic Chemistry Frontiers, 2020, 7, 1235-1242.	4.5	6
96	Evolution of Highâ€Valent Nickelaâ€Electrocatalyzed Câ^'H Activation: From Cross(â€Electrophile)â€Couplings to Electrooxidative Câ^'H Transformations. Chemistry - A European Journal, 2020, 26, 10936-10947.	3.3	32
97	Iron-Catalyzed C–H Functionalizations under Triazole-Assistance. Molecules, 2020, 25, 1806.	3.8	8
98	Nickelaâ€electrocatalyzed Mild Câ^'H Alkylations at Room Temperature. Angewandte Chemie - International Edition, 2020, 59, 14154-14159.	13.8	46
99	The Iridium(III)-Catalyzed Direct C(sp ²)– and C(sp ³)–H Alkynylation of 2-Acylimidazoles with Various Alkynyl Bromides: Understanding the Full Catalytic Cycle. ACS Catalysis, 2020, 10, 5173-5178.	11.2	38
100	Intramolecular β-Alkenylation of Cyclohexanones via Pd-Catalyzed Desaturation-Mediated C(sp ³)–H/Alkyne Coupling. Journal of the American Chemical Society, 2020, 142, 8962-8971.	13.7	19
101	Transition Metalâ€Catalyzed Intermolecular Cascade Câ^'H Activation/Annulation Processes for the Synthesis of Polycycles. Chemistry - A European Journal, 2021, 27, 121-144.	3.3	66
102	Chiral Catalysts for Pd ⁰ atalyzed Enantioselective Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 1231-1257.	3.3	72
103	Palladiumâ€Catalyzed Siteâ€Selective [3+2] Annulation via Benzylic and meta Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 5249-5252.	2.0	7
104	Preparation and investigation of graphene-coated lead-free glass frit based on amino dispersant for improved adhesion and lower temperature point. Diamond and Related Materials, 2021, 111, 108213.	3.9	8
105	Strategic evolution in transition metal-catalyzed directed C–H bond activation and future directions. Coordination Chemistry Reviews, 2021, 431, 213683.	18.8	170
106	Pd(II)â€catalyzed, Picolinamideâ€aided sp ² γâ^'Câ^'H Functionalization of Phenylglycinol: Access to γâ^'Câ^'H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 180-185.	2.7	8
107	Catalytic Câ^'H Functionalization of Unreactive Furan Cores in Bioâ€Derived Platform Chemicals. ChemSusChem, 2021, 14, 558-568.	6.8	19
108	Palladium atalyzed Siteâ€6elective [3+2] Annulation via Benzylic and <i>meta</i> Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 5189-5192.	13.8	37

#	Article	IF	CITATIONS
109	Site-selective functionalization of remote aliphatic C–H bonds <i>via</i> C–H metallation. Chemical Science, 2021, 12, 841-852.	7.4	75
110	Dual-Role Catalysis by Thiobenzoic Acid in Cα–H Arylation under Photoirradiation. ACS Catalysis, 2021, 11, 82-87.	11.2	41
111	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 839-859.	3.2	88
112	Ruthenium-catalysed C–H/C–N bond activation: facile access to isoindolinones. Organic Chemistry Frontiers, 2021, 8, 915-921.	4.5	20
113	C(sp ³)â€"H Monoarylation of Methanol Enabled by a Bidentate Auxiliary. Organic Letters, 2021, 23, 118-123.	4.6	4
114	Ru-catalysed C(sp ²)–H vinylation/annulation of benzoic acids and alkynes: rapid access to medium-sized lactones. Chemical Communications, 2021, 57, 1113-1116.	4.1	11
115	Regioselective C(sp ³)–H fluorination of ketones: from methyl to the monofluoromethyl group. Chemical Communications, 2021, 57, 765-768.	4.1	9
116	One-Pot Tandem ortho-Naphthoquinone-Catalyzed Aerobic Nitrosation of N-Alkylanilines and Rh(III)-Catalyzed C–H Functionalization Sequence to Indole and Aniline Derivatives. Journal of Organic Chemistry, 2021, 86, 1152-1163.	3.2	15
117	The site-selectivity and mechanism of Pd-catalyzed C(sp ²)â€"H arylation of simple arenes. Chemical Science, 2021, 12, 363-373.	7.4	20
118	Site-selective and diastereoselective functionalization of α-amino acid and peptide derivatives <i>via</i> palladium-catalyzed sp ³ C–H activation. Organic Chemistry Frontiers, 2021, 8, 133-168.	4.5	22
119	C(sp ²)â€"H functionalization in non-aromatic azomethine-based heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 297-312.	2.8	19
120	Recent advances in the copper-catalyzed aerobic C _{sp3} â€"H oxidation strategy. Organic and Biomolecular Chemistry, 2021, 19, 3569-3583.	2.8	15
121	Palladium catalyzed 8-aminoimidazo[1,2-a]pyridine (AIP) directed selective β-C(sp2)–H arylation. Organic and Biomolecular Chemistry, 2021, 19, 360-364.	2.8	6
122	Copper(II)-Catalyzed Direct C–H (Hetero)arylation at the C3 Position of Indoles Assisted by a Removable <i>N</i> , <i>N</i> ,Eidentate Auxiliary Moiety. Journal of Organic Chemistry, 2021, 86, 1789-1801.	3.2	6
123	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	4.5	59
124	Recent developments on the synthesis of functionalized carbohydrate/sugar derivatives involving the transition metal–catalyzed C–H activation/C–H functionalization. Studies in Natural Products Chemistry, 2021, , 311-399.	1.8	13
125	Dual Ligand-Enabled Late-Stage Fujiwara–Moritani Reactions. Synlett, 2022, 33, 357-360.	1.8	8
126	Alleviating Catalyst Decay Enables Efficient Intermolecular C(sp ³)–H Amination under Mechanochemical Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 1684-1691.	6.7	15

#	Article	IF	CITATIONS
127	Recent advances in chelation-assisted site- and stereoselective alkenyl Câ \in "H functionalization. Chemical Society Reviews, 2021, 50, 3263-3314.	38.1	105
128	Regiodivergent C–H Arylation of Triphenylene Derivatives Controlled by Electronic Effects of Diaryliodonium Salts. Journal of Organic Chemistry, 2021, 86, 2986-2997.	3.2	3
129	Copper-Catalyzed Vicinal C(sp ²)â€"H Selenylation of Benzoic Acid Derivatives Using Air as Oxidant. Chinese Journal of Organic Chemistry, 2021, 41, 2302.	1.3	3
130	Palladium-catalyzed directed synthesis of <i>ortho</i> organic and Biomolecular Chemistry, 2021, 19, 6244-6249.	2.8	2
131	A facile method for Rh-catalyzed decarbonylative <i>ortho</i> -Câ€"H alkylation of (hetero)arenes with alkyl carboxylic acids. RSC Advances, 2021, 11, 19827-19831.	3.6	2
132	Copper-catalyzed synthesis of pyrido-fused quinazolinones from 2-aminoarylmethanols and isoquinolines or tetrahydroisoquinolines. Organic and Biomolecular Chemistry, 2021, 19, 4726-4732.	2.8	12
133	Iridium-catalyzed regioselective Câ€"H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Advances, 2021, 11, 22000-22004.	3.6	5
134	Recent developments in asymmetric Heck type cyclization reactions for constructions of complex molecules. Organic and Biomolecular Chemistry, 2021, 19, 5673-5701.	2.8	36
135	Recent development in transition metal-catalysed Câ€"H olefination. Chemical Science, 2021, 12, 2735-2759.	7.4	134
136	Palladium-catalyzed remote <i>para</i> -C–H activation of arenes assisted by a recyclable pyridine-based template. Chemical Science, 2021, 12, 4126-4131.	7.4	17
137	Diastereoselective Pd-Catalyzed Anomeric C(sp ³)â€"H Activation: Synthesis of α-(Hetero)aryl C-Glycosides. ACS Catalysis, 2021, 11, 1818-1826.	11.2	43
138	Decarboxylative C–H alkylation of heteroarenes by copper catalysis. Organic Chemistry Frontiers, 2021, 8, 3128-3136.	4.5	18
139	Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Organic and Biomolecular Chemistry, 2021, 19, 7621-7626.	2.8	6
140	Recent Advances in Copper Promoted Inert C(sp ³)â€"H Functionalization. ACS Catalysis, 2021, 11, 967-984.	11.2	32
141	Electron-deficient boron-based catalysts for C–H bond functionalisation. Chemical Society Reviews, 2021, 50, 1945-1967.	38.1	66
142	Nanoarchitectonics: what's coming next after nanotechnology?. Nanoscale Horizons, 2021, 6, 364-378.	8.0	221
143	PEG-400 as a carbon synthon: highly selective synthesis of quinolines and methylquinolines under metal-free conditions. Green Chemistry, 2021, 23, 5542-5548.	9.0	15
144	Pd-catalysed β-selective C(sp3)–H arylation of simple amides. Chemical Communications, 2021, 57, 8055-8058.	4.1	9

#	Article	IF	CITATIONS
145	Progress and perspectives on directing group-assisted palladium-catalysed C–H functionalisation of amino acids and peptides. Chemical Society Reviews, 2021, 50, 9278-9343.	38.1	45
146	Broadening of horizons in the synthesis of CD ₃ -labeled molecules. Chemical Society Reviews, 2021, 50, 10806-10835.	38.1	47
147	Rhodium(<scp>i</scp>)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Organic Chemistry Frontiers, 2021, 8, 3320-3331.	4.5	7
148	Copper-catalyzed $[3 + 2]/[3 + 2]$ carboannulation of dienynes and arylsulfonyl chlorides enabled by Smiles rearrangement: access to cyclopenta[$\langle i \rangle a \langle i \rangle$] indene-fused quinolinones. Organic Chemistry Frontiers, 2021, 8, 5092-5097.	4.5	5
149	Ru(II)-Catalyzed Switchable C–H Alkylation and Spirocyclization of 2-Arylquinoxalines with Maleimides via ortho-C–H Activation. Journal of Organic Chemistry, 2021, 86, 2784-2795.	3.2	38
150	Pd(<scp>ii</scp>)-Catalyzed enantioselective arylation of unbiased methylene C(sp ³)–H bonds enabled by a 3,3′-F ₂ -BINOL ligand. Chemical Communications, 2021, 57, 5562-5565.	4.1	14
151	Palladium-Catalyzed C8 Alkylation of 1-Naphthylamides and Its Application to the Synthesis of the Core Sturctures of Aporphine and Aristolactam Alkaloids. Chinese Journal of Organic Chemistry, 2021, 41, 1691.	1.3	1
152	lron-Catalyzed Triazole-Enabled C–H Activation with Bicyclopropylidenes. ACS Catalysis, 2021, 11, 1053-1064.	11.2	14
153	Ni-Catalyzed C(sp ²)â€"H alkylation of <i>N</i> -quinolylbenzamides using alkylsilyl peroxides as structurally diverse alkyl sources. Chemical Communications, 2021, 57, 7942-7945.	4.1	14
154	Diastereoselective synthesis of chiral 3-substituted isoindolinones <i>via </i> isoindolinones <i>via <i <i="">via <i <i="">via <i <i="">via <i <i="">via <i <i="">via <i <i="">via <i <i="" <i<="" td=""><td>2.8</td><td>10</td></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.8	10
155	Ag–Cu copromoted direct C2–H bond thiolation of azoles with Bunte salts as sulfur sources. Organic and Biomolecular Chemistry, 2021, 19, 5899-5904.	2.8	4
156	Mechanistic understanding enables chemoselective sp3 over sp2 C–H activation in Pd-catalyzed carbonylative cyclization of amino acids. Catalysis Science and Technology, 2021, 11, 1590-1601.	4.1	7
157	Pyrimidine-directed metal-free Câ€"H borylation of 2-pyrimidylanilines: a useful process for tetra-coordinated triarylborane synthesis. Chemical Science, 2021, 12, 11447-11454.	7.4	22
158	Tris-NHC-propagated self-supported polymer-based Pd catalysts for heterogeneous C–H functionalization. Chemical Communications, 2021, 57, 10182-10185.	4.1	7
160	Electrooxidative <i>o</i> -carborane chalcogenations without directing groups: cage activation by copper catalysis at room temperature. Chemical Science, 2021, 12, 12971-12976.	7.4	7
161	Electrooxidative Rhodiumâ€Catalyzed [5+2] Annulations via Câ^'H/Oâ^'H Activations. Angewandte Chemie - International Edition, 2021, 60, 6419-6424.	13.8	65
162	Diastereoselective Construction of Eight-Membered Carbocycles through Palladium-Catalyzed C(sp ³)â€"H Functionalization. Organic Letters, 2021, 23, 1269-1274.	4.6	9
163	Ni-Catalyzed Intermolecular C(sp ³)â€"H Amidation Tuned by Bidentate Directing Groups. ACS Catalysis, 2021, 11, 3067-3072.	11.2	25

#	Article	IF	CITATIONS
164	Palladium-Catalyzed Dual Coupling Reaction of 2-lodobiphenyls with ⟨i>o⟨/i>-Bromoanilines through C–H Activation: An Approach for the Synthesis of Tribenzo[⟨i>b⟨/i>,⟨i>d⟨/i>,⟨i>f⟨/i>]azepines. Organic Letters, 2021, 23, 1239-1242.	4.6	30
165	The Emergence of Palladiumâ€Catalyzed C(sp ³)â^'H Functionalization of Free Carboxylic Acids. Chemistry - an Asian Journal, 2021, 16, 397-408.	3.3	18
166	Elektrooxidative Rhodiumâ€katalysierte [5+2]â€Anellierung durch Câ€H/Oâ€Hâ€Aktivierung. Angewandte Chemi 2021, 133, 6490-6495.	e _{2.0}	17
167	Synthesis of Fluorescent 4â€Azapyrenes by Palladium(II)â€Catalyzed Dual Câ^'H Bond Activation and Annulation. Advanced Synthesis and Catalysis, 2021, 363, 1695-1701.	4.3	9
168	Synthesis of Polysubstituted Phenols by Rhodium atalyzed Câ^'H/Diazo Coupling and Tandem Annulation. Advanced Synthesis and Catalysis, 2021, 363, 1855-1860.	4.3	15
169	Cooperative Ligand-Promoted P ^(III) -Directed Ruthenium-Catalyzed Remote <i>Meta</i> C–H Alkylation of Tertiary Phosphines. Organic Letters, 2021, 23, 2057-2062.	4.6	18
170	How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Organic Letters, 2021, 23, 1489-1494.	4.6	10
171	<i>para</i> â€Selective Palladiumâ€Catalyzed Câ^'H Difluoroalkylation by Weak Oxazolidinone Assistance. ChemCatChem, 2021, 13, 1738-1742.	3.7	9
172	Electrochemical Oxidation Enables Regioselective and Scalable \hat{l} ±-C(sp ³)-H Acyloxylation of Sulfides. Journal of the American Chemical Society, 2021, 143, 3628-3637.	13.7	61
173	Pdâ€Catalyzed Regio―and Stereoselective <i>sp</i> ³ Câ^'H Arylation of Primary Aliphatic Amines: Mechanistic Studies and Synthetic Applications. European Journal of Organic Chemistry, 2021, 2021, 1136-1145.	2.4	3
174	Merging Câ€"H and Câ€"C Activation in Pd(II)-Catalyzed Enantioselective Synthesis of Axially Chiral Biaryls. CCS Chemistry, 2021, 3, 455-465.	7.8	40
175	Rhodium-Catalyzed C4-Selective C–H Alkenylation of 2-Pyridones by Traceless Directing Group Strategy. Organic Letters, 2021, 23, 1388-1393.	4.6	16
176	Câ^'H Bond Arylation of Pyrazoles at the βâ€Position: General Conditions and Computational Elucidation for a High Regioselectivity. Chemistry - A European Journal, 2021, 27, 5546-5554.	3.3	6
177	Highly Stable Polyoxovanadate-Based Zn–MOF with Dual Active Sites as a Solvent-free Catalyst for C–C Bond Formation. ACS Sustainable Chemistry and Engineering, 2021, 9, 4660-4667.	6.7	41
178	Unactivated Alkyl Halides in Transition-Metal-Catalyzed Câ€"H Bond Alkylation. ACS Catalysis, 2021, 11, 3268-3292.	11.2	45
179	An Efficient Polymer Supported Palladium Catalyst for <i>ortho</i> Selective Câ^'H Olefination of Anilides. ChemistrySelect, 2021, 6, 2615-2620.	1.5	5
180	Photochemical and Electrochemical Strategies towards Benzylic Câ^'H Functionalization: A Recent Update. Advanced Synthesis and Catalysis, 2021, 363, 1810-1834.	4.3	74
181	Organopalladium Intermediates in Coordination-Directed C(sp3)-H Functionalizations. Trends in Chemistry, 2021, 3, 188-203.	8.5	13

#	Article	IF	CITATIONS
182	A Guide to Directing Group Removal: 8â€Aminoquinoline. Chemistry - A European Journal, 2021, 27, 8411-8436.	3.3	39
183	Palladium-Catalyzed Regioselective C–H Functionalization/Annulation Reaction of Amides and Allylbenzenes for the Synthesis of Isoquinolinones and Pyridinones. Journal of Organic Chemistry, 2021, 86, 5255-5264.	3.2	10
184	Copperâ€Catalyzed Remote C5â€Selective Chlorination of 8â€Amidoquinolines Using Sulfonyl Chlorides as Cl Source. ChemistrySelect, 2021, 6, 2319-2322.	1.5	3
185	1,2â€Aryl Migration Induced by Amide Câ^'N Bondâ€Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,αâ€Diaryl β,γâ€Unsaturated γâ€Lactams. Angewandte Chemie - International Edition, 2021, 8425-8430.	6 0 3.8	12
186	1,2â€Aryl Migration Induced by Amide Câ^'N Bondâ€Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,αâ€Diaryl β,γâ€Unsaturated γâ€Lactams. Angewandte Chemie, 2021, 133, 8506-8511.	2.0	6
187	Pdâ€Catalyzed C(sp ²)â^'H Alkoxycarbonylation of Phenethyl―and Benzylamines with Chloroformates as CO Surrogates. Chemistry - A European Journal, 2021, 27, 5782-5789.	3.3	13
188	Palladium-catalyzed benzylic C(sp3)–H arylation of o-alkylbenzaldehydes. Tetrahedron Letters, 2021, 67, 152865.	1.4	6
189	Rh(III)-Catalyzed Redox-Neutral C–H Activation/[3 + 2] Annulation of <i>N</i> Phenoxy Amides with Propargylic Monofluoroalkynes. Organic Letters, 2021, 23, 2285-2291.	4.6	10
190	Pd-Catalyzed <i>ipso</i> , <i>meta</i> -Dimethylation of <i>ortho</i> -Substituted Iodoarenes via a Base-Controlled C–H Activation Cascade with Dimethyl Carbonate as the Methyl Source. Journal of the American Chemical Society, 2021, 143, 4524-4530.	13.7	24
191	Rhodium(I)â€Catalyzed C2â€Selective Decarbonylative Câ^'H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. Asian Journal of Organic Chemistry, 2021, 10, 879-885.	2.7	12
192	Nickel-mediated C(sp2)-H amidation in synthesis of secondary sulfonamides via sulfonyl azides as amino source. Tetrahedron Letters, 2021, 66, 152825.	1.4	7
193	Enantioselective Ruthenium-Catalyzed C–H Alkylations by a Chiral Carboxylic Acid with Attractive Dispersive Interactions. Organic Letters, 2021, 23, 2760-2765.	4.6	38
194	Ruthenium(II)-catalyzed Arylation of <i>ortho</i> -Câ€"H Bonds in 2-Aroyl-imidazoles with Aryl Halides. Chemistry Letters, 2021, 50, 589-592.	1.3	6
195	Solventâ€Free Rutheniumâ€Catalyzed Direct Coupling of Phosphines and Aryl Chlorides via Câ^'H Activation: An Efficient and Straight Access to Arylâ€Substituted Biarylphosphines. Asian Journal of Organic Chemistry, 2021, 10, 1113-1116.	2.7	9
196	Mechanism and Origins of Regiochemical Control in Rh(III)-Catalyzed Oxidative Câ \in H Alkenylation and Coupling Sequence of Unprotected 1-Naphthylamines with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters. Organometallics, 2021, 40, 1371-1378.	2.3	4
197	Catalytic Intermolecular C(sp ³)–H Amination: Selective Functionalization of Tertiary C–H Bonds vs Activated Benzylic C–H Bonds. Journal of the American Chemical Society, 2021, 143, 6407-6412.	13.7	36
198	Iridium(III)-Catalyzed Branch-Selective C–H Alkenylation of Aniline Derivatives with Alkenes. ACS Catalysis, 2021, 11, 5463-5471.	11.2	20
200	Double Ligands Enabled Ruthenium Catalyzed ortho â€Câ^'H Arylation of Dialkyl Biarylphosphines: Straight and Economic Synthesis of Highly Steric and Electronâ€Rich Arylâ€Substituted Buchwaldâ€Type Phosphines. Advanced Synthesis and Catalysis, 2021, 363, 2843-2849.	4.3	11

#	Article	IF	CITATIONS
201	Mechanistic Diversity of Low-Valent Chromium Catalysis: Cross-Coupling and Hydrofunctionalization. Accounts of Chemical Research, 2021, 54, 2014-2026.	15.6	37
202	Palladiumâ€Catalyzed Câ^'H Functionalization of Diaryl 1,3,5â€Triazines. European Journal of Organic Chemistry, 2021, 2021, 2006-2012.	2.4	O
203	Electrophotocatalytic Câ^'H Heterofunctionalization of Arenes. Angewandte Chemie, 2021, 133, 11263-11267.	2.0	12
204	Rh(III)-Catalyzed C–H Activation/[3 + 2] Annulation of <i>N</i> -Phenoxyacetamides via Carbooxygenation of 1,3-Dienes. Organic Letters, 2021, 23, 3844-3849.	4.6	16
205	Electrophotocatalytic Câ^'H Heterofunctionalization of Arenes. Angewandte Chemie - International Edition, 2021, 60, 11163-11167.	13.8	75
206	Overcoming the Necessity of γ-Substitution in Î′-C(sp ³)â€"H Arylation: Pd-Catalyzed Derivatization of α-Amino Acids. ACS Catalysis, 2021, 11, 5310-5317.	11.2	18
207	Palladium atalyzed Aromatic Câ^'H Functionalizations Utilizing Electrochemical Oxidations. Chemical Record, 2021, 21, 2320-2331.	5.8	11
208	Traceless Directing Groups in Sustainable Metal-Catalyzed C–H Activation. Catalysts, 2021, 11, 554.	3.5	23
209	Aldehydeâ€Directed C(<i>sp</i> ²)â^'H Functionalization under Transitionâ€Metal Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 3868-3878.	4.3	17
210	Focused Libraries for Epigenetic Drug Discovery: The Importance of Isosteres. Journal of Medicinal Chemistry, 2021, 64, 7231-7240.	6.4	12
211	Evolution of Earthâ€Abundant 3 dâ€Metallaelectroâ€Catalyzed Câ^'H Activation: From Chelationâ€Assistance Câ^'H Functionalization without Directing Groups. Chemical Record, 2021, 21, 2430-2441.	2 to 5.8	12
212	Rhodaelektrokatalysierte bimetallische Câ€Hâ€Oxygenierung durch schwache O â€Koordination. Angewandte Chemie, 2021, 133, 13373-13379.	2.0	5
213	Palladiumâ€Catalyzed Direct Diarylation of 2â€Benzylâ€1,2,3â€triazole: a Simple Access to 4â€Aryl†or 4,5â€Diarylâ€2â€benzylâ€1,2,3â€triazoles and Phenanthro[9,10†d][1,2,3]triazoles. European Journal of Organ Chemistry, 2021, 2021, 2375-2382.	i 2. 4	1
214	Enzymeâ€like Supramolecular Iridium Catalysis Enabling Câ^'H Bond Borylation of Pyridines with <i>meta</i> 倀electivity. Angewandte Chemie - International Edition, 2021, 60, 18006-18013.	13.8	66
215	Rh-Catalyzed General Method for Directed Câ€"H Functionalization via Decarbonylation of <i>in-Situ</i> -Generated Acid Fluorides from Carboxylic Acids. Organic Letters, 2021, 23, 4191-4196.	4.6	11
216	Rhodaâ€Electrocatalyzed Bimetallic Câ^'H Oxygenation by Weak <i>O</i> coordination. Angewandte Chemie - International Edition, 2021, 60, 13264-13270.	13.8	31
217	Enzymeâ€like Supramolecular Iridium Catalysis Enabling Câ^'H Bond Borylation of Pyridines with meta â€Selectivity. Angewandte Chemie, 2021, 133, 18154-18161.	2.0	12
218	2-(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp ³)–H Bonds. Accounts of Chemical Research, 2021, 54, 2750-2763.	15.6	109

#	Article	IF	CITATIONS
219	Electrocatalytic C–H phosphorylation through nickel(III/IV/II) catalysis. CheM, 2021, 7, 1379-1392.	11.7	26
220	Pd-Catalyzed Direct C–H Activation for the C5-Olefination of Methyleneindolinones. Journal of Organic Chemistry, 2021, 86, 7288-7295.	3.2	4
221	Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Letters, 2021, 72, 153064.	1.4	5
222	Aryne Multicomponent Reactions by Directed Câ ⁻ 'H Activation. Chemistry - A European Journal, 2021, 27, 8846-8850.	3.3	6
223	Pd-catalyzed methylene γ-C(sp3)â€"H alkenylation of N-picolinoylcycloalkylamines with alkenyl iodides promoted by 2-tert-butyl-1,4-benzoquinone. Tetrahedron Letters, 2021, 74, 153130.	1.4	12
224	Selective Synthesis of 3â€(αâ€Fluorovinyl)indoles and 3â€Acylindoles via the Cascade Reactions of 1â€Phenylpyrazolidinones with α,αâ€Difluoromethylene Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 3600-3606.	4.3	28
225	Regio―and Stereoselective Functionalization Enabled by Bidentate Directing Groups. Chemical Record, 2021, 21, 3613-3627.	5.8	25
226	Chemodivergent manganese-catalyzed C–H activation: modular synthesis of fluorogenic probes. Nature Communications, 2021, 12, 3389.	12.8	50
227	Direct C4-Acetoxylation of Tryptophan and Tryptophan-Containing Peptides ⟨i>via⟨ i>Palladium(II)-Catalyzed Câ€"H Activation. Organic Letters, 2021, 23, 4699-4704.	4.6	9
228	Towards an Effective Synthesis of Difunctionalized Heptacyclo [6.6.0.0 2,6 .0 3,13 .0 4,11 .0 5,9 .0 10,14]tetradecane: Ligand Effects on the Cage Assembly and Selective Câ^'H Arylation Reactions. Advanced Synthesis and Catalysis, 2021, 363, 3546-3553.	4.3	5
229	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	21.2	277
230	Transitionâ€Metal atalyzed Directing Group Assisted (Hetero)aryl Câ^'H Functionalization: Construction of Câ^'C/Câ€Heteroatom Bonds. Chemical Record, 2021, 21, 3758-3778.	5.8	20
231	Primary amides: Sustainable weakly coordinating groups in transition metal-catalyzed C–H bond functionalization reactions. Tetrahedron, 2021, 93, 132313.	1.9	11
232	Metalâ€Catalyzed C(sp ²)â^H Functionalization Processes of Phenylalanine―and Tyrosineâ€Containing Peptides. European Journal of Inorganic Chemistry, 2021, 2021, 2928-2941.	2.0	20
233	α-C(sp3)-H Arylation of Cyclic Carbonyl Compounds. Natural Products and Bioprospecting, 2021, 11, 379-404.	4.3	2
234	Pyridine-directed carbon–carbon single bond activation: Rhodium-catalyzed decarbonylation of aryl and heteroaromatic ketones. Tetrahedron Letters, 2021, 73, 153132.	1.4	4
235	Palladium-catalyzed C–H acetoxylation of 2-arylindazoles. Tetrahedron, 2021, 93, 132277.	1.9	7
236	C–H Alkylation of Aldehydes by Merging TBADT Hydrogen Atom Transfer with Nickel Catalysis. Organic Letters, 2021, 23, 5389-5393.	4.6	26

#	Article	IF	CITATIONS
237	Rh(III)-Catalyzed Chemoselective C–H Alkenylation and [5 + 1] Annulation with <i>Gem</i> -Difluoromethylene Enabled by the Distinctive Fluorine Effect. Journal of Organic Chemistry, 2021, 86, 9711-9722.	3.2	9
238	Cobalt-Catalyzed C–H Activation and [3 + 2] Annulation with Allenes: Diastereoselective Synthesis of Indane Derivatives. Organic Letters, 2021, 23, 5018-5023.	4.6	17
239	The Activating Effect of Strong Acid for Pd-Catalyzed Directed C–H Activation by Concerted Metalation-Deprotonation Mechanism. Molecules, 2021, 26, 4083.	3.8	5
240	Effect of Transition Metals on Chemodivergent Cross-Coupling of Acrylamides with Vinyl Acetate via C–H Activation. Organic Letters, 2021, 23, 5679-5683.	4.6	12
241	Transition Metal Catalyzed Freeâ€Amine (â^'NH ₂) Directed Câ^'H Bond Activation and Functionalization for Biaryl Frameworks. Chemical Record, 2021, 21, 3795-3817.	5.8	15
242	Decoding Directing Groups and Their Pivotal Role in Câ ⁻ 'H Activation. Chemistry - A European Journal, 2021, 27, 12453-12508.	3.3	71
243	B(C ₆ F ₅) ₃ -Catalyzed Sequential Additions of Terminal Alkynes to <i>para</i> -Substituted Phenols: Selective Construction of Congested Phenol-Substituted Quaternary Carbons. Organic Letters, 2021, 23, 5533-5538.	4.6	10
244	Reusable Manganese Catalyst for Siteâ€Selective Pyridine Câ^'H Arylations and Alkylations. Chemistry - A European Journal, 2021, 27, 12737-12741.	3.3	13
245	Co(II)â€Catalyzed Oxidation of N,N â€Dimethylaminoethanol: An Efficient Synthesis of Unsymmetrical (2,4â€) and Symmetrical (2,6â€) Diarylpyridines through Annulation of Aromatic Ketones with a Nitrogen Source. Asian Journal of Organic Chemistry, 2021, 10, 2246-2250.	2.7	6
246	Nickelâ€Catalyzed <i>Suzukiâ€Miyaura</i> Crossâ€Coupling Involving Câ^O Bond Activation. Helvetica Chimica Acta, 2021, 104, e2100089.	1.6	3
247	Construction of Racemic and Enantiopure Biaryl Unnatural Amino Acid Derivatives via Pd(II)â€Catalyzed Arylation of Unactivated Csp ³ â~H Bonds. European Journal of Organic Chemistry, 2021, 2021, 3641-3656.	2.4	12
248	Ruâ€Catalyzed C(sp 2)â°'H Bond Arylation of Benzamides Bearing a Novel 4â€Aminoantipyrine as a Directing Group. European Journal of Organic Chemistry, 2021, 2021, 3598-3603.	2.4	0
249	Hypercrosslinked Polymer Platform-Anchored Single-Site Heterogeneous Pd–NHC Catalysts for Diverse C–H Functionalization. Organometallics, 2021, 40, 2443-2449.	2.3	14
250	Controlled <i>meta</i> -Selective C–H Mono- and Di-Olefination of Mandelic Acid Derivatives. Organic Letters, 2021, 23, 6014-6018.	4.6	9
251	Palladium atalyzed Câ^'H Bond Arylation of Cyclometalated Difluorinated 2â€Arylisoquinolinyl Iridium(III) Complexes. Chemistry - A European Journal, 2021, 27, 12552-12557.	3.3	3
252	On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein Journal of Organic Chemistry, 2021, 17, 1849-1938.	2.2	18
253	Copper-Catalyzed Intermolecular C(sp ²)â€"H Amination with Electrophilic <i>O</i> Hydroxylamines. Journal of Organic Chemistry, 2021, 86, 10580-10590.	3.2	6
254	Cobalt-catalyzed C–H bond functionalization using traceless directing group. Tetrahedron, 2021, 93, 132307.	1.9	9

#	ARTICLE	IF	CITATIONS
255	Nickel-Catalyzed Regio- and Stereospecific C–H Coupling of Benzamides with Aziridines. Organic Letters, 2021, 23, 5471-5475.	4.6	14
256	Access to Diarylmethanol Skeletons via a Samarium/Copper-Mediated Sequential Three-Component C–H Functionalization Reaction. Journal of Organic Chemistry, 2021, 86, 9854-9860.	3.2	4
257	Mechanistic Study of Enantioselective Pd-Catalyzed C(sp ³)–H Activation of Thioethers Involving Two Distinct Stereomodels. ACS Catalysis, 2021, 11, 9738-9753.	11.2	15
258	Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry, 2021, 5, 522-545.	30.2	341
259	Copper Mediated, (2â€Methylthio)aniline Directed Annulation of sp2 C–H Bonds with Primary Anilines. Asian Journal of Organic Chemistry, 0, , .	2.7	1
260	Bipyridine-Type Bidentate Auxiliary-Enabled Copper-Mediated C–H/C–H Biaryl Coupling of Phenols and 1,3-Azoles. Organic Letters, 2021, 23, 5405-5409.	4.6	6
261	Arene C–H Iodination Using Aryl Iodides. CCS Chemistry, 2022, 4, 1889-1900.	7.8	21
262	Photoâ€Induced Rutheniumâ€Catalyzed Câ^'H Benzylations and Allylations at Room Temperature. Chemistry - A European Journal, 2021, 27, 16237-16241.	3.3	17
263	Enantioselective synthesis of indenopyrazolopyrazolones enabled by dual directing groups-assisted and rhodium(III)-catalyzed tandem C-H alkenylation/[3Â+Â2] stepwise cycloaddition. Chinese Chemical Letters, 2022, 33, 842-846.	9.0	19
264	Copper-mediated Regioselective C–H Cyanation of Phenols with Assistance of Bipyridine-type Bidentate Auxiliary. Chemistry Letters, 2021, 50, 1814-1817.	1.3	0
265	Salicylaldehyde-Promoted Cobalt-Catalyzed Câ€"H/Nâ€"H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue. Organic Letters, 2021, 23, 7094-7099.	4.6	12
266	Efficient Synthesis of Quinazolines from Aryl Imidates and N â€Alkoxyamide by Ir(III)â€Catalyzed Câ^'H Amidation/Cyclization. European Journal of Organic Chemistry, 2021, 2021, 4144-4147.	2.4	3
267	Free Amine, Hydroxyl and Sulfhydryl Directed $C\hat{a}^2H$ Functionalization and Annulation: Application to Heterocycle Synthesis. Chemical Record, 2022, 22, .	5.8	8
268	Transient Directing Groups in Metalâ^'Organic Cooperative Catalysis. Chemistry - A European Journal, 2021, 27, 13899-13952.	3.3	34
269	Facile Synthesis of Alkylidene Phthalides by Rhodiumâ€Catalyzed Domino Câ€H Acylation/Annulation of Benzamides with Aliphatic Carboxylic Acids. Chemistry - A European Journal, 2021, 27, 15628-15633.	3.3	1
270	Oneâ€Pot Synthesis of Pyrrolo[1,2â€ <i>f</i>)]phenanthridines From 1â€Arylpyrroles <i>via</i>) Successive Palladium atalyzed Direct Arylations. European Journal of Organic Chemistry, 2021, 2021, 4974-4983.	2.4	2
271	Cobalt-Catalyzed 2-(1-Methylhydrazinyl)pyridine-Assisted Câ€"H Alkylation/Annulation: Mechanistic Insights and Rapid Access to Cyclopenta[⟨i⟩c⟨/i⟩]isoquinolinone Derivatives. Journal of Organic Chemistry, 2021, 86, 14915-14927.	3.2	4
272	Palladium-Catalyzed Intramolecular Cross-Coupling of Unactivated C(sp ³)–H and C(sp ²)–H Bonds. Organic Letters, 2021, 23, 7161-7165.	4.6	7

#	Article	IF	Citations
273	Rh(III)-Catalyzed Annulation of 2-Biphenylboronic Acid with Diverse Activated Alkenes. Organic Letters, 2021, 23, 7199-7204.	4.6	16
274	Rh(III)â€Catalyzed Divergent C2â€carboxymethylation of Indoles and C7â€formylmethylation of Indolines with Vinylene Carbonate. Asian Journal of Organic Chemistry, 2021, 10, 2557-2561.	2.7	17
275	Nickel-catalyzed C-F/O-H [4+2] Annulation of <i>ortho</i> -Fluoro Aromatic Carboxylic Acids with Alkynes. Chemistry Letters, 2021, 50, 1990-1992.	1.3	4
276	Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines. Beilstein Journal of Organic Chemistry, 2021, 17, 2488-2495.	2.2	4
277	Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catalysis, 2021, 11, 11639-11649.	11.2	19
278	Synthesis of Chiral Spirolactams via Sequential Câ^'H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co ^{II} /Chiral Spiro Phosphoric Acid Binary System. Angewandte Chemie - International Edition, 2021, 60, 23187-23192.	13.8	51
279	Synthesis of Chiral Spirolactams via Sequential Câ [^] H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angewandte Chemie, 2021, 133, 23371.	2.0	14
280	Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). Journal of Polymer Science, 2022, 60, 393-428.	3.8	26
281	Synthesis of 9-Fluorenylidenes via Pd-Catalyzed C–H Vinylation with Vinyl Bromides. Organic Letters, 2021, 23, 7746-7750.	4.6	11
283	Rhodiumâ€Catalyzed Additiveâ€Free Câ°'H Ethoxycarbonylation of (Hetero)Arenes with Diethyl Dicarbonate as a CO Surrogate. European Journal of Organic Chemistry, 2021, 2021, 4938-4942.	2.4	8
284	Regioselective C-H Functionalization of the Six-Membered Ring of the 6,5-Fused Heterocyclic Systems: An Overview. Molecules, 2021, 26, 5763.	3.8	5
285	Palladium-Catalyzed Arylation of C(sp2)–H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS Omega, 2021, 6, 25151-25161.	3. 5	0
286	Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules, 2021, 26, 5467.	3.8	15
287	Bimetallic anchoring catalysis for C-H and C-C activation. Science China Chemistry, 2021, 64, 1923-1937.	8.2	24
288	Rh(III)-Catalyzed [3 + 2] Annulation of Aniline Derivatives with Vinylsilanes <i>via</i> C–H Activation/Alkene Cyclization: Access to Highly Regioselective Indoline Derivatives. ACS Catalysis, 2021, 11, 12375-12383.	11.2	10
289	Highly chemoselective deoxygenation of N-heterocyclic <i>N</i> -oxides under transition metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 3735-3742.	2.8	6
290	Rhodium(III)-Catalyzed Aerobic Oxidative Câ€"H Olefination of Unsaturated Acrylamides with Unactivated Olefins. Organic Letters, 2021, 23, 767-771.	4.6	19
291	Palladium-catalyzed functionalizations of acidic and non-acidic C(sp ³)â€"H bonds â€" recent advances. Chemical Communications, 2021, 57, 1693-1714.	4.1	10

#	Article	IF	CITATIONS
292	Remote C(sp ³)â€"H functionalization <i>via</i> catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Organic Chemistry Frontiers, 2021, 8, 4914-4946.	4.5	25
293	DTBP-promoted site-selective α-alkoxyl C–H functionalization of alkyl esters: synthesis of 2-alkyl ester substituted chromanones. Organic and Biomolecular Chemistry, 2021, 19, 4520-4528.	2.8	3
294	Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes and its application in flow chemistry. Chemical Science, 2021, 12, 3202-3209.	7.4	12
295	Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes with benzamide. Organic Chemistry Frontiers, 2021, 8, 928-935.	4.5	16
296	Ag-Catalyzed Remote Unactivated C(sp ³)â€"H Heteroarylation of Free Alcohols in Water. Organic Letters, 2021, 23, 722-726.	4.6	15
297	Recent Progress on the Application of Sulfoxonium Ylides in Câ€"H Activation. Chinese Journal of Organic Chemistry, 2021, 41, 888.	1.3	17
298	Amino-assisted synthesis of alkynylthioethers <i>via</i> a visible-light-induced C _(sp) â€"S ^{II} coupling between bromoalkynes and 2,2′-diaminodiaryldisulfides. Organic Chemistry Frontiers, 2021, 8, 5345-5351.	4.5	7
299	Pd-Catalyzed tandem C–C/C–O/C–H single bond cleavage of 3-allyloxybenzocyclobutenols. Organic Chemistry Frontiers, 2021, 8, 3867-3875.	4.5	9
300	Visible-light-promoted \hat{l} ±-methoxymethylation and aminomethylation of ketones with methanol as the C1 source. Organic and Biomolecular Chemistry, 2021, 19, 5572-5576.	2.8	8
301	Cobalt-catalyzed, directed arylation of C–H bonds in <i>N</i> -aryl pyrazoles. RSC Advances, 2021, 11, 9349-9352.	3.6	4
302	Organometallo-macrocycle assembled through dialumane-mediated C–H activation of pyridines. Chemical Communications, 2021, 57, 6268-6271.	4.1	6
303	Cobalt-catalyzed C8–H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates. Organic Chemistry Frontiers, 2021, 8, 5710-5715.	4.5	7
304	Pyridine- and Quinoline-Derived Imines as N,N-Bidentate Directing Groups in Palladium versus Platinum Câ€"H Bond Activation Reactions. Organometallics, 2021, 40, 203-217.	2.3	3
305	MIA-Directed 2-Pyridione-Enabled Selective <i>Ortho</i> -Câ€"H Arylation of Phenylalanine: A Mechanistic Study. Journal of Organic Chemistry, 2021, 86, 3096-3106.	3.2	9
306	Rhodaelectro-catalyzed chemo-divergent Câ€"H activations with alkylidenecyclopropanes for selective cyclopropylations. Chemical Communications, 2021, 57, 3668-3671.	4.1	17
307	An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. Organic Chemistry Frontiers, 2021, 8, 1315-1328.	4.5	27
308	Transition metal catalyzed Câ€"H bond activation by <i>exo</i> rommunications, 2021, 57, 11885-11903.	4.1	7
309	Recent Advances in Base Metal (Copper, Cobalt and Nickel)-Catalyzed Directed C—H Amination. Chinese Journal of Organic Chemistry, 2021, 41, 3753.	1.3	14

#	Article	IF	CITATIONS
310	Rhodium-catalyzed enone carbonyl directed C–H activation for the synthesis of indanones containing all-carbon quaternary centers. Organic Chemistry Frontiers, 2021, 8, 1447-1453.	4.5	13
311	Deaminative <i>meta </i> -C–H alkylation by ruthenium(<scp>ii </scp>) catalysis. Chemical Science, 2021, 12, 8073-8078.	7.4	25
312	Effective Tools for the Metal atalyzed Regiodivergent Direct Arylations of (Hetero)arenes. Chemical Record, 2021, 21, 343-356.	5.8	23
313	Carboxyl-Assisted <i>meta </i> -Selective C–H Functionalizations of Benzylsulfonamides. Organic Letters, 2020, 22, 7791-7796.	4.6	15
314	Rh(III)-Catalyzed Reaction of \hat{l}_{\pm} -Carbonyl Sulfoxonium Ylides and Alkenes: Synthesis of Indanones via [4 + 1] Cycloaddition. Organic Letters, 2020, 22, 1375-1379.	4.6	52
315	Radical-mediated oxidative annulations of 1, <i>n</i> -enynes involving C–H functionalization. Chemical Communications, 2020, 56, 6907-6924.	4.1	57
316	Overriding <i>ortho</i> selectivity by template assisted <i>meta</i> -Câ€"H activation of benzophenones. Chemical Communications, 2020, 56, 7281-7284.	4.1	14
317	Traceless directing groups: a novel strategy in regiodivergent C–H functionalization. Chemical Communications, 2020, 56, 12479-12521.	4.1	7 3
318	Chemical and structural investigation of the paroxetine-human serotonin transporter complex. ELife, 2020, 9, .	6.0	53
319	Enantioselective palladaelectro-catalyzed C–H olefinations and allylations for N–C axial chirality. Chemical Science, 2021, 12, 14182-14188.	7.4	52
320	Nickel-catalyzed cyclization of 1,7-enynes for the selective synthesis of dihydrocyclobuta[c]quinolin-3-ones and benzo[b]azocin-2-ones. Chemical Communications, 2021, 57, 11657-11660.	4.1	6
321	Recent advances in the generation and functionalization of C(alkenyl)–Pd species for synthesis of polysubstituted alkenes. Tetrahedron, 2022, 103, 132513.	1.9	11
322	A directive Ni catalyst overrides conventional site selectivity in pyridine Câ€"H alkenylation. Nature Chemistry, 2021, 13, 1207-1213.	13.6	67
323	Ni(II)â€Mediated Ortho C(sp2)â€H Amidation of Arenes to Synthesis Secondary Sulfonamides via Sulfonyl Azides. ChemistrySelect, 2021, 6, 10668-10670.	1.5	3
324	Transitionâ€Metal atalyzed Câ^'H Bond Functionalization of Arenes/Heteroarenes <i>via </i> Tandem Câ^'H Activation and Subsequent Carbene Migratory Insertion Strategy. Chemical Record, 2021, 21, 4088-4122.	5.8	31
325	Rhodium-Catalyzed Annulation of Phenacyl Ammonium Salts with Propargylic Alcohols via a Sequential Dual C–H and a C–C Bond Activation: Modular Entry to Diverse Isochromenones. Organic Letters, 2021, 23, 7888-7893.	4.6	18
326	The Directing Group: A Tool for Efficient and Selective C–F Bond Activation. ACS Catalysis, 2021, 11, 12915-12930.	11.2	35
327	Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp ³)–H Bonds. Chemical Reviews, 2021, 121, 14957-15074.	47.7	262

#	Article	IF	CITATIONS
328	Rhodaâ€Electrocatalyzed Câ^'H Methylation and Paired Electrocatalyzed Câ^'H Ethylation and Propylation. Chemistry - A European Journal, 2022, 28, .	3.3	18
329	Synthesis of Benzoisoselenazolones via Rh(III)â€Catalyzed Direct Annulative Selenation by Using Elemental Selenium. Chemistry - A European Journal, 2021, 27, 17952-17959.	3.3	10
330	Intermolecular CDC amination of remote and proximal unactivated C _{sp³} –H bonds through intrinsic substrate reactivity – expanding towards a traceless directing group. Chemical Science, 2021, 12, 15318-15328.	7.4	14
331	Chemically robust and readily available quinoline-based PNN iron complexes: application in C–H borylation of arenes. Chemical Communications, 2021, 57, 13246-13258.	4.1	8
333	Maleimides in Directingâ€Groupâ€Controlled Transitionâ€Metalâ€Catalyzed Selective Câ^'H Alkylation. European Journal of Organic Chemistry, 2021, 2021, 5862-5879.	2.4	29
334	Strategy for Site―and Chemoselective C–H Alkenylation through Osmaelectrooxidative Catalysis. Angewandte Chemie, 0, , .	2.0	8
335	A Strategy for Site―and Chemoselective Câ^'H Alkenylation through Osmaelectrooxidative Catalysis. Angewandte Chemie - International Edition, 2021, 60, 27005-27012.	13.8	22
336	Palladium-Catalyzed β-C(sp ³)–H Nitrooxylation of Ketones and Amides Using Practical Oxidants. ACS Catalysis, 2021, 11, 14188-14193.	11.2	20
337	Transformation of tertâ€Butyl Amide Directing Groups to Nitriles in Iridiumâ€Catalyzed C–H Bond Functionalizations. Asian Journal of Organic Chemistry, 2021, 10, 3411.	2.7	1
338	Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5 <i>H</i>)-ones Enabled by Rh(III)-Catalyzed Domino Câ€"H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catalysis, 2021, 11, 13921-13934.	11.2	20
339	Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. Journal of the Indian Chemical Society, 2021, 98, 100247.	2.8	3
340	Development of Catalytic Reduction of Renewable Carbon Resources Using Well-Elaborated Organometallic Complexes with PNNP Tetradentate Ligands. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 856-866.	0.1	2
341	Microwaveâ€Assisted Ruthenium―and Rhodiumâ€Catalyzed Couplings of αâ€Amino Acid Ester Derived Phosphinamides with Alkynes. Chemistry - an Asian Journal, 2021, , .	3.3	1
342	An Unusual Perpendicular Metallacycle Intermediate is the Origin of Branch Selectivity in the Rh(II)-Catalyzed Câ \in "H Alkylation of Aryl Sulfonamides with Vinylsilanes. Organometallics, 0, , .	2.3	2
343	Iridium(III)-Catalyzed C(3)–H Alkylation of Isoquinolines via Metal Carbene Migratory Insertion. Organic Letters, 2021, 23, 8694-8698.	4.6	13
344	Synthesis of Substituted 1â€Hydroxyâ€2â€Naphthaldehydes by Rhodiumâ€Catalyzed Câ^'H Bond Activation and Vinylene Transfer of Enaminones with Vinylene Carbonate. Advanced Synthesis and Catalysis, 2022, 364, 512-517.	4.3	29
345	Pd-catalyzed bidentate auxiliary assisted remote C(sp ³)â€"H functionalization. Chemical Communications, 2021, 57, 13221-13233.	4.1	11
346	Cobalt-catalyzed highly diastereoselective $[3+2]$ carboannulation reactions: facile access to substituted indane derivatives. Chemical Communications, 2022, 58, 1386-1389.	4.1	4

#	Article	IF	CITATIONS
347	Recent progress in the oxidative coupling of unactivated Csp ³ â€"H bonds with other Câ€"H bonds. Chemical Communications, 2021, 57, 13288-13296.	4.1	23
348	Remote <i>ortho </i> -C–H functionalization <i>via </i> medium-sized cyclopalladation. Chemical Communications, 2022, 58, 2034-2040.	4.1	10
349	Synthesis of Natural Products by Câ^'H Functionalization of Heterocycless. Chemistry - A European Journal, 2022, 28, .	3.3	24
350	Palladium-Catalyzed Site-Selective $[5+1]$ Annulation of Aromatic Amides with Alkenes: Acceleration of \hat{l}^2 -Hydride Elimination by Maleic Anhydride from Palladacycle. ACS Catalysis, 2022, 12, 1595-1600.	11.2	5
351	Synthetic Applications of C–O and C–E Bond Activation Reactions. , 2022, , 347-420.		4
352	Rh($\langle scp \rangle i \langle scp \rangle$)-catalysed imine-directed Câ \in "H functionalization $\langle i \rangle via \langle i \rangle$ the oxidative [3 + 2] cycloaddition of benzylamine derivatives with maleimides. Chemical Communications, 2022, 58, 1123-1126.	4.1	9
353	Palladium-Catalyzed C–H Bond Arylation and O- to N-Alkyl Migratory Rearrangement of 2-Alkoxythiazoles: One-Pot Access to 2-Alkoxy-5-arylthiazoles or 3-Alkyl-5-arylthiazol-2(3H)-ones. Synthesis, 0, 54, .	2.3	1
354	Cationic π-extended heteroaromatics <i>via</i> a catalytic C–H activation annulative alkyne-insertion sequence. Chemical Communications, 2021, 58, 133-154.	4.1	21
355	Synthesis of Benzylidenesuccinates through Rhodium(III) atalyzed Câ€H Alkenylation with Itaconate. Asian Journal of Organic Chemistry, 0, , .	2.7	4
356	Synthetic Applications of Carbene and Nitrene C H Insertion. , 2022, , .		0
357	Ru(<scp>ii</scp>)-Catalyzed C–H bond activation/annulation of <i>N</i> iv-iminopyridinium ylides with sulfoxonium ylides. Organic and Biomolecular Chemistry, 2022, 20, 1475-1479.	2.8	9
358	Selective Paraâ€Câ^H Alkynylation of Aniline Derivatives by Pd/S,Oâ€Ligand Catalysis. Chemistry - A European Journal, 2022, 28, e202104107.	3.3	11
359	Solvent directed chemically divergent synthesis of \hat{l}^2 -lactams and \hat{l}_\pm -amino acid derivatives with chiral isothiourea. Chemical Science, 2022, 13, 1801-1807.	7.4	11
360	Alkylsulfonium salts for the photochemical desulphurizative functionalization of heteroarenes. Organic Chemistry Frontiers, 2022, 9, 347-355.	4.5	19
361	Diastereoselective palladium-catalyzed functionalization of prochiral C(sp ³)–H bonds of aliphatic and alicyclic compounds. Chemical Communications, 2022, 58, 2612-2633.	4.1	24
362	Regio- and stereo-selective olefinic C–H functionalization of aryl alkenes in ethanol. Organic Chemistry Frontiers, 0, , .	4.5	10
363	Recent advances in transition-metal catalyzed directed Câ€"H functionalization with fluorinated building blocks. Organic Chemistry Frontiers, 2022, 9, 1742-1775.	4.5	23
366	Pd(<scp>ii</scp>)/Lewis acid catalyzed regioselective olefination of indole with dioxygen. Organic and Biomolecular Chemistry, 2022, 20, 1425-1435.	2.8	6

#	Article	IF	CITATIONS
367	Direct Lactamization of <i>β</i> â€Arylated <i>δ</i> â€Aminopentanoic Acid Carboxamides: En Route to 4â€arylâ€2â€Piperidones, Piperidines, Antituberculosis Molecule Q203 (Telacebec) and its Analogues. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6
368	Cobalt(II)-Catalyzed Activation of C(sp ³)–H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catalysis, 2022, 12, 1650-1656.	11.2	15
369	Three Si-substituted polyoxovanadates as efficient catalysts for Knoevenagel condensation and selective oxidation of styrene to benzaldehyde. Dalton Transactions, 2022, 51, 3304-3313.	3.3	9
370	Ester-directed orthogonal dual C–H activation and ortho aryl C–H alkenylation via distal weak coordination. Chemical Communications, 2022, 58, 1406-1409.	4.1	3
371	Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Pyrazolones. ACS Omega, 2022, 7, 5274-5282.	3.5	5
372	Electrooxidative palladium- and enantioselective rhodium-catalyzed $[3+2]$ spiroannulations. Chemical Science, 2022, 13, 2783-2788.	7.4	51
373	Pd-Catalyzed Coupling of $[1,1'$ -Biphenyl]-2-yl Trifluoromethylsulfonates with CH2Br2 to Access Fluorenes. Synlett, $0, , .$	1.8	2
374	Ruthenaelectro-catalyzed C–H acyloxylation for late-stage tyrosine and oligopeptide diversification. Chemical Science, 2022, 13, 3461-3467.	7.4	23
375	Transition-metal-catalyzed remote C–H functionalization of thioethers. RSC Advances, 2022, 12, 10835-10845.	3.6	13
376	Native carboxyl group-assisted C–H acetoxylation of hydrocinnamic and phenylacetic acids. Chemical Communications, 2022, 58, 4993-4996.	4.1	3
377	Visible light-promoted photocatalyst-free activation of persulfates: a promising strategy for C–H functionalization reactions. Organic and Biomolecular Chemistry, 2022, 20, 3249-3262.	2.8	19
378	C–H benzylation of quinoxalin-2(1 <i>H</i>)-ones <i>via</i> visible-light riboflavin photocatalysis. Organic Chemistry Frontiers, 2022, 9, 2653-2658.	4.5	17
379	Specific assembly of dihydrobenzofuran frameworks <i>via</i> Rh(<scp>iii</scp>)-catalysed Câ€"H coupling of <i>N</i> -phenoxyacetamides with 2-alkenylphenols. New Journal of Chemistry, 2022, 46, 5705-5711.	2.8	3
380	Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols. Nano Research, 2022, 15, 4023-4031.	10.4	16
381	Control of Site-Selectivity in Hydrogen Atom Transfer by Electrostatic Interaction: Proximal-Selective C(sp ³)âe"H Alkylation of 2-Methylanilinium Salts Using a Decatungstate Photocatalyst. ACS Catalysis, 2022, 12, 3058-3062.	11.2	14
382	Catalytic Cleavage of Unactivated C(aryl)–P Bonds by Chromium. Organic Letters, 2022, 24, 1581-1586.	4.6	4
383	4-Aminobenzotriazole (ABTA) as a Removable Directing Group for Palladium-Catalyzed Aerobic Oxidative C–H Olefination. Organic Letters, 2022, 24, 3107-3112.	4.6	5
384	Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes. Molecules, 2022, 27, 1923.	3.8	5

#	Article	IF	CITATIONS
385	Palladium-Catalyzed Aerobic $\hat{l}\pm,\hat{l}^2$ -Dehydrogenation of Aliphatic Amides. Journal of Organic Chemistry, 2022, 87, 4873-4882.	3.2	6
386	2â€Bromoâ€3,3,3â€Trifluoropropene: A Versatile Reagent for the Synthesis of Fluorinated Compounds. Advanced Synthesis and Catalysis, 2022, 364, 1371-1387.	4.3	15
387	Transition Metal atalyzed Regiodivergent Câ^'H Arylations of Aryl‧ubstituted Azoles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	8
388	Rh(III)-Catalyzed Synthesis of 2-Nitro-2H-azirines via sp3 C–H Activation. Synlett, 2022, 33, 969-972.	1.8	1
389	Site-selective reactions mediated by molecular containers. Beilstein Journal of Organic Chemistry, 2022, 18, 309-324.	2.2	5
390	Cobalt(III)-Catalyzed Chemo- and Regioselective [4 + 2]-Annulation of Aromatic Sulfoxonium Ylides with 1,3-Diynes. Journal of Organic Chemistry, 2022, 87, 4134-4153.	3.2	15
391	Rh(III)-Catalyzed Tandem [4+2] Annulation To Construct Functional Dihydroisoquinolinones. Synthesis, 2022, 54, 3271-3281.	2.3	2
392	Redox-Neutral Ru(0)-Catalyzed Alkenylation of 2-Carboxaldimine-heterocyclopentadienes. Journal of Organic Chemistry, 2022, 87, 4640-4648.	3.2	10
393	Ligand-Promoted Nickel-Catalyzed <i>para</i> -Selective Carboxylation of Anisoles. Organic Letters, 2022, 24, 2155-2159.	4.6	2
394	Palladiumâ€Catalyzed C(<i>sp</i> ^{<i>2</i>} / <i>sp</i> ^{<i>3</i>})â^'H Arylation of Aryl Glycinamide Derivatives Using Picolinamide as Directing Group. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
395	Stereoselective Palladiumâ€Catalyzed C(<i>sp</i> ³)â^'H Monoâ€Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Advanced Synthesis and Catalysis, 2022, 364, 1488-1497.	4.3	12
396	Rhodium(III)-Catalyzed Oxidative C–H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. ACS Catalysis, 2022, 12, 4394-4401.	11.2	13
397	Remote Alkenylation <i>via</i> Carbopalladation/1,4â€Palladium Migration/Heck Reaction Sequence with Unactivated Alkenyl Alcohols. Advanced Synthesis and Catalysis, 0, , .	4.3	2
398	Rutheniumâ€Catalyzed C7â€Formylmethylation or Sequential Acetalization of Indolines with Vinylene Carbonate in Different Solvents. Advanced Synthesis and Catalysis, 2022, 364, 1580-1586.	4.3	18
399	Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Letters, 2022, 97, 153779.	1.4	3
400	Regio―and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandiumâ€Catalyzed βâ€C(sp ³)â^'H Activation. Angewandte Chemie - International Edition, 2022, 61, e202115996.	13.8	15
401	Allene C(sp ²)â€"H Activation and Alkenylation Catalyzed by Palladium. Journal of the American Chemical Society, 2021, 143, 21705-21712.	13.7	25
402	Double 1,2-Migration of Bromine and Silicon in Directed C–H Alkynylation Reactions with Silyl-Substituted Alkynyl Bromides through an Iridium Vinylidene Intermediate. Organometallics, 2022, 41, 20-28.	2.3	2

#	Article	IF	Citations
403	Regio―and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandiumâ€Catalyzed βâ€C(sp ³)â°'H Activation. Angewandte Chemie, 2022, 134, .	2.0	3
404	Transamidation and Decarbonylation of <i>N</i> Phthaloyl-Amino Acid Amides Enabled by Palladium-Catalyzed Selective C–N Bond Cleavage. Journal of Organic Chemistry, 2022, 87, 231-242.	3.2	4
405	Transition-Metal-Catalyzed Divergent C–H Functionalization of Five-Membered Heteroarenes. Accounts of Chemical Research, 2021, 54, 4518-4529.	15.6	32
406	Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Organic and Biomolecular Chemistry, 2022, 20, 3817-3822.	2.8	5
407	Expedient Ni-catalyzed C–H/C–H cross-dehydrogenative coupling of aryl amides with azoles. Chemical Communications, 2022, 58, 5980-5983.	4.1	3
408	Deconstructive Cycloaromatization Strategy toward <i>N</i> , <i>O</i> -Bidentate Ligands from Indolizines and Cyclopropenones. Organic Letters, 2022, 24, 3238-3243.	4.6	12
409	Cobalt(III)-Catalyzed Regio- and Chemoselective $[4+2]$ -Annulation of <i>N</i> -Chlorobenzamides/Acrylamides with 1,3-Dienes at Room Temperature. Journal of Organic Chemistry, 2022, 87, 5713-5729.	3.2	9
410	Direct Evidence for Competitive Câ€"H Activation by a Well-Defined Silver XPhos Complex in Palladium-Catalyzed Câ€"H Functionalization. Organometallics, 2022, 41, 3175-3184.	2.3	11
411	Amineâ€Catalyzed Copperâ€Mediated Câ^'H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
413	Rh-Catalyzed [4 + 2] Annulation with a Removable Monodentate Structure toward Iminopyranes and Pyranones by C–H Annulation. Organic Letters, 2022, 24, 3003-3008.	4.6	24
414	Remote C5-Selective Functionalization of Naphthalene Enabled by P–Ru–C Bond-Directed δ-Activation. ACS Catalysis, 2022, 12, 5036-5047.	11.2	11
415	Pd(II)-Catalyzed, Picolinamide-Aided γ-(sp2)-C–H Functionalization of Racemic and Enantiopure α-Methylbenzylamine and Phenylglycinol Scaffolds. Synthesis, 2022, 54, 4059-4094.	2.3	9
416	Cyclometallated Iron(II) Alkoxides in Iron-Catalyzed Câ€"H Activations by Weak <i>O</i> Carbonyl Chelation. ACS Catalysis, 2022, 12, 4947-4960.	11.2	13
417	Amineâ€Catalyzed Copperâ€Mediated C–H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group. Angewandte Chemie, 0, , .	2.0	0
418	Câ -"H Heteroarylation of Aromatics via Catalyst Free SN2' Coupling Cycloaromatization. Green Chemistry, 0, , .	9.0	2
419	C(sp ³)–H 1,3-diamination of cumene derivatives catalyzed by a dirhodium(<scp>ii</scp>) catalyst. Organic Chemistry Frontiers, 0, , .	4.5	5
420	Ruthenium-catalyzed (spiro)annulation of $\langle i \rangle N \langle i \rangle$ -aryl-2,3-dihydrophthalazine-1,4-diones with quinones to access pentacyclic spiro-indazolones and fused-cinnolines. Organic and Biomolecular Chemistry, 2022, 20, 4753-4764.	2.8	6
421	Ru(<scp>iii</scp>)-catalyzed C4–H bond cyanoalkoxylation of 1-naphthylamine derivatives with azobisisobutyronitrile. Organic Chemistry Frontiers, 2022, 9, 3348-3353.	4.5	3

#	Article	IF	Citations
422	Construction of carbazole-based unnatural amino acid scaffolds <i>via</i> Pd(<scp>ii</scp>)-catalyzed C(sp ³)â€"H functionalization. Organic and Biomolecular Chemistry, 2022, 20, 4391-4414.	2.8	11
423	Transitionâ€Metalâ€Catalyzed, Chelationâ€Assisted Câ^'H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Advanced Synthesis and Catalysis, 2022, 364, 2113-2139.	4.3	19
424	Thermodynamic and Kinetic Studies on Copper-Catalyzed Cross-Dehydrogenative Couplings of <i>N</i> -Aryl Glycine Esters with Phenols. Bulletin of the Chemical Society of Japan, 2022, 95, 989-1000.	3.2	2
425	Ligandâ€Enabled [3+2] Annulation of Aromatic Acids with Maleimides by C(sp ³)â^'H and C(sp ²)â^'H Bond Activation. Chemistry - A European Journal, 2022, 28, .	3.3	13
426	Divergent Regioselective Csp ² –H Difluoromethylation of Aromatic Amines Enabled by Nickel Catalysis. Organic Letters, 2022, 24, 3549-3554.	4.6	10
427	Rapid formation of Csp3–Csp3 bonds through copper-catalyzed decarboxylative Csp3–H functionalization. Chinese Chemical Letters, 2023, 34, 107477.	9.0	12
428	Enhanced flow electrochemistry for cyclohexane Conversion: From simulation to application. Journal of Catalysis, 2022, 410, 84-92.	6.2	8
429	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	6.7	20
430	Construction of Pyrrolocoumarin Cores through Double Câ \in H Annulation Cascade. European Journal of Organic Chemistry, $0, , .$	2.4	5
431	Formal C–H/C–I Metathesis: Site-Selective C–H Iodination of Anilines Using Aryl Iodides. Organic Letters, 2022, 24, 3657-3662.	4.6	10
432	A jackpot C–H activation protocol using simple ruthenium catalyst in deep eutectic solvents. Green Chemistry, 2022, 24, 4941-4951.	9.0	9
433	Double Câ \in H bond functionalization for the annulative $\langle i \rangle \ddot{i} \in \langle i \rangle$ â \in extension of 1 â \in arylimidazoles: A palladiumâ \in catalyzed one pot access to imidazo $[1,5$ â \in • $\langle i \rangle$ f $\langle i \rangle$]phenanthridines. Applied Organometallic Chemistry, 0, , .	3.5	0
434	Copper-catalyzed regioselective C2–H chlorination of indoles with <i>para</i> toluenesulfonyl chloride. Organic and Biomolecular Chemistry, 2022, 20, 4815-4825.	2.8	1
435	Nickel(0)-catalysed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids by a bifunctional temporary directing group strategy. Organic Chemistry Frontiers, 2022, 9, 3840-3846.	4.5	2
436	Formal Câ€"H/Câ€"I Metathesis: Site-Selective Câ€"H Iodination of 2-Aryl Benzoic Acid Derivatives Using Aryl Iodide. Organic Letters, 2022, 24, 3926-3931.	4.6	6
437	S,Oâ€Ligand Promoted <i>meta</i> àê€Câ^'H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
438	S,Oâ€Ligand Promoted <i>meta</i> â^'H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angewandte Chemie, 2022, 134, .	2.0	2
440	Access to hexahydroazepinone heterocycles <i>via</i> palladium-catalysed C(sp ³)–H alkenylation/ring-opening of cyclopropanes. Chemical Communications, 0, , .	4.1	1

#	Article	IF	CITATIONS
441	Rh(<scp>iii</scp>)-Catalyzed Câ€"C coupling of unactivated C(sp ³)â€"H bonds with iodonium ylides for accessing all-carbon quaternary centers. Organic Chemistry Frontiers, 2022, 9, 3823-3827.	4.5	6
442	Copper-assisted Wittig-type olefination of aldehydes with <i>p</i> -toluenesulfonylmethyl isocyanide. Organic Chemistry Frontiers, 2022, 9, 4158-4163.	4.5	4
443	Carboxylate-Assisted Iridium (III)-Catalyzed C(sp ²)â€"H Amidation of 2-Aroylimidazoles With Dioxazolones. Journal of Organic Chemistry, 2022, 87, 8183-8193.	3.2	8
444	Palladium-Catalyzed Unimolecular Fragment Coupling of <i>N</i> -Allylamides via Elimination of Isocyanate. Journal of the American Chemical Society, 2022, 144, 11033-11043.	13.7	10
445	Dual Metallaphotoredoxâ€Catalyzed Directed C(sp ²)â^'H Functionalization: Access to Câ^'C/Câ€Heteroatom Bonds. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
446	Palladium-catalyzed C–H trifluoromethylselenolation of arenes with [Me ₄ N][SeCF ₃] and an oxidant. Chemical Communications, 2022, 58, 9238-9241.	4.1	9
447	Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. Chinese Journal of Organic Chemistry, 2022, 42, 1286.	1.3	0
448	Modification of [2.2]paracyclophane through cobalt-catalyzed ortho-Câ^'H allylation and acyloxylation. Organic Chemistry Frontiers, 0, , .	4.5	3
449	Pd(<scp>ii</scp>)-catalyzed <i>meta</i> -Câ€"H bromination and chlorination of aniline and benzoic acid derivatives. Chemical Science, 2022, 13, 8686-8692.	7.4	11
450	One Pot Access to 2′â€Arylâ€⊋,3′â€Bithiophenes via Twofold Palladiumâ€Catalyzed Câ^'X/Câ^'H Coupling A to a Pdâ€1,4â€Migration. Advanced Synthesis and Catalysis, 2022, 364, 2783-2795.	ssociated 4.3	4
451	Unlocking C–H Functionalization at Room Temperature via a Light-Mediated Protodemetalation Reaction. ACS Catalysis, 2022, 12, 8229-8236.	11.2	7
452	Expanding the Utility of Inexpensive Pyridineâ€ <i>N</i> â€oxide Directing Group for the Siteâ€selective sp ² /sp ³ <i>γ</i> â€Câ³'H and sp ² <i>δ</i> â€Câ³'H Functionalization of Carboxamides. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	9
453	Siteâ€Selective Câ^'H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
454	Siteâ€Selective C–H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angewandte Chemie, 0, , .	2.0	O
456	Silver Ions Promoted Palladium-Catalyzed Inactive β-C(sp ³)–H Bond Arylation in Batch and Continuous-Flow Conditions. Journal of Organic Chemistry, 0, , .	3.2	O
457	Palladium atalyzed Regioselective C4 Functionalization of Indoles with Quinones. Advanced Synthesis and Catalysis, 0, , .	4.3	О
458	Ligand-Promoted Fluorinated Olefination of Isatins at the C5 Position via a Palladium Catalyst. Organic Letters, 2022, 24, 5568-5572.	4.6	2
459	Rh ^{III} -Catalyzed C–H <i>N</i> -Heteroarylation and Esterification Cascade of Carboxylic Acid with Organoboron Reagents and 1,2-Dichloroethane in One-Pot Synthesis. Organic Letters, 2022, 24, 5704-5709.	4.6	4

#	ARTICLE	IF	CITATIONS
460	<scp>Palladiumâ€Catalyzed Methionineâ€Facilitated</scp> β and γ C(sp ³)–H Arylation of <scp>Nâ€Terminal</scp> Aliphatic Amino Acids of Peptides. Chinese Journal of Chemistry, 2022, 40, 2502-2506.	4.9	2
461	The detection of multiple analytes by using visual colorimetric and fluorometric multimodal chemosensor based on the azo dye. Heliyon, 2022, 8, e10216.	3.2	7
462	Regioselective Transitionâ€Metalâ€Free C(sp ⁾²)â^'H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
463	Visible Lightâ€Induced Unactivated δ (sp ³)â^'H Amination of Alcohols Catalyzed by Iron. ChemSusChem, 2022, 15, .	6.8	7
464	Pd(II)â€Catalyzed, <i>γ</i> â€C(sp ²)â°'H Alkoxylation in <i>α</i> â€Methylbenzylamine, Phenylglyci 3â€Aminoâ€3â€Phenylpropanol Toward Enantiopure Aryl Alkyl Ethers. Asian Journal of Organic Chemistry, 2022, 11, .	nol, 2.7	7
465	Regioselective Transitionâ€Metalâ€Free C(sp ⁾²)â°'H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angewandte Chemie, 2022, 134, .	2.0	7
466	Ritter reaction for the synthesis of picolinamides. Tetrahedron, 2022, 122, 132937.	1.9	1
467	When machine learning meets molecular synthesis. Trends in Chemistry, 2022, 4, 863-885.	8.5	18
468	Ru(<scp>ii</scp>)-catalyzed external auxiliary-free primary amide-directed inverse Sonogashira reaction on (hetero)arylamides. Chemical Communications, 2022, 58, 11304-11307.	4.1	3
469	Palladium-catalysed C–H arylation of benzophospholes with aryl halides. Chemical Science, 2022, 13, 10950-10960.	7.4	9
470	Non-directed Pd-catalysed electrooxidative olefination of arenes. Chemical Science, 2022, 13, 9432-9439.	7.4	14
471	Transition-metal Catalyzed 1,2,3-Triazole-assisted C—H Functionalization Processes. Acta Chimica Sinica, 2022, 80, 1135.	1.4	5
472	Palladium-catalyzed native α-amino acid derivative-directed arylation/oxidation of benzylic C–H bonds: synthesis of 5-aryl-1,4-benzodiazepin-2-ones. Chemical Communications, 2022, 58, 9638-9641.	4.1	2
473	Transition-metal-catalyzed <i>ortho</i> C–H functionalization of 2-arylquinoxalines. Organic and Biomolecular Chemistry, 2022, 20, 7361-7376.	2.8	6
474	Palladium-Catalyzed Câ€"H Functionalization of Aryl Acetamides and Benzoquinones: Synthesis of Substituted Aryl Quinones. Journal of Organic Chemistry, 2022, 87, 13154-13167.	3.2	3
475	Silver(I)-Catalyzed C4-H Amination of 1-Naphthylamine Derivatives with Azodicarboxylates at Room Temperature. Catalysts, 2022, 12, 1006.	3.5	O
476	Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of $\langle i \rangle N \langle i \rangle$ -Chlorobenzamides with Substituted Alkenes. Journal of Organic Chemistry, 2022, 87, 13073-13088.	3.2	7
477	Br \tilde{A}_i nsted acid catalyzed remote C6 functionalization of 2,3-disubstituted indoles with \hat{I}^2 , \hat{I}^3 -unsaturated \hat{I}_i +-ketoester. Frontiers in Chemistry, 0, 10, .	3.6	2

#	Article	IF	CITATIONS
478	Rhodium-Catalyzed C2-Alkylation of Indoles with Cyclopropanols Using <i>N</i> , <i>N</i> -Dialkylcarbamoyl as a Traceless Directing Group. Organic Letters, 2022, 24, 6745-6749.	4.6	9
479	Palladiumâ€Catalyzed Regioselective Câ^'H Heteroarylation of Pyridotriazoles. ChemistrySelect, 2022, 7, .	1.5	2
480	Theoretical Investigation of the Mechanism of Rh(III)-catalyzed Annulation of 2-Biphenylboronic Acid with Activated Alkene. Chemical Research in Chinese Universities, 0, , .	2.6	0
481	Breaking the Monotony: Cobalt and Maleimide as an Entrant to the Olefin-Mediated <i>Ortho</i> Functionalization. ACS Catalysis, 2022, 12, 11651-11659.	11.2	4
482	Recent Advances in Transitionâ€Metalâ€Catalyzed Câ^'H Functionalization of Ferrocene Amides. Chemistry - an Asian Journal, 2022, 17, .	3.3	10
483	Selective functionalization of hindered meta-C–H bond of o-alkylaryl ketones promoted by automation and deep learning. CheM, 2022, 8, 3275-3287.	11.7	12
484	Nickel-Catalyzed 1,2-Arylboration of Unactivated Alkenes to Access Boryl-Functionalized Aliphatic Amines. Organic Letters, 2022, 24, 6962-6967.	4.6	8
485	Transformable Transient Directing Group-Assisted C(sp ²)â€"H Activation: Synthesis and Late-Stage Functionalizations of <i>o</i> -Alkenylanilines. Journal of Organic Chemistry, 2022, 87, 13383-13388.	3.2	2
491	Palladium-Catalyzed C(sp ³)–H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. Journal of Organic Chemistry, 0, , .	3.2	1
493	Enzymatic Nitrogen Insertion into Unactivated C–H Bonds. Journal of the American Chemical Society, 2022, 144, 19097-19105.	13.7	42
498	Pd-catalysed, Ag-assisted C2â€"H alkenylation of benzophospholes. Chemical Communications, 2022, 58, 12208-12211.	4.1	5
499	Azobenzene-based unnatural amino acid scaffolds <i>via</i> a Pd(<scp>ii</scp>)-catalyzed C(sp ³)–H arylation strategy. Chemical Communications, 2022, 58, 12967-12970.	4.1	5
500	Cobalt(II)-Catalyzed Directed C–H Functionalization/[3+2] Annulation of <i>N</i> -Arylguanidines with Alkynes. Organic Letters, 2022, 24, 8098-8103.	4.6	2
501	Pd(II)-catalyzed Intramolecular Benzylic C-H Oxidative Cyclization of <i>ortho</i> horthohorthology.	1.3	0
502	A Sterically Tuned Directing Auxiliary Promotes Catalytic 1,2â€Carbofluorination of Alkenyl Carbonyl Compounds**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
503	Native Amideâ€Directed C(sp3)–H Amidation Enabled by Electronâ€Deficient Rh(III) Catalyst and Electronâ€Deficient 2â€Pyridone Ligand. Angewandte Chemie - International Edition, 0, , .	13.8	6
504	Ru(II)-Catalyzed Câ€"H Functionalization of 2-Arylbenzimidazoles with Iodonium Ylides: A Straightforward Access to Bridgehead Polycyclic N-Heterocycles. Journal of Organic Chemistry, 2022, 87, 13757-13762.	3.2	9
505	Asymmetric Remote <i>meta</i> -C–H Activation Controlled by a Chiral Ligand. ACS Catalysis, 2022, 12, 13435-13445.	11.2	7

#	Article	IF	CITATIONS
506	Native Amideâ€Directed C(sp3)–H Amidation Enabled by Electronâ€Deficient Rh(III) Catalyst and Electronâ€Deficient 2â€Pyridone Ligand. Angewandte Chemie, 0, , .	2.0	0
507	A Sterically Tuned Directing Auxiliary Promotes Catalytic 1,2â€Carbofluorination of Alkenyl Carbonyl Compounds. Angewandte Chemie, 0, , .	2.0	0
509	Hydroxylâ€Directed Iridiumâ€Catalyzed Synthesis of Pyrano[2,3,4â€de]chromenâ€2â€ones and Further Chalcogenation under Blue Light Irradiation. European Journal of Organic Chemistry, 0, , .	2.4	0
510	<i>î>β</i> ―and <i>γ</i> â€C(sp ³)â^'H Heteroarylation of Free Carboxylic Acids: A Modular Synthetic Platform for Diverse Quaternary Carbon Centers. Angewandte Chemie - International Edition, 2023, 62,	13.8	9
511	β―and γ (sp3)â^'H Heteroarylation of Free Carboxylic Acids: A Modular Synthetic Platform for Diverse Quaternary Carbon Centers. Angewandte Chemie, 0, , .	2.0	0
512	Two Directing Groups Used for Metal Catalysed <i>Meta</i> â€Câ^'H Functionalisation Only Effect <i>Ortho</i> Electrophilic Câ^'H Borylation. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
513	Divergent regioselective Heck-type reaction of unactivated alkenes and N-fluoro-sulfonamides. Nature Communications, 2022, 13 , .	12.8	5
514	Palladium-catalyzed intramolecular C–H amination using aluminum nitrate as the oxidant. Organic Chemistry Frontiers, 2022, 10, 109-114.	4.5	1
515	Unexpected Cascade Dehydrogenation Triggered by Pd/Cu-Catalyzed C(sp ³)–H Arylation/Intramolecular C–N Coupling of Amides: Facile Access to 1,2-Dihydroquinolines. Organic Letters, 2022, 24, 8283-8288.	4.6	4
516	Utility of 4â€Aminoâ€2,1,3â€benzothiadiazole Directing Group in the Pd(II)â€catalyzed Arylation of <i>ĵ³</i> â€Câ Bonds of Carboxamides and <i>ĵ²</i> â€Câ€H Bonds of Amino Acid Carboxamides. Asian Journal of Organic Chemistry, 2022, 11, .	î'H 2.7	3
517	Scope and Limitations of the Palladium-Catalyzed Direct 1,2-Diheteroarylation of 1,2-Dihalobenzene Derivatives. Synthesis, 2023, 55, 3502-3514.	2.3	2
518	Redox-neutral rhodium(<scp>iii</scp>)-catalyzed divergent synthesis of tetrasubstituted 1,3-enynes and alkynylated benzofurans. Organic and Biomolecular Chemistry, 2022, 21, 147-152.	2.8	0
519	The recent advances in cobalt-catalyzed C(sp ³)â€"H functionalization reactions. Organic and Biomolecular Chemistry, 2023, 21, 673-699.	2.8	1
520	Synthesis of Esterified/Fused Isocoumarins via Rh-Catalyzed C—H Activation/Transannulative Coupling/Annulation of Phthalic Anhydrides with Cyclic 2-Diazo-1,3-diketones and Methanol. Chinese Journal of Organic Chemistry, 2022, 42, 3816.	1.3	2
521	The literature of heterocyclic chemistry, Part XX, 2020. Advances in Heterocyclic Chemistry, 2023, , 201-274.	1.7	1
526	Palladium-Catalyzed Directed Aldehyde C–H Arylation of Quinoline-8-carbaldehydes: Exploring the Reactivity Differences between Aryl (Pseudo) Halides. Journal of Organic Chemistry, 2022, 87, 16343-16350.	3.2	3
527	Samarium-Promoted Homocoupling of Benzaldehydes and In Situ Condensation with Esters Under the Catalysis of Cuprous Iodide. Synthesis, 0, , .	2.3	1
529	Cobaltâ€Catalyzed Double Câ^'H Activation of Imidazopyridines with Vinylene Carbonate for the Synthesis of Pyrido[1,2â€∢i>a⟨/i>]benzimidazoles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3

#	Article	IF	CITATIONS
530	Ru3(CO)12â€Catalyzed Modular Assembly of Hemilabile Ligands by C–H Activation of Phosphines with Isocyanates. Angewandte Chemie, 0, , .	2.0	0
531	Ru ₃ (CO) ₁₂ â€Catalyzed Modular Assembly of Hemilabile Ligands by Câ^'H Activation of Phosphines with Isocyanates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
532	Nickel-Catalyzed Decarbonylative Reductive Alkylation of Aroyl Fluorides with Alkyl Bromides. Organic Letters, 2022, 24, 9259-9263.	4.6	7
533	Dearomatizing [2+2+1] Spiroannulation of Indoles with Alkynes. Organic Letters, 2023, 25, 261-266.	4.6	2
534	Pd-Catalyzed Alkene-Relayed Intermolecular C–H Alkylation Using Aryl Halide Substrates. Organic Letters, 2022, 24, 9060-9064.	4.6	4
535	Rhodium atalyzed Remote Borylation of Alkynes and Vinylboronates. Angewandte Chemie, 0, , .	2.0	O
536	Rhodium atalyzed Remote Borylation of Alkynes and Vinylboronates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
537	Tricyclic Fused Lactams by Mukaiyama Cyclisation of Phthalimides and Evaluation of their Biological Activity. Antibiotics, 2023, 12, 9.	3.7	O
538	Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone. Beilstein Journal of Organic Chemistry, 0, 18, 1642-1648.	2.2	0
539	Pd(<scp>ii</scp>)-catalyzed selective β-C–H functionalization of azobenzene carboxamides. Organic and Biomolecular Chemistry, 2023, 21, 2689-2694.	2.8	4
540	Triazole-enabled, iron-catalysed linear/branched selective C–H alkylations with alkenes. Organic and Biomolecular Chemistry, 2023, 21, 1264-1269.	2.8	2
541	Transition Metalâ€Catalyzed Câ^'H Activation/Annulation Approaches to Isoindolo[2,1â€ <i>b</i> jsoquinolinâ€5(7 <i>H</i>)â€ones. Chemical Record, 2023, 23, .	5.8	5
542	On the mercuration, palladation, transmetalation and direct auration of a C^N^C pincer ligand. Dalton Transactions, 0, , .	3.3	1
543	Palladiumâ€Catalyzed Siteâ€Selective C(sp ²)â^'H Acetoxylation of Tyrosineâ€Containing Peptides. European Journal of Organic Chemistry, 2023, 26, .	2.4	7
544	Ligandâ€Dependant Selective Synthesis of Mono―and Dialkenylcarbazoles through Rhodium(III) atalyzed Câ^'H Alkenylation. Chemistry - an Asian Journal, 0, , .	3.3	0
545	A Fujiwaraâ€Moritaniâ€Type Alkenylation Using a Traceless Directing Group Strategy: A Rare Example of Câ°C Bond Formation towards the C2â€Carbon of Terminal Alkenes. European Journal of Organic Chemistry, 2023, 26, .	2.4	O
546	Charge-controlled Pd catalysis enables the meta-C–H activation and olefination of arenes. CheM, 2023, 9, 1004-1016.	11.7	9
547	Pd(<scp>ii</scp>)-catalyzed coupling of Câ€"H bonds of carboxamides with iodoazobenzenes toward modified azobenzenes. Organic and Biomolecular Chemistry, 2023, 21, 1793-1813.	2.8	2

#	Article	IF	CITATIONS
548	<i>ortho</i> -C(sp ³)â<"H arylation of aromatic aldehydes using 2-amino- <i>N</i> -methyl-acetamide as a L,L-type transient directing group. Organic and Biomolecular Chemistry, 2023, 21, 1878-1882.	2.8	2
549	An electron donor–acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions. Chinese Chemical Letters, 2023, 34, 108403.	9.0	12
550	Palladiumâ€Catalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
551	Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein Journal of Organic Chemistry, 0, 19, 448-473.	2.2	3
552	$\label{lem:complex} Cp^*Co(III)\text{-Catalyzed Regioselective } [4+2]\text{-Annulation of $<$i>N-Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. Journal of Organic Chemistry, 2023, 88, 1578-1589.}$	3.2	10
554	Double Câ \in "H bond functionalization for Câ \in "C coupling at the \hat{l}^2 -position of thiophenes using palladium-catalyzed 1,4-migration associated with direct arylation. Organic Chemistry Frontiers, 2023, 10, 1441-1455.	4.5	3
555	Regioselective Pd-catalyzed decarboxylative C-6 acylation of 7-O-carbamate coumarins and their anti-inflammatory evaluation. Tetrahedron, 2023, 134, 133295.	1.9	1
556	Experimental and theoretical studies of the rhodium(<scp>i</scp>)-catalysed C–H oxidative alkenylation/cyclization of <i>N</i> -(2-(methylthio)phenyl)benzamides with maleimides. Organic Chemistry Frontiers, 2023, 10, 1617-1625.	4.5	1
557	Lanthanide-catalyzed deamidative cyclization of secondary amides and ynones through tandem C–H and C–N activation. Chemical Communications, 2023, 59, 3253-3256.	4.1	1
558	Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C–H olefination of aromatic compounds. Chemical Science, 2023, 14, 2943-2953.	7.4	3
559	Rhodium-Catalyzed Allylic C–H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Organic Letters, 2023, 25, 1257-1262.	4.6	6
560	Rh(III)â€Catalyzed Oxidative Annulation of 2â€Arylquinoxalines with Cyclic 2â€Diazoâ€1,3â€diketones by Câ^'H Bond Activation. European Journal of Organic Chemistry, 2023, 26, .	2.4	O
561	Directed Palladiumâ€Catalyzed <i>pseudo</i> â€Anomeric Câ^'H Functionalization of Glycalâ€Type Substrates: Access to Unsymmetrical <i>gem</i> â€Diarylmethyl <i>C</i> â€Glycosides. Advanced Synthesis and Catalysis, 2023, 365, 820-825.	4.3	4
562	Native Amino Group Directed Site-Selective Îμ-C(sp ²)–H Iodination of Primary Amines. Organic Letters, 2023, 25, 1348-1352.	4.6	2
563	Facile Synthesis of Isoindolinones via Radical-Mediated Intramolecular Coupling of Two C–H Bonds. Synlett, 0, , .	1.8	1
564	Palladiumâ€Catalyzed Enantioselective Isodesmic Câ°'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie, 2023, 135, .	2.0	1
565	Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catalysis, 2023, 13, 4250-4260.	11.2	24
566	Multicomponent Tandem Triple Functionalization of Indoles <i>via</i> a Directingâ€groupâ€free Strategy. Advanced Synthesis and Catalysis, 2023, 365, 990-996.	4.3	3

#	Article	IF	CITATIONS
567	Nondirected Pd-Catalyzed C–H Perdeuteration and <i>meta</i> -Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catalysis, 2023, 13, 4042-4052.	11.2	4
568	Pd(II)-Catalyzed Directing-Group-Aided C–H Arylation, Alkylation, Benzylation, and Methoxylation of Carbazole-3-carboxamides toward C2,C3,C4-Functionalized Carbazoles. Synthesis, 2023, 55, 3535-3567.	2.3	1
569	Computational Study on Niâ^'Al Bimetalâ€Catalyzed Twofold Câ^'H Annulation Reaction: Mechanism, Origin of Selectivity, and Role of SPO Ligand. Asian Journal of Organic Chemistry, 0, , .	2.7	0
570	Controllable carbonyl-assisted C(sp ³)–C(sp ³) bond reduction and reorganization. Organic Chemistry Frontiers, 2023, 10, 2234-2242.	4.5	1
571	Synthesis of Selenoflavones <i>via</i> Ruthenium-Catalyzed Selenylation of Unsaturated Acids. Journal of Organic Chemistry, 2023, 88, 4554-4568.	3.2	4
572	Electrochemical Syntheses of Polycyclic Aromatic Hydrocarbons (PAHs). Advanced Materials, 2023, 35,	21.0	3
573	Palladium-Catalyzed [3 + 2] Annulation of Aromatic Amides with Maleimides through Dual C–H Activation. Organic Letters, 2023, 25, 2190-2195.	4.6	12
574	Mechanistic Insights Into the Rhodium-Catalyzed C–H Alkenylation/Directing Group Migration and [3+2] Annulation: A DFT Study. Journal of Organic Chemistry, 2023, 88, 4494-4503.	3.2	0
575	Rh($<$ scp $>$ iii $<$ /scp $>$)-catalyzed regioselective versatile indole derivatization: delivering potential of rare \hat{l}^2 -(1 $<$ i $>$ H $<$ /i $>$ -indol-2-yl)- \hat{l}^2 -amino acids in one pot. Chemical Communications, 2023, 59, 4978-4981.	4.1	0
576	Rhodium-catalyzed Annulative Coupling of Coumarin-3-Carboxylic Acids with Alkynes. Chemistry Letters, 2023, 52, 307-309.	1.3	1
578	Synthesis of Fused Lactones through Transitionâ€Metalâ€Catalyzed <i>peri</i> Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
579	Mechanism-Driven Development of <i>N</i> -(Quinolin-8-yl)-benzamide Coupling Reactions via C–H or N–H Activation. Organometallics, 2023, 42, 2568-2576.	2.3	2
580	Redox-neutral Câ€"H annulation strategies for the synthesis of heterocycles <i>via</i> high-valent Cp*Co(<scp>iii</scp>) catalysis. Organic and Biomolecular Chemistry, 2023, 21, 3918-3941.	2.8	3
582	Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. Green Synthesis and Catalysis, 2023, 4, 206-225.	6.8	7
583	A Redox Transmetalation Step in Nickel-Catalyzed C–C Coupling Reactions. ACS Catalysis, 2023, 13, 6375-6381.	11,2	3
584	A three component 1,3-difunctionalization of vinyl diazo esters enabled by a cobalt catalyzed C–H activation/carbene migratory insertion. Chemical Communications, 2023, 59, 6076-6079.	4.1	1
585	Palladium atalyzed Regioselective <i>peri</i> ―and <i>ortho</i> â€Halogenation of 1â€Naphthaldehydes: Application to the Synthesis of Polycyclic Natural Product Skeletons. European Journal of Organic Chemistry, 2023, 26, .	2.4	1
586	Fast and Selective β-C–H Borylation of N-Heterocycles with a Supramolecular Iridium Catalyst: Circumventing Deactivation Pathways and Mechanistic Insights. ACS Catalysis, 2023, 13, 7715-7729.	11.2	6

#	Article	IF	CITATIONS
587	Rh ^{III} -promoted directed Câ€"H N-heteroarylation of 2-pyridones. Organic and Biomolecular Chemistry, 2023, 21, 5288-5296.	2.8	1
588	Rh(<scp>iii</scp>)-catalyzed cascade annulation reaction of <i>N</i> , <i>N<!--</td--><td>2.8</td><td>7</td></i>	2.8	7
589	Palladium-Catalyzed sp3 C–H Acetoxylation of α,α-Disubstituted α-Amino Acids. Chemistry, 2023, 5, 1369-13	7 2. 2	0
590	Cobalt-catalyzed enantioselective C–H/N–H annulation of aryl sulfonamides with allenes or alkynes: facile access to C–N axially chiral sultams. Chemical Science, 2023, 14, 7291-7303.	7.4	14
591	Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. Journal of Organic Chemistry, 2023, 88, 8542-8552.	3.2	2
592	Construction of <i>β</i> â€Phenylalanine Derivatives through Pdâ€Catalyzed, C(sp ²)â°'H (<i>ortho</i>) Functionalization. European Journal of Organic Chemistry, 2023, 26, .	2.4	4
593	Carboxyl group assisted isodesmic <i>meta</i> -Câ€"H iodination of phenethylamines, benzylamines, and 2-aryl anilines. Organic Chemistry Frontiers, 2023, 10, 3760-3765.	4.5	2
594	Ir(III)-catalyzed C(sp2)–H arylation and esterification cascade reaction of acrylic acids. Tetrahedron Letters, 2023, 125, 154619.	1.4	O
595	Pdâ€Catalyzed Arylation and Benzylation of Tyrosine at the <i>ìî′</i> èâ^'C(sp ²)â^'H and C(2) Positions: Expanding the Library of Unnatural Tyrosines. European Journal of Organic Chemistry, 2023, 26, .	2.4	5
596	Access to distal ⟨i⟩meta⟨/i⟩-C–H functionalization of arylmethanesulfonic acid derivatives. Chemical Communications, 2023, 59, 9106-9109.	4.1	2
597	Regioselective umpolung para-C–H functionalization of arylhydroxylamines. , 2023, 2, 778-788.		5
598	Transition-Metal-Catalyzed C–H Bond Activation for the Formation of C–C Bonds in Complex Molecules. Chemical Reviews, 2023, 123, 7692-7760.	47.7	39
599	Palladiumâ€Catalyzed Câ€H Bond Functionalization of Benzo[1,2â€ <i>b</i> à€%:â€%:4,5â€ <i>b</i> â€2]dithiop One Step Access to 2â€Arylbenzo[1,2â€ <i>b</i> â€%:â€%:â€%4,5â€ <i>b</i> â€%4,5â€<]dithiopheneâ€4,8â€diones. Europe Organic Chemistry, 2023, 26, .	heneâ€4,8 ea ā. ∤ourna	Bâ€dione: A I af
600	A Novel Approach to αâ€Arylacetonitrile Skeletons via paraâ€Selective Alkylation of Protected Anilines. Chemistry - A European Journal, 2023, 29, .	3.3	2
601	Os(II)-catalyzed γ-C(sp3)–H amidation and meta-C(sp2)–H alkylation by fine-tuning the characteristics of in-situ-generated C–Os σ bonds. Cell Reports Physical Science, 2023, 4, 101423.	5.6	1
602	Nonâ€covalent Interactionâ€Controlled Siteâ€selective Câ^'H Transformations. Chemical Record, 0, , .	5.8	0
603	Synthesis of the Isodityrosine Moiety of Seongsanamide A–D and Its Derivatives. Marine Drugs, 2023, 21, 373.	4.6	1
604	An Overview of 3d Metalla-Electrochemical Functionalization for Sustainable Organic Transformations (A Review). Russian Journal of General Chemistry, 2023, 93, 1222-1245.	0.8	1

#	Article	IF	CITATIONS
605	Pd-catalyzed regioselective rollover dual C–H annulation cascade: facile approach to phenanthrene derivatives. Chemical Communications, 2023, 59, 9714-9717.	4.1	5
606	Synthesis of Naphthalimides through Tandem Pd(II)-Catalyzed C(sp ³)–H Oxidation and Diels–Alder Reaction Using a Transient Directing Group Strategy. Organic Letters, 2023, 25, 4985-4989.	4.6	2
607	Câ°'H Functionalization of Aldehydes and Ketones with Transient Directing Groups: Recent Developments. European Journal of Organic Chemistry, 2023, 26, .	2.4	2
608	Polymer up-cycling by mangana-electrocatalytic C(sp ³)â€"H azidation without directing groups. Chemical Science, 2023, 14, 8109-8118.	7.4	4
609	On the Mechanism and Selectivity of Palladium-Catalyzed C(sp ³)–H Arylation of Pyrrolidines and Piperidines at Unactivated C4 Positions: Discovery of an Improved Dimethylaminoquinoline Amide Directing Group. ACS Catalysis, 2023, 13, 9597-9615.	11.2	3
610	C–N Axially Chiral Heterobiaryl Skeletons Construction via Cobalt-Catalyzed Atroposelective Annulation. Organic Letters, 2023, 25, 5191-5196.	4.6	2
611	Novel azo-dye quinazolinones as colorimetric chemosensors for detection of cobalt and ferrous ions in aqueous medium. Journal of Saudi Chemical Society, 2023, 27, 101685.	5.2	3
612	Transient Directing Group enabled C3â€(sp2)â€H alkenylation of Five Membered Heterocyclic Aldehydes: An Access to Mechanochromic Luminogen. Advanced Synthesis and Catalysis, 0, , .	4.3	0
613	Synthesis of Substituted Pyrido[1,2â€a]benzimidazoles by Ruthenium atalyzed Câ€'H Bond Activation and Tandem Cyclization of 2â€Arylimidazo[1,2â€a]pyridines with Iodonium Ylides. European Journal of Organic Chemistry, 0, , .	2.4	0
614	Enhancing Substrate–Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β-C(sp ³)–H Bromination of Free Carboxylic Acids. Journal of the American Chemical Society, 2023, 145, 16297-16304.	13.7	3
615	Theoretical Investigations of Palladiumâ€Catalyzed [3+2] Annulation via Benzylic and <i>meta</i> Câ^'H Bond Activation. Chemistry - an Asian Journal, 2023, 18, .	3.3	4
616	Copper-Catalyzed 1,2-Difunctionalization Trifluoromethylamidation of Alkynes Assisted by a Coordinating Group. ACS Catalysis, 2023, 13, 11001-11011.	11.2	5
617	Metalâ \in organic frameworks with open metal sites act as efficient heterogeneous catalysts for Knoevenagel condensation and the Chanâ \in Lam coupling reaction. CrystEngComm, 0, , .	2.6	0
618	Recent Advances in DNA Nanomaterials. Nanomaterials, 2023, 13, 2449.	4.1	1
619	Electronic Directing Group Modification for Improved Ni(II)-Mediated C(sp ³)–H Activation: A Hammett Investigation of 8-Aminoquinoline. Organometallics, 2023, 42, 2326-2334.	2.3	2
620	The crucial role of silver(<scp>i</scp>)-salts as additives in C–H activation reactions: overall analysis of their versatility and applicability. Chemical Society Reviews, 2023, 52, 6359-6378.	38.1	6
621	Direct coupling of inert C–H bonds in NHC organocatalysis. Organic Chemistry Frontiers, 2023, 10, 5291-5295.	4.5	2
622	Suzuki–Miyaura Type Regioselective C–H Arylation of Aromatic Aldehydes by a Transient Directing Strategy. Organic Letters, 2023, 25, 6823-6829.	4.6	0

#	Article	IF	CITATIONS
623	Structurally divergent enantioselective synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans enabled by sequential catalysis. Chemical Science, 2023, 14, 10768-10776.	7.4	1
624	Pd-Catalyzed Remote δ-C(sp2)–H Functionalization in Phenylalaninol: Expanding the Library of Phenylalaninols. Synthesis, 0, , .	2.3	0
625	Pd(II)â€Catalyzed $\langle i \rangle$ β $\langle i \rangle$ â€C($\langle i \rangle$ sp $\langle i \rangle$ 3 $\langle sup \rangle$ 3 $\langle sup \rangle$ 3°H Functionalization of Ugi 4â€CR Adducts Using the 2â€(Methylthio)â€aniline (MTA) Directing Group. ChemistrySelect, 2023, 8, .	1.5	0
626	Annulationâ€Induced Hidden Reactivity of the 1,2,4â€Triazole Backbone. Angewandte Chemie, 2023, 135, .	2.0	0
627	Annulationâ€Induced Hidden Reactivity of the 1,2,4â€Triazole Backbone. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
628	Dehydrogenative Cross-Coupling of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Compounds with Unactivated Olefins via Co(III) Catalysis. Organic Letters, 2023, 25, 6284-6289.	4.6	0
629	Cobalt-catalyzed domino process for the synthesis of 2-aminoquinolines. Tetrahedron, 2023, 146, 133631.	1.9	0
630	Functional Group Transformation Via Carbonyl Derivatives. , 2023, , .		0
631	Palladium-Catalyzed Direct C(sp ²)–H Cyanomethylation of Arylamides using Chloroacetonitrile. Journal of Organic Chemistry, 2023, 88, 12755-12764.	3.2	0
632	Electrochemical Late-Stage Functionalization. Chemical Reviews, 2023, 123, 11269-11335.	47.7	15
633	Coordinating activation strategy enables 1,2-alkylamidation of alkynes. Chemical Science, 2023, 14, 11466-11473.	7.4	0
634	Palladium-Catalyzed Direct Selanylation of Chalcogenophenes and Arenes Assisted by 2-(Methylthio)amide. Journal of Organic Chemistry, 2023, 88, 14033-14047.	3.2	0
635	Metal-free C–H Borylation and Hydroboration of Indoles. ACS Omega, 2023, 8, 37623-37640.	3.5	1
636	Merging Visible Light Photocatalysis and P(III)â€Directed Câ^'H Activation by a Single Catalyst: Modular Assembly of Pâ€Alkyne Hybrid Ligands. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
637	Palladium atalyzed Regiodivergent Câ€H Olefination of Imidazo[1,2a]pyridine Carboxamide and Unactivated Alkenes. Chemistry - A European Journal, 2023, 29, .	3.3	0
638	Electrochemical C7â€Indole Alkenylation <i>via</i> Rhodium Catalysis. Israel Journal of Chemistry, 2024, 64, .	2.3	О
639	Visible-light mediated intramolecular lactonization of benzylic C(sp3)-H bond promoted by DDQ and TBN. Synlett, 0, , .	1.8	0
640	Merging Visible Light Photocatalysis and P(III)â€Directed Câ^'H Activation by a Single Catalyst: Modular Assembly of Pâ€Alkyne Hybrid Ligands. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
641	Conjugated Olefin Enabled Rollover Cyclometallation of Distant Câ€H Bonds: Regioselective Annulation of <i>o</i> à€Alkenyl Phenols with Alkynes. Chemistry - A European Journal, 2023, 29, .	3.3	1
642	Pdâ€Catalyzed Î'â€C(<i>>sp</i> ³)â^'H Thiolation of Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2023, 365, 3973-3980.	4.3	1
643	Benzoxazole or Benzothiazole as an Innate Directing Group for Palladium- and Ruthenium-Catalyzed Complementary C–H Arylation: Functionalization of Biorelevant Heterocyclic Scaffolds. Synthesis, 2024, 56, 312-328.	2.3	1
644	Advances in the transition metal-catalyzed C-H amination strategies using anthranils. Organic and Biomolecular Chemistry, 0 , , .	2.8	0
645	Modular Diastereoselective Construction of Polysubstituted Cyclopentanes Enabled by Cobalt-Catalyzed Arylfluoroalkylation of Cyclopentenes. ACS Catalysis, 0, , 14090-14102.	11.2	0
646	Rhodaelectro-Catalyzed Decarboxylative Cross-Dehydrogenative Coupling of Indole-3-carboxylic Acids and Olefins via Weakly Coordinating Carboxyl Groups. Journal of Organic Chemistry, 0, , .	3.2	1
647	Transitionâ€Metalâ€Catalyzed Directed Câ^'H Functionalization in/on Water. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
648	Ruthenium-Catalyzed Chemo-Selective Carbene Insertion into C–H Bond of Styrene over Cyclopropanation: C–C Bond Formation. Journal of Organic Chemistry, 2023, 88, 15817-15831.	3.2	0
649	Development of Unactivated Bond Cleavage Reactions Under Mild Conditions Based on Stabilization of Addition Intermediates. Yakugaku Zasshi, 2023, 143, 1005-1012.	0.2	0
650	Assembling of Polyaryls (Terphenyls, Tetraphenyls, Pentaphenyls, and Hexaphenyls) through Pd(II)â€catalyzed Câ´'H Arylation of Biaryl Carboxamides with Iodobiaryls. Asian Journal of Organic Chemistry, 0, , .	2.7	0
651	Modern Organometallic Câ^'H Functionalizations with Earthâ€Abundant Iron Catalysts: An Update. Chemistry - an Asian Journal, 0, , .	3.3	0
652	Catalytic Addition of C–H Bonds Across C–C π-Bonds. , 2023, , .		0
653	Recent Advances in C–H Functionalization of Pyrenes. Chemistry, 2023, 5, 2713-2755.	2.2	1
654	Annulation of benzaldehydes with norbornenes toward indanones assisted by monodentate transient directing groups <i>via</i> double C–H activation. Organic Chemistry Frontiers, 0, , .	4.5	0
655	Synthesis of Heteroarylated Pyridines via a Double Câ^'H Bond Functionalization using Palladium atalyzed 1,4â€Migration Combined with Direct Arylation. ChemCatChem, 2024, 16, .	3.7	0
656	Palladiumâ€catalyzed Heck Type Regioselective βâ€Vinylation of Thiophenes using a Bromo Substituent as Traceless Directing Group. European Journal of Organic Chemistry, 0, , .	2.4	0
657	Regiodivergent <i>sp</i> ^{<i>3</i>} C–H Functionalization via Ni-Catalyzed Chain-Walking Reactions. Jacs Au, 0, , .	7.9	0
658	Biorelevant Weakly Coordinating Directing Group Assisted C–H Alkenylation with Cyclopropanols via Sequential C–H/C–C Activation. Organic Letters, 0, , .	4.6	0

#	Article	IF	CITATIONS
659	Recent Advancements in Strategies for the Synthesis of Imidazoles, Thiazoles, Oxazoles, and Benzimidazoles. ChemistrySelect, 2023, 8 , .	1.5	0
660	Reversal of Regioselectivity in Asymmetric Câ^'H Bond Annulation with Bromoalkynes under Cobalt Catalysis**. Angewandte Chemie, 2024, 136, .	2.0	0
661	Reversal of Regioselectivity in Asymmetric Câ^'H Bond Annulation with Bromoalkynes under Cobalt Catalysis**. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
662	Ligand Promoted Pd-Catalyzed High <i>para</i> -Selective C–H Olefination. Organic Letters, 0, , .	4.6	0
663	Directing Group Strategy for the Isolation of Organoselenium(VI) Benzoselenonates: Metal-Free Catalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2024, 146, 57-61.	13.7	0
664	Exploration of Directing-Group-Assisted, Copper-Mediated Radiofluorination and Radiosynthesis of $[\mbox{\tt sup}]{18}$	2.8	0
665	Cobaltâ€Catalyzed Enantio―and Regioselective C(sp ³)â^'H Alkenylation of Thioamides. Angewandte Chemie, 0, , .	2.0	0
666	Cobaltâ€Catalyzed Enantio―and Regioselective C(sp ³)â^'H Alkenylation of Thioamides. Angewandte Chemie - International Edition, 0, , .	13.8	0
667	Palladium-Catalyzed Electrooxidative Double C–H Arylation. Journal of the American Chemical Society, 2024, 146, 228-239.	13.7	0
668	Palladium-Catalyzed Enantioselective Directed C(sp ³)–H Functionalization Using C ₅ -Substituted 8-Aminoquinoline Auxiliaries. Organic Letters, 0, , .	4.6	0
669	DFT Study on the Mechanism of the Palladium-Catalyzed [3 + 2] Annulation of Aromatic Amides with Maleimides via Benzylic and <i>meta</i> -Câ€"H Bond Activation: Role of the External Ligand Ac-Gly-OH. Journal of Organic Chemistry, 2024, 89, 1228-1234.	3.2	1
670	Directed Palladium-Catalyzed γ-C(sp ³)â€"H Alkenylation of (Aza and Oxa) Cyclohexanamines with Bromoalkenes: Bromide Precipitation as an Alternative to Silver Scavenging. ACS Catalysis, 2024, 14, 1157-1172.	11.2	0
671	Palladium-Catalyzed Chelation-Assisted Aldehyde C–H Bond Activation of Quinoline-8-carbaldehydes: Synthesis of Amides from Aldehydes with Anilines and Other Amines. Journal of Organic Chemistry, 2024, 89, 1058-1063.	3.2	1
672	Construction of multi-ring molecules through direct C-H bond transformation. Bulletin of the Chemical Society of Japan, 2024, 97, .	3.2	0
673	A Catalytic Threeâ€Component Aminofluorination of Unactivated Alkenes with Electronâ€Rich Amino Sources. Advanced Science, 2024, 11, .	11.2	0
674	Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar–H/Ar–H Coupling. Journal of the American Chemical Society, 2024, 146, 1224-1243.	13.7	0
675	Picolinamide-assisted <i>ortho</i> -C–H functionalization of pyrenylglycine derivatives using aryl iodides. Organic and Biomolecular Chemistry, 2024, 22, 1279-1298.	2.8	0
676	Cobaltâ€Catalyzed Enantioselective Câ^'H Carbonylation towards Chiral Isoindolinones. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1

#	Article	IF	CITATIONS
677	Cobalt atalyzed Enantioselective Câ^'H Carbonylation towards Chiral Isoindolinones. Angewandte Chemie, 2024, 136, .	2.0	0
678	Palladium catalyzed C(sp3)–H bond activation of free carboxylic acids: An adventure of ligand evolution. Tetrahedron Letters, 2024, 138, 154951.	1.4	0
679	Pd-catalysed C–H alkynylation of benzophospholes. Chemical Communications, 2024, 60, 2792-2795.	4.1	0
680	Room temperature photo-promoted iron-catalysed arene C–H alkenylation without Grignard reagents. Nature Catalysis, 2024, 7, 273-284.	34.4	0
681	Construction of an Angular Tricyclic Benzofuran Skeleton Using the C–H Activation Strategy. Journal of Organic Chemistry, 2024, 89, 3304-3308.	3.2	0
682	Chemoenzymatic β-specific methylene C(sp ³)–H deuteration of carboxylic acids. Green Chemistry, 2024, 26, 3767-3775.	9.0	0
683	Cu(II)-Mediated Sulfonylation of (Hetero)arenes with TosMIC Using Monodentate Directing Groups. Journal of Organic Chemistry, 2024, 89, 3894-3906.	3.2	0
684	Mono or double Pd-catalyzed C–H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives. Beilstein Journal of Organic Chemistry, 0, 20, 427-435.	2.2	0
685	Copper/BINOL-Catalyzed Enantioselective C–H Functionalization toward Planar Chiral Ferrocenes Under Mild Conditions. ACS Catalysis, 2024, 14, 4030-4039.	11.2	0
686	Surpassing the Limited Coordination Affinity of Native Amides by Introducing Pyridone-Pd-AgOAc Clusters to Promote Distal γ-C(sp ³)–H Arylation. ACS Catalysis, 2024, 14, 3798-3811.	11.2	0
687	Rhodium-catalysed additive-free carbonylation of benzamides with diethyl dicarbonate as a carbonyl source. Organic and Biomolecular Chemistry, 2024, 22, 2744-2748.	2.8	0