Structureâ€Based Design of a Macrocyclic PROTAC

Angewandte Chemie - International Edition 59, 1727-1734 DOI: 10.1002/anie.201914396

Citation Report

#	Article	IF	CITATIONS
1	Structureâ€Based Design of a Macrocyclic PROTAC. Angewandte Chemie - International Edition, 2020, 59, 1727-1734.	7.2	150
2	Understanding the Metabolism of Proteolysis Targeting Chimeras (PROTACs): The Next Step toward Pharmaceutical Applications. Journal of Medicinal Chemistry, 2020, 63, 11615-11638.	2.9	69
3	PRosettaC: Rosetta Based Modeling of PROTAC Mediated Ternary Complexes. Journal of Chemical Information and Modeling, 2020, 60, 4894-4903.	2.5	110
4	Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). European Journal of Medicinal Chemistry, 2020, 207, 112750.	2.6	12
5	Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem, 2020, 15, 2436-2443.	1.6	7
6	Automated Design of Macrocycles for Therapeutic Applications: From Small Molecules to Peptides and Proteins. Journal of Medicinal Chemistry, 2020, 63, 12100-12115.	2.9	22
7	Structural Insights into PROTAC-Mediated Degradation of Bcl-xL. ACS Chemical Biology, 2020, 15, 2316-2323.	1.6	58
8	Understanding and Improving the Membrane Permeability of VH032-Based PROTACs. ACS Medicinal Chemistry Letters, 2020, 11, 1732-1738.	1.3	83
9	Targeting epigenetic reader domains by chemical biology. Current Opinion in Chemical Biology, 2020, 57, 82-94.	2.8	20
10	Improved Accuracy for Modeling PROTAC-Mediated Ternary Complex Formation and Targeted Protein Degradation <i>via</i> New <i>In Silico</i> Methodologies. Journal of Chemical Information and Modeling, 2020, 60, 5234-5254.	2.5	80
11	The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Molecules, 2020, 25, 5956.	1.7	14
12	Structure driven compound optimization in targeted protein degradation. Drug Discovery Today: Technologies, 2020, 37, 73-82.	4.0	18
13	Beute für das Proteasom: Gezielter Proteinabbau aus medizinalchemischer Perspektive. Angewandte Chemie, 2020, 132, 15576-15595.	1.6	6
14	Prey for the Proteasome: Targeted Protein Degradation—A Medicinal Chemist's Perspective. Angewandte Chemie - International Edition, 2020, 59, 15448-15466.	7.2	102
15	Assays and technologies for developing proteolysis targeting chimera degraders. Future Medicinal Chemistry, 2020, 12, 1155-1179.	1.1	29
16	PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene, 2020, 39, 4909-4924.	2.6	139
17	Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. Journal of Hematology and Oncology, 2020, 13, 50.	6.9	199
18	Proteolysis targeting chimeras (PROTACs) for epigenetics research. Current Opinion in Chemical Biology, 2020, 57, 8-16.	2.8	46

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Advances and Opportunities in Epigenetic Chemical Biology. ChemBioChem, 2021, 22,	17-42.	1.3	8
20	Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate tar PROTACs and molecular glues. Current Opinion in Structural Biology, 2021, 67, 110-11	geting by 9.	2.6	33
21	Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nature Biology, 2021, 17, 152-160.	e Chemical	3.9	61
22	Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS Discovery 474-483.	, 2021, 26,	1.4	22
23	Traceless Staudinger ligation enabled parallel synthesis of proteolysis targeting chimera variants. Chemical Communications, 2021, 57, 1026-1029.	ı linker	2.2	17
24	Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Jou Chemistry, 2021, 296, 100647.	rnal of Biological	1.6	126
25	Mechanistic and Structural Features of PROTAC Ternary Complexes. Methods in Molect 2021, 2365, 79-113.	ular Biology,	0.4	32
26	Allosteric Modulation. , 2021, , .			Ο
28	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vit Antiproliferation Activity and In Vivo Antitumor Efficacy. Journal of Medicinal Chemistry 2576-2607.		2.9	91
29	Targeting Bromodomain and Extraterminal Proteins for Drug Discovery: From Current P Technological Development. Journal of Medicinal Chemistry, 2021, 64, 2419-2435.	rogress to	2.9	74
30	Exploiting Folding and Degradation Machineries To Target Undruggable Proteins: What Computational Approach Tell Us?. ChemMedChem, 2021, 16, 1593-1599.	: Can a	1.6	4
31	From Conception to Development: Investigating PROTACs Features for Improved Cell P Successful Protein Degradation. Frontiers in Chemistry, 2021, 9, 672267.	ermeability and	1.8	77
32	Frontiers in PROTACs. Drug Discovery Today, 2021, 26, 2377-2383.		3.2	15
33	Advancing targeted protein degradation for cancer therapy. Nature Reviews Cancer, 20	21, 21, 638-654.	12.8	251
34	Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS Cer 2021, 7, 1117-1125.	itral Science,	5.3	15
35	Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. Journal of Media Chemistry, 2021, 64, 8042-8052.	cinal	2.9	87
36	Protein degradation: a novel computational approach to design protein degrader probe protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10	s for main 905-10917.	2.0	21
37	Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovascular & Hemat Disorders Drug Targets, 2021, 21, 7-22.	ological	0.2	3

CITATION REPORT

#	Article	IF	CITATIONS
38	Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Current Opinion in Chemical Biology, 2021, 63, 132-144.	2.8	14
39	Post-translational lysine ac(et)ylation in health, ageing and disease. Biological Chemistry, 2022, 403, 151-194.	1.2	15
40	Reviewing the toolbox for degrader development in oncology. Current Opinion in Pharmacology, 2021, 59, 43-51.	1.7	4
41	Recent Developments in PROTACâ€Mediated Protein Degradation: From Bench to Clinic. ChemBioChem, 2022, 23, .	1.3	105
42	A selective WDR5 degrader inhibits acute myeloid leukemia in patient-derived mouse models. Science Translational Medicine, 2021, 13, eabj1578.	5.8	67
44	An efficient strategy for digging protein-protein interactions for rational drug design - A case study with HIF-11±/VHL. European Journal of Medicinal Chemistry, 2022, 227, 113871.	2.6	8
45	Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology, 2021, 2, 725-742.	2.0	118
46	Solution Conformations Shed Light on PROTAC Cell Permeability. ACS Medicinal Chemistry Letters, 2021, 12, 107-114.	1.3	99
49	Current strategies for the design of PROTAC linkers: a critical review. Exploration of Targeted Anti-tumor Therapy, 2020, 1, .	0.5	140
50	Novel approaches for the rational design of PROTAC linkers. Exploration of Targeted Anti-tumor Therapy, 2020, 1, 381-390.	0.5	17
51	Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nature Chemical Biology, 2021, 17, 1157-1167.	3.9	108
52	Development of BromoTag: A "Bump-and-Holeâ€â€"PROTAC System to Induce Potent, Rapid, and Selective Degradation of Tagged Target Proteins. Journal of Medicinal Chemistry, 2021, 64, 15477-15502.	2.9	37
53	Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. Journal of Medicinal Chemistry, 2021, 64, 15868-15882.	2.9	18
55	Integrative Modeling of PROTAC-Mediated Ternary Complexes. Journal of Medicinal Chemistry, 2021, 64, 16271-16281.	2.9	51
56	Structural and Biophysical Principles of Degrader Ternary Complexes. RSC Drug Discovery Series, 2020, , 14-54.	0.2	1
57	Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chemical Biology, 2021, 16, 2808-2815.	1.6	50
58	Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. Journal of Biological Chemistry, 2022, 298, 101653.	1.6	37
59	Importance of Three-Body Problems and Protein–Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 523-532.	2.5	19

CITATION REPORT

#	Article	IF	CITATIONS
60	Strategies for designing proteolysis targeting chimaeras (PROTACs). Medicinal Research Reviews, 2022, 42, 1280-1342.	5.0	48
61	Recent advances in induced proximity modalities. Current Opinion in Chemical Biology, 2022, 67, 102107.	2.8	13
62	Recent Developments in Targeting Bromodomain and Extra Terminal Domain Proteins for Cancer Therapeutics. Current Medicinal Chemistry, 2022, 29, 4391-4409.	1.2	3
63	Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharmaceutica Sinica B, 2022, 12, 2990-3005.	5.7	16
64	Proteolysis-Targeting Chimera (PROTAC): Is the Technology Looking at the Treatment of Brain Tumors?. Frontiers in Cell and Developmental Biology, 2022, 10, 854352.	1.8	9
65	Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharmaceutica Sinica B, 2022, 12, 3548-3566.	5.7	11
67	Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annual Review of Biochemistry, 2022, 91, 295-319.	5.0	41
68	Inhibition mechanism of hydroxyproline-like small inhibitors to disorder HIF-VHL interaction by molecular dynamic simulations and binding free energy calculations. Chinese Journal of Chemical Physics, 2021, 34, 814-824.	0.6	0
69	Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. Journal of Medicinal Chemistry, 2021, 64, 18082-18101.	2.9	61
70	Translational PK–PD for targeted protein degradation. Chemical Society Reviews, 2022, 51, 3477-3486.	18.7	17
70 71	Translational PK–PD for targeted protein degradation. Chemical Society Reviews, 2022, 51, 3477-3486. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99.	18.7 7.9	17 89
71	Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99. In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of Medicinal	7.9	89
71 72	Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99. In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of Medicinal Chemistry, 2022, 65, 6116-6132. Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65,	7.9 2.9	89 29
71 72 74	Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99. In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of Medicinal Chemistry, 2022, 65, 6116-6132. Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65, 8113-8126.	7.9 2.9 2.9	89 29 15
71 72 74 75	 Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99. In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of Medicinal Chemistry, 2022, 65, 6116-6132. Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65, 8113-8126. PROTACs: past, present and future. Chemical Society Reviews, 2022, 51, 5214-5236. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal 	7.9 2.9 2.9 18.7	89 29 15 180
71 72 74 75 76	 Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99. In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of Medicinal Chemistry, 2022, 65, 6116-6132. Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65, 8113-8126. PROTACs: past, present and future. Chemical Society Reviews, 2022, 51, 5214-5236. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduction and Targeted Therapy, 2022, 7, . Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound 	 7.9 2.9 2.9 18.7 7.1 	 89 29 15 180 77

#	Article	IF	CITATIONS
80	Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood–Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2. Journal of the American Chemical Society, 2022, 144, 16930-16952.	6.6	52
81	Chemistries of bifunctional PROTAC degraders. Chemical Society Reviews, 2022, 51, 7066-7114.	18.7	73
82	The importance of selecting crystal form for triazole fungicide tebuconazole to enhance its botryticidal activity. Science of the Total Environment, 2023, 854, 158778.	3.9	2
83	Proteolysis-targeting chimeras (PROTACs) as novel biotechnology for cancer therapy. , 2022, , 71-88.		1
84	Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Natural Product Reports, 2022, 39, 2292-2307.	5.2	11
85	PROTAC degraders as chemical probes for studying target biology and target validation. Chemical Society Reviews, 2022, 51, 7971-7993.	18.7	28
86	Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chemical Society Reviews, 2022, 51, 8216-8257.	18.7	47
87	Refinement of Computational Access to Molecular Physicochemical Properties: From Ro5 to bRo5. Journal of Medicinal Chemistry, 2022, 65, 12068-12083.	2.9	7
88	Linker-Dependent Folding Rationalizes PROTAC Cell Permeability. Journal of Medicinal Chemistry, 2022, 65, 13029-13040.	2.9	30
89	PROTACs: The Future of Leukemia Therapeutics. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
90	Harnessing the cyclization strategy for new drug discovery. Acta Pharmaceutica Sinica B, 2022, 12, 4309-4326.	5.7	13
91	A comprehensive review of BET-targeting PROTACs for cancer therapy. Bioorganic and Medicinal Chemistry, 2022, 73, 117033.	1.4	9
92	Applications of covalent chemistry in targeted protein degradation. Chemical Society Reviews, 2022, 51, 9243-9261.	18.7	14
93	Current strategies for improving limitations of proteolysis targeting chimeras. Chinese Chemical Letters, 2023, 34, 107927.	4.8	2
94	Proteolysis Targeting Chimeras (PROTACs) Based on Promiscuous Kinase Inhibitor Synergistically Induce Cancer Cell Apoptosis Through Multiple Mechanisms. ChemistrySelect, 2022, 7, .	0.7	1
95	PROTAC: A Novel Drug Delivery Technology for Targeting Proteins in Cancer Cells. Current Drug Discovery Technologies, 2023, 20, .	0.6	1
96	Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nature Chemical Biology, 2023, 19, 323-333.	3.9	36
97	A bibliometric analysis of PROTAC from 2001 to 2021. European Journal of Medicinal Chemistry, 2022, 244, 114838.	2.6	26

#	Article	IF	CITATIONS
100	PROTAC: targeted drug strategy. Principles and limitations. Russian Chemical Bulletin, 2022, 71, 2310-2334.	0.4	8
103	Current Challenges in Small Molecule Proximity-Inducing Compound Development for Targeted Protein Degradation Using the Ubiquitin Proteasomal System. Molecules, 2022, 27, 8119.	1.7	3
106	Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Development Research, 2023, 84, 337-394.	1.4	6
107	Crystallization of VHL-based PROTAC-induced ternary complexes. Methods in Enzymology, 2023, , 241-263.	0.4	4
108	Integrating Protein Interaction Surface Prediction with a Fragment-Based Drug Design: Automatic Design of New Leads with Fragments on Energy Surfaces. Journal of Chemical Information and Modeling, 2023, 63, 343-353.	2.5	1
109	Exploring PROTAC Cooperativity with Coarse-Grained Alchemical Methods. Journal of Physical Chemistry B, 2023, 127, 446-455.	1.2	4
110	Computational strategies for PROTAC drug discovery. , 2023, 2, .		1
111	Selective degradation of cellular BRD3 and BRD4-L promoted by PROTAC molecules in six cancer cell lines. European Journal of Medicinal Chemistry, 2023, 254, 115381.	2.6	4
112	Breaking free from the crystal lattice: Structural biology in solution to study protein degraders. Current Opinion in Structural Biology, 2023, 79, 102534.	2.6	3
113	Advancing Strategies for Proteolysis-Targeting Chimera Design. Journal of Medicinal Chemistry, 2023, 66, 2308-2329.	2.9	17
114	Recent advances in targeted protein degraders as potential therapeutic agents. Molecular Diversity, 2024, 28, 309-333.	2.1	4
115	Delivering on the promise of protein degraders. Nature Reviews Drug Discovery, 2023, 22, 410-427.	21.5	16
117	A covalent BTK ternary complex compatible with targeted protein degradation. Nature Communications, 2023, 14, .	5.8	4
118	Novel approaches to targeted protein degradation technologies in drug discovery. Expert Opinion on Drug Discovery, 2023, 18, 467-483.	2.5	7
119	Discovery of LL-K8-22 : A Selective, Durable, and Small-Molecule Degrader of the CDK8-Cyclin C Complex. Journal of Medicinal Chemistry, 2023, 66, 4932-4951.	2.9	7
120	PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Molecular Cancer, 2023, 22, .	7.9	18
121	Biophysical and Computational Approaches to Study Ternary Complexes: A â€~Cooperative Relationship' to Rationalize Targeted Protein Degradation. ChemBioChem, 2023, 24, .	1.3	8
122	From classic medicinal chemistry to stateâ€ofâ€theâ€art interdisciplinary medicine: Recent advances in proteolysisâ€targeting chimeras technology. , 2023, 1, .		2

#ARTICLEIFCITATIONS123Structure-based Design for Medicinal Chemists., 2023,, 137-187.o