Managing the challenge of drug-induced liver injury: a redeployment of preclinical predictive models

Nature Reviews Drug Discovery 19, 131-148

DOI: 10.1038/s41573-019-0048-x

Citation Report

#	Article	IF	Citations
1	Pharmacogenomics of Drug-Induced Liver Injury. Advances in Molecular Pathology, 2020, 3, 107-115.	0.2	3
2	Progress of derisking strategies for drug-induced liver injury (DILI) in the last two decades. , 2020, , 487-506.		0
3	The utility of a differentiated preclinical liver model, HepaRG cells, in investigating delayed toxicity via inhibition of mitochondrial-replication induced by fialuridine. Toxicology and Applied Pharmacology, 2020, 403, 115163.	1.3	8
4	Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering, 2020, 7, 112.	1.6	52
5	Curse or Cure? A Perspective on the Developability of Aldehydes as Active Pharmaceutical Ingredients. Journal of Medicinal Chemistry, 2020, 63, 14357-14381.	2.9	32
6	Deep Learning on High-Throughput Transcriptomics to Predict Drug-Induced Liver Injury. Frontiers in Bioengineering and Biotechnology, 2020, 8, 562677.	2.0	24
7	Identification of Translational microRNA Biomarker Candidates for Ketoconazole-Induced Liver Injury Using Next-Generation Sequencing. Toxicological Sciences, 2020, 179, 31-43.	1.4	10
8	Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI). Molecular Pharmaceutics, 2020, 17, 2628-2637.	2.3	55
9	The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Archives of Toxicology, 2020, 94, 2559-2585.	1.9	48
10	New Perspectives on Drug-Induced Liver Injury Risk Assessment of Acyl Glucuronides. Chemical Research in Toxicology, 2020, 33, 1551-1560.	1.7	19
11	Strategies to Mitigate the Bioactivation of Aryl Amines. Chemical Research in Toxicology, 2020, 33, 1950-1959.	1.7	10
12	Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies. Journal of Medicinal Chemistry, 2020, 63, 11397-11419.	2.9	55
13	Development and Application of a Transcriptomic Signature of Bioactivation in an Advanced In Vitro Liver Model to Reduce Drug-induced Liver Injury Risk Early in the Pharmaceutical Pipeline. Toxicological Sciences, 2020, 177, 121-139.	1.4	23
14	Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap–Deep Learning. Molecules, 2020, 25, 1317.	1.7	17
15	Novel insights into the organic solute transporter alpha/beta, OSTÎ \pm /Î 2 : From the bench to the bedside. , 2020, 211, 107542.		38
16	Antibiotics-induced oxidative stress. Current Opinion in Toxicology, 2020, 20-21, 23-28.	2.6	9
17	Investigations of drug-induced liver injury by a peroxynitrite activatable two-photon fluorescence probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118960.	2.0	18
18	Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS). Toxicology, 2021, 448, 152651.	2.0	24

#	Article	IF	CITATIONS
19	Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food and Chemical Toxicology, 2021, 147, 111872.	1.8	3
20	An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Archives of Toxicology, 2021, 95, 149-168.	1.9	14
21	Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Experimental Biology and Medicine, 2021, 246, 317-331.	1.1	11
22	A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicological Research, 2021, 37, 1-23.	1.1	68
23	The Position of ADME Predictions in Multi-Objective QSAR. International Journal of Quantitative Structure-Property Relationships, 2021, 6, 1-8.	1.1	0
24	High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants, 2021, 10, 106.	2.2	27
25	Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1516.	6.2	48
26	Plasma miRâ€218aâ€5p as a biomarker for acute cholestatic liver injury in rats and investigation of its pathophysiological roles. Journal of Applied Toxicology, 2021, 41, 1537-1552.	1.4	2
27	Epidemiology of Drug- and Herb-Induced Liver Injury Assessed for Causality Using the Updated RUCAM in Two Hospitals from China. BioMed Research International, 2021, 2021, 1-7.	0.9	4
28	The eTRANSAFE Project on Translational Safety Assessment through Integrative Knowledge Management: Achievements and Perspectives. Pharmaceuticals, 2021, 14, 237.	1.7	17
29	Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. International Journal of Molecular Sciences, 2021, 22, 4557.	1.8	34
30	Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clinical and Translational Science, 2021, 14, 1049-1061.	1.5	47
31	Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Archives of Toxicology, 2021, 95, 2413-2430.	1.9	2
33	A Nanoantidote Alleviates Glioblastoma Chemotoxicity without Efficacy Compromise. Nano Letters, 2021, 21, 5158-5166.	4.5	14
34	Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicology in Vitro, 2021, 73, 105107.	1.1	9
35	3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clinical and Translational Science, 2021, 14, 1659-1680.	1.5	77
36	Prognostic SLC family genes promote cell proliferation, migration, and invasion in hepatocellular carcinoma. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1065-1075.	0.9	12
39	Integration of temporal single cell cellular stress response activity with logic-ODE modeling reveals activation of ATF4-CHOP axis as a critical predictor of drug-induced liver injury. Biochemical Pharmacology, 2021, 190, 114591.	2.0	14

#	Article	IF	CITATIONS
41	The LAC Score Indicates Significant Fibrosis in Patients With Chronic Drug-Induced Liver Injury: A Large Biopsy-Based Study. Frontiers in Pharmacology, 2021, 12, 734090.	1.6	4
42	The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity. Life, 2021, 11, 856.	1.1	8
43	Tailored Biosensors for Drug Screening, Efficacy Assessment, and Toxicity Evaluation. ACS Sensors, 2021, 6, 3146-3162.	4.0	18
44	Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating Oxidative Stress and Regulating Inflammation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42382-42395.	4.0	41
45	Latest impact of engineered human liver platforms on drug development. APL Bioengineering, 2021, 5, 031506.	3.3	8
46	Ensemble prediction of mitochondrial toxicity using machine learning technology. Computational Toxicology, 2021, 20, 100189.	1.8	7
47	Evaluation of the hepatotoxicity of the novel GPR40 (FFAR1) agonist CPL207280 in the rat and monkey. PLoS ONE, 2021, 16, e0257477.	1.1	3
48	An integrated biomimetic array chip for establishment of collagenâ€based 3D primary human hepatocyte model for prediction of clinical drugâ€induced liver injury. Biotechnology and Bioengineering, 2021, 118, 4687-4698.	1.7	14
49	Advanced preclinical models for evaluation of drug-induced liver injury – consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. Journal of Hepatology, 2021, 75, 935-959.	1.8	66
50	In silico approaches in organ toxicity hazard assessment: Current status and future needs in predicting liver toxicity. Computational Toxicology, 2021, 20, 100187.	1.8	10
51	Constructing Vascularized Hepatic Tissue by Cell Assembled Viscous Tissue Sedimentation Method and Its Application for Vascular Toxicity Assessment. SSRN Electronic Journal, 0, , .	0.4	0
52	Machine Learning Models to Predict Inhibition of the Bile Salt Export Pump. Journal of Chemical Information and Modeling, 2021, 61, 587-602.	2.5	10
53	Drug-Induced Liver Injury. , 2021, , .		0
54	Multiparametric Highâ€Content Assays to Measure Cell Health and Oxidative Damage as a Model for Drugâ€Induced Liver Injury. Current Protocols in Chemical Biology, 2020, 12, e90.	1.7	2
55	DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation. Chemical Research in Toxicology, 2021, 34, 550-565.	1.7	41
56	Application of zebrafish to safety evaluation in drug discovery. Journal of Toxicologic Pathology, 2020, 33, 197-210.	0.3	21
57	The human hepatocyte TXG-MAPr: gene co-expression network modules to support mechanism-based risk assessment. Archives of Toxicology, 2021, 95, 3745-3775.	1.9	16
58	Conditions for maintenance of hepatocyte differentiation and function in 3D cultures. IScience, 2021, 24, 103235.	1.9	8

#	ARTICLE	IF	CITATIONS
59	Membrane-delimited signaling and cytosolic action of MG53 preserve hepatocyte integrity during drug-induced liver injury. Journal of Hepatology, 2022, 76, 558-567.	1.8	17
60	In vitro enzymatic electrochemical monitoring of glucose metabolism and production in rat primary hepatocytes on highly O2 permeable plates. Bioelectrochemistry, 2022, 143, 107972.	2.4	1
61	Toxicogenomics: A Primer for Toxicologic Pathologists. , 2022, , 491-543.		O
62	Evaluation of a Three-Dimensional Primary Human Hepatocyte Spheroid Model: Adoption and Industrialization for the Enhanced Detection of Drug-Induced Liver Injury. Chemical Research in Toxicology, 2021, 34, 2485-2499.	1.7	10
63	Constructing vascularized hepatic tissue by cell-assembled viscous tissue sedimentation method and its application for vascular toxicity assessment. Acta Biomaterialia, 2021, 140, 275-275.	4.1	1
64	Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharmaceutica Sinica B, 2021, 11, 3685-3726.	5.7	27
65	Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. Advanced NanoBiomed Research, 2022, 2, 2100049.	1.7	2
66	Prediction of biochemical nonresolution in patients with chronic drugâ€induced liver injury: A large multicenter study. Hepatology, 2022, 75, 1373-1385.	3.6	17
67	KaraciÄŸerde Detoksifikasyon. European Journal of Science and Technology, 0, , .	0.5	0
68	Letter to the editor: Selection of appropriate statistical methods for prediction model. Hepatology, 2022, 75, 1348-1349.	3.6	0
70	Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio, 2022, 13, 100215.	2.6	29
71	Establishment and characterization of organoids from a patient with adenomyoepithelioma of the breast. Bioengineered, 2021, 12, 11578-11585.	1.4	6
72	Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metabolism Reviews, 2022, 54, 46-62.	1.5	12
73	Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. International Journal of Molecular Sciences, 2022, 23, 3315.	1.8	33
74	Highly Sensitive Two-Photon Lipid Droplet Tracker for <i>In Vivo</i> Screening of Drug Induced Liver Injury. ACS Sensors, 2022, 7, 1027-1035.	4.0	19
75	Noninvasive Assessment of <scp>APAP</scp> (<i>N</i> â€acetyl― <i>p</i> â€aminophenol)â€Induced Hepatotoxicity Using Multiple <scp>MRI</scp> Parameters in an Experimental Rat Model. Journal of Magnetic Resonance Imaging, 2022, , .	1.9	3
77	<i>In vitro</i> cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metabolism Reviews, 2022, 54, 161-193.	1.5	5
78	Hierarchyâ€Assembled Dual Probiotics System Ameliorates Cholestatic Drugâ€Induced Liver Injury via Gutâ€Liver Axis Modulation. Advanced Science, 2022, 9, e2200986.	5.6	19

#	Article	IF	Citations
87	Hepatic Macrophage activation and the LPS pathway in patients with different degrees of severity and histopathological patterns of drug induced liver injury. Histology and Histopathology, 2021, 36, 653-662.	0.5	5
88	An Algorithm Framework for Drug-Induced Liver Injury Prediction Based on Genetic Algorithm and Ensemble Learning. Molecules, 2022, 27, 3112.	1.7	6
89	Peptide-Conjugated Aggregation-Induced Emission Fluorogenic Probe for Glypican-3 Protein Detection and Hepatocellular Carcinoma Cells Imaging. Chemosensors, 2022, 10, 195.	1.8	1
90	Early Drug-Induced Liver Injury Risk Screening: "Free,―as Good as It Gets. Toxicological Sciences, 2022, 188, 208-218.	1.4	4
91	Generation of HepG2 Cells with High Expression of Multiple Drug-Metabolizing Enzymes for Drug Discovery Research Using a PITCh System. Cells, 2022, 11, 1677.	1.8	4
92	Drug-induced Liver Injury in Pediatrics. Journal of Pediatric Gastroenterology and Nutrition, 2022, 75, 391-395.	0.9	1
93	Photoclick polysaccharide-based bioinks with an extended biofabrication window for 3D embedded bioprinting. Biomaterials Science, 2022, 10, 4479-4491.	2.6	8
94	Ceftriaxone-induced hepatotoxicity in patients with common medical infections in Qatar: A retrospective study. Qatar Medical Journal, 2022, 2022, .	0.2	2
95	High-content imaging of human hepatic spheroids for researching the mechanism of duloxetine-induced hepatotoxicity. Cell Death and Disease, 2022, 13, .	2.7	6
96	Diagnosis of drug-induced liver injury in model mice by studying the inhibitory effect of serum components on P450 inhibition assay. Chemico-Biological Interactions, 2022, 365, 110075.	1.7	1
97	In vitro/in silico prediction of drug induced steatosis in relation to oral doses and blood concentrations by the Nile Red assay. Toxicology Letters, 2022, 368, 33-46.	0.4	3
98	Development of peroxynitrite-responsive fluorescence probe for recognition of drug-induced liver injury. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 283, 121755.	2.0	6
99	Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Communications Biology, 2022, 5, .	2.0	8
100	Modeling drug-induced liver injury: current status and future prospects. Expert Opinion on Drug Metabolism and Toxicology, 2022, 18, 555-573.	1.5	8
101	Identification of Drug-Induced Liver Injury Biomarkers from Multiple Microarrays Based on Machine Learning and Bioinformatics Analysis. International Journal of Molecular Sciences, 2022, 23, 11945.	1.8	7
102	Predicting physiologically-relevant oxygen concentrations in precision-cut liver slices using mathematical modelling. PLoS ONE, 2022, 17, e0275788.	1,1	0
103	Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Communications Medicine, 2022, 2, .	1.9	61
104	Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)â€"In Vitro Testing. Pharmaceutics, 2023, 15, 29.	2.0	4

#	Article	IF	CITATIONS
105	Protective effect of Qingluotongbi formula against <i>Tripterygium wilfordii</i> induced liver injury in mice by improving fatty acid l²-oxidation and mitochondrial biosynthesis. Pharmaceutical Biology, 2023, 61, 80-88.	1.3	1
106	Comparative Study between the 3Dâ€Liver Spheroid Models Developed from HepG2 and Immortalized Hepatocyteâ€Like Cells with Primary Hepatic Stellate Coculture for Drug Metabolism Analysis and Anticancer Drug Screening. Advanced Therapeutics, 2023, 6, .	1.6	2
107	The native liver as inspiration to create superior <i>in vitro</i> hepatic models. Biomaterials Science, 2023, 11, 1091-1115.	2.6	3
109	Procyanidins Ameliorate Acetaminophen-induced Acute Liver Injury via Activating the Nrf-2/SOD-1 Signal Pathway. Pharmacognosy Magazine, 2023, 19, 176-185.	0.3	0
110	Overview of the Role of Pathology in Product Discovery and Development. , 2023, , 49-64.		0
111	Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Advanced Healthcare Materials, 2023, 12, .	3.9	2
112	Autoimmunity associates with severity of illness in elderly patients with drug-induced liver injury. Frontiers in Pharmacology, 0, 14, .	1.6	0
113	A Unique In Vitro Assay to Investigate ABCB4 Transport Function. International Journal of Molecular Sciences, 2023, 24, 4459.	1.8	4
114	Discovery Toxicology in Lead Optimization. , 2023, , 533-596.		0
120	How to reduce risk of drug induced liver toxicity from the beginning., 2023,, 107-121.		0
124	Investigating the link between drug metabolism and toxicity., 2023,, 201-213.		0
126	Tracking drugged waters from various sources to drinking waterâ€"its persistence, environmental risk assessment, and removal techniques. Environmental Science and Pollution Research, 2023, 30, 86676-86698.	2.7	0
131	DILIrank dataset for QSAR modeling of drug-induced liver injury. , 2023, , 235-243.		0
139	DRUG-INDUCED LIVER INJURY: MECHANISMS, METHODS FOR PRE-CLINICAL ASSESSMENT, AND A MEDICINAL CHEMIST'S PERSPECTIVE. Medicinal Chemistry Reviews, 0, , 473-500.	0.1	0
151	Liver and Gall Bladder. , 2024, , 149-247.		0