Soil amendments for immobilization of potentially toxi critical review

Environment International 134, 105046 DOI: 10.1016/j.envint.2019.105046

Citation Report

#	Article	IF	CITATIONS
1	Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 2020, 388, 122026.	6.5	172
2	Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. Journal of Hazardous Materials, 2020, 388, 121756.	6.5	58
3	Soil Bioremediation: Overview of Technologies and Trends. Energies, 2020, 13, 4664.	1.6	85
4	Acid-Modified and Unmodified Natural Clay Deposits for In Situ Immobilization and Reducing Phytoavailability of Molybdenum in a Sandy Loam Calcareous Soil. Sustainability, 2020, 12, 8203.	1.6	6
5	Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere. Environmental Pollution, 2020, 267, 115452.	3.7	45
6	The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of Co-contaminated soils. Chemosphere, 2020, 261, 128123.	4.2	18
7	Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill. Powder Technology, 2020, 375, 284-291.	2.1	29
8	Effects of compaction on lead availability in contaminated soils with contrasting texture. Environmental Monitoring and Assessment, 2020, 192, 672.	1.3	3
9	Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environmental Pollution, 2020, 260, 114065.	3.7	98
10	Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil. Environmental Pollution, 2020, 266, 115194.	3.7	60
11	Reduction of bioaccessibility of As in soil through in situ formation of amorphous Fe oxides and its long-term stability. Science of the Total Environment, 2020, 745, 140989.	3.9	3
12	Effects of Natural Sorbents on the Germination and Early Growth of Grasses on Soils Contaminated by Potentially Toxic Elements. Plants, 2020, 9, 1591.	1.6	2
13	Effects of selenium on the uptake of toxic trace elements by crop plants: A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2531-2566.	6.6	50
14	Cadmium mobility in three contaminated soils amended with different additives as evaluated by dynamic flow-through experiments. Chemosphere, 2020, 261, 127763.	4.2	18
15	Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review. Molecules, 2020, 25, 3167.	1.7	92
16	Biorefinery-assisted soil management for enhancing food security. Journal of Soils and Sediments, 2020, 20, 4007-4010.	1.5	3
17	Municipal solid waste incineration fly ash exposed to carbonation and acid rain corrosion scenarios: Release behavior, environmental risk, and dissolution mechanism of toxic metals. Science of the Total Environment, 2020, 744, 140857.	3.9	46
18	Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes, 2020, 8, 820.	1.3	58

#	Article	IF	CITATIONS
19	Quantitative isotopic fingerprinting of thallium associated with potentially toxic elements (PTEs) in fluvial sediment cores with multiple anthropogenic sources. Environmental Pollution, 2020, 266, 115252.	3.7	30
20	Carbonaceous inserts from lignocellulosic and non-lignocellulosic sources in cement mortar: Preparation conditions and its effect on hydration kinetics and physical properties. Construction and Building Materials, 2020, 264, 120214.	3.2	29
21	Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. Environment International, 2020, 144, 106040.	4.8	54
22	Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environmental Science & Technology, 2020, 54, 14797-14814.	4.6	273
23	A simple method for the synthesis of biochar nanodots using hydrothermal reactor. MethodsX, 2020, 7, 101022.	0.7	33
24	Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 2022, 52, 675-726.	6.6	196
25	Arsenic Fixation in Polluted Soils by Peat Applications. Minerals (Basel, Switzerland), 2020, 10, 968.	0.8	8
26	Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environment International, 2020, 140, 105754.	4.8	104
27	An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environmental Pollution, 2020, 265, 114795.	3.7	57
28	Use of biomass ash from different sources and processes in cement. Journal of Sustainable Cement-Based Materials, 2020, 9, 350-370.	1.7	5
29	Biosolid compost with wood shavings and yard trimmings alleviates stress and improves grain quality in soybean grown in lead polluted soils. Environmental Science and Pollution Research, 2020, 27, 27786-27795.	2.7	4
30	Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environmental Pollution, 2020, 264, 114728.	3.7	105
31	Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environmental Pollution, 2020, 264, 114773.	3.7	82
32	A phytoextraction trial strengthened by Streptomyces pactum and plant nutrients: In view of plant bioindicators and phytoextraction indices. Environmental Pollution, 2020, 265, 114867.	3.7	9
33	The evaluation of in-site remediation feasibility of Cd-contaminated soils with the addition of typical silicate wastes. Environmental Pollution, 2020, 265, 114865.	3.7	20
34	A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 2020, 400, 123138.	6.5	73
35	Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses. Chemosphere, 2020, 257, 127309.	4.2	41
36	Assessment of iron-based and calcium-phosphate nanomaterials for immobilisation of potentially toxic elements in soils from a shooting range berm. Journal of Environmental Management, 2020, 267, 110640.	3.8	17

#	Article	IF	CITATIONS
37	Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy. Sustainability, 2020, 12, 4193.	1.6	25
38	Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 2020, 262, 114312.	3.7	77
39	Arsenic bioaccumulation in arsenic-contaminated soil: a review. Chemical Papers, 2020, 74, 2743-2757.	1.0	19
40	Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. Journal of Environmental Management, 2020, 261, 110246.	3.8	86
41	Valorization of biomass from plant microbial fuel cells into levulinic acid by using liquid/solid acids and green solvents. Journal of Cleaner Production, 2020, 260, 121097.	4.6	20
42	Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO42â^ from electroplating wastewater. Bioresource Technology, 2020, 306, 123118.	4.8	66
43	Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe0). Ecotoxicology and Environmental Safety, 2020, 201, 110868.	2.9	11
44	Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. Journal of Hazardous Materials, 2020, 400, 123317.	6.5	106
45	Effects and mechanisms of mineral amendment on thallium mobility in highly contaminated soils. Journal of Environmental Management, 2020, 262, 110251.	3.8	27
46	Quantitative source tracking of heavy metals contained in urban road deposited sediments. Journal of Hazardous Materials, 2020, 393, 122362.	6.5	59
47	Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere, 2020, 250, 126317.	4.2	31
48	Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Science of the Total Environment, 2020, 720, 137584.	3.9	110
49	Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar. Environmental Pollution, 2020, 261, 114157.	3.7	136
50	Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. Science of the Total Environment, 2020, 714, 136721.	3.9	19
51	Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. Environmental Pollution, 2020, 261, 114116.	3.7	80
52	Applying modified biochar with nZVI/nFe3O4 to immobilize Pb in contaminated soil. Environmental Science and Pollution Research, 2020, 27, 24495-24506.	2.7	20
53	Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): A three-year field study. Ecotoxicology and Environmental Safety, 2020, 197, 110600.	2.9	66
54	Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397, 122720.	6.5	127

#	Article	IF	CITATIONS
55	New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 2020, 36, 358-386.	2.6	200
56	Dredged marine sediments stabilized/solidified with cement and GCBS: Factors affecting mechanical behaviour and leachability. Science of the Total Environment, 2020, 733, 138551.	3.9	55
57	Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish. Science of the Total Environment, 2021, 753, 141902.	3.9	32
58	Wood biomass fly ash ameliorates acidic, low-nutrient hydromorphic soil & reduces metal accumulation in maize. Journal of Cleaner Production, 2021, 283, 124650.	4.6	17
59	A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 2021, 272, 115985.	3.7	76
60	Contaminated soil amendment by diatomite: chemical fractions of zinc, lead, copper and cadmium. International Journal of Environmental Science and Technology, 2021, 18, 1191-1200.	1.8	12
61	Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. Journal of Hazardous Materials, 2021, 403, 123628.	6.5	88
62	Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chemical Engineering Journal, 2021, 407, 127178.	6.6	67
63	Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. Journal of Cleaner Production, 2021, 279, 123877.	4.6	72
64	Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Science of the Total Environment, 2021, 755, 142582.	3.9	109
65	Straw return enhances the risks of metals in soil?. Ecotoxicology and Environmental Safety, 2021, 207, 111201.	2.9	42
66	Application of iron-biochar composite in topsoil for simultaneous remediation of chromium-contaminated soil and groundwater: Immobilization mechanism and long-term stability. Journal of Hazardous Materials, 2021, 405, 124226.	6.5	47
67	Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil. Environmental Science and Pollution Research, 2021, 28, 12648-12658.	2.7	9
68	Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors. Environmental Pollution, 2021, 272, 115991.	3.7	25
69	Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter: A review. Science of the Total Environment, 2021, 756, 144140.	3.9	20
70	Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: Prevailing issues, leading management practices, and future perspectives. , 2021, , 569-590.		27
71	Assessment of the long-term leaching characteristics of cement-slag stabilized/solidified contaminated sediment. Chemosphere, 2021, 267, 128926.	4.2	34
72	Chemical stabilization of Cd-contaminated soil using fresh and aged wheat straw biochar. Environmental Science and Pollution Research, 2021, 28, 10155-10166.	2.7	20

#	Article	IF	CITATIONS
73	Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 2021, 146, 106233.	4.8	85
74	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. Journal of Cleaner Production, 2021, 289, 125142.	4.6	56
75	Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb. Environmental Pollution, 2021, 269, 116198.	3.7	17
76	Fe-Modified Common Reed Biochar Reduced Cadmium (Cd) Mobility and Enhanced Microbial Activity in a Contaminated Calcareous Soil. Journal of Soil Science and Plant Nutrition, 2021, 21, 329-340.	1.7	22
77	lron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 2021, 407, 124344.	6.5	150
78	Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution, 2021, 268, 115549.	3.7	74
79	Nanoarchitectonics on living cells. RSC Advances, 2021, 11, 18898-18914.	1.7	22
80	Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using <i>Zea mays</i> L. in contrasting textured soils. International Journal of Phytoremediation, 2021, 23, 899-910.	1.7	13
81	Impacts of crop residues on soil health: a review. Environmental Pollutants and Bioavailability, 2021, 33, 164-173.	1.3	63
82	Influence of Soil Type on the Reliability of the Prediction Model for Bioavailability of Mn, Zn, Pb, Ni and Cu in the Soils of the Republic of Serbia. Agronomy, 2021, 11, 141.	1.3	5
83	Spatial Distribution of As and Cd in Co-contaminated Soils Within the Rice Root Microzone. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 115-120.	1.3	3
84	Changes in soil available cadmium and bacterial communities after fallowing depend on contamination levels. Journal of Soils and Sediments, 2021, 21, 1408-1419.	1.5	8
85	Application of Wastewater in Irrigation and Its Regulation with Special Reference to Agriculture Residues. , 2021, , 177-199.		1
86	Rehabilitation of waste rock piles: Impact of acid drainage on potential toxicity by trace elements in plants and soil. Journal of Environmental Management, 2021, 280, 111848.	3.8	21
87	Effect of Sewage Sludge Compost Usage on Corn and Faba Bean Growth, Carbon and Nitrogen Forms in Plants and Soil. Agronomy, 2021, 11, 628.	1.3	16
88	Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2803-2843.	6.6	63
89	Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants, 2021, 10, 635.	1.6	131
90	A promising amendment for the immobilization of heavy metal(loid)s in agricultural soil, northwest China, lournal of Soils and Sediments, 2021, 21, 2273-2286.	1.5	18

#	Article	IF	CITATIONS
91	Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Biomolecules, 2021, 11, 448.	1.8	38
92	Purified montmorillonite as a nano-adsorbent of potentially toxic elements from environment: an overview. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	13
93	Innovative amendments derived from industrial and municipal wastes enhance plant growth and soil functions in potentially toxic elements-polluted environments. Italian Journal of Agronomy, 2021, 16, .	0.4	6
94	A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 2021, 37, 936-963.	2.6	117
95	Characteristics of biochar and its role in the remediation of heavy metals in soil. IOP Conference Series: Earth and Environmental Science, 2021, 687, 012023.	0.2	1
96	Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy. Processes, 2021, 9, 572.	1.3	5
97	Microbial Ecotoxicity of Biochars in Agricultural Soil and Interactions with Linear Alkylbenzene Sulfonates. Agronomy, 2021, 11, 828.	1.3	3
98	Highly efficient sorption and immobilization of gaseous arsenic from flue gas on MnO2/attapulgite composite with low secondary leaching risks. Journal of Cleaner Production, 2021, 292, 126003.	4.6	14
99	Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard. Environmental Pollution, 2021, 274, 116549.	3.7	17
100	Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil. Science of the Total Environment, 2021, 763, 144218.	3.9	72
101	Proposal of new distribution coefficients (Kd) of potentially toxic elements in soils for improving environmental risk assessment in the State of São Paulo, southeastern Brazil. Journal of Environmental Management, 2021, 285, 112044.	3.8	7
102	Multi-Scale Minero-Chemical Analysis of Biomass Ashes: A Key to Evaluating Their Dangers vs. Benefits. Sustainability, 2021, 13, 6052.	1.6	1
103	Sorption and transport of Mn2+ in soil amended with alkali-modified pomelo biochar. Environmental Science and Pollution Research, 2021, 28, 56552-56564.	2.7	2
104	Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere, 2021, 271, 129538.	4.2	25
105	Effects of Green Waste Compost Addition to Dredged Sediments of the Matanza-Riachuelo River (Argentina) on Heavy Metal Extractability and Bioaccumulation in Lettuce (Lactuca sativa). Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	7
106	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	9.4	245
107	Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environmental Pollution, 2021, 277, 116800.	3.7	66
108	Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals. Journal of Hazardous Materials, 2021, 412, 125200.	6.5	76

#	Article	IF	CITATIONS
109	Agriculture extension as education to maintain environmental stability: Study in DKI Jakarta. IOP Conference Series: Earth and Environmental Science, 2021, 802, 012003.	0.2	0
110	Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere, 2021, 273, 129692.	4.2	38
111	Immobilization properties and adsorption mechanism of nickel(II) in soil by biochar combined with humic acid-wood vinegar. Ecotoxicology and Environmental Safety, 2021, 215, 112159.	2.9	22
112	From landfills to landscapes—Natureâ€based solutions for water management taking into account legacy contamination. Integrated Environmental Assessment and Management, 2021, , .	1.6	6
113	Insight into metal immobilization and microbial community structure in soil from a steel disposal dump phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere, 2021, 272, 129576.	4.2	39
114	Monitoring of ion release, bioavailability and ecotoxicity of thallium in contaminated paddy soils under rice cultivation conditions. Journal of Hazardous Materials, 2022, 424, 126513.	6.5	7
115	Biochar composites: Emerging trends, field successes and sustainability implications. Soil Use and Management, 2022, 38, 14-38.	2.6	73
116	Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite. Materials, 2021, 14, 3777.	1.3	11
117	A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials, 2021, 414, 125378.	6.5	155
118	Stabilization and encapsulation of arsenic-/antimony-bearing mine waste: Overview and outlook of existing techniques. Critical Reviews in Environmental Science and Technology, 2022, 52, 3720-3752.	6.6	15
119	Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiologia Plantarum, 2021, 173, 418-429.	2.6	61
120	Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Management, 2021, 131, 117-125.	3.7	23
121	Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. Journal of Hazardous Materials, 2021, 413, 125319.	6.5	107
122	Salinity-induced changes in cadmium availability affect soil microbial and biochemical functions: Mitigating role of biochar. Chemosphere, 2021, 274, 129924.	4.2	8
123	Combustion wastes from thermal power stations and household stoves: A comparison of properties, mineralogical and chemical composition, and element mobilization by water and fertilizers. Waste Management, 2021, 131, 136-146.	3.7	8
124	Effects of chicken manure and peat on Cr(VI) uptake in a soil–plant system: Cr fractionation and plant physiological responses. Environmental Technology and Innovation, 2021, 23, 101583.	3.0	3
125	Hydrothermally-altered feldspar as an environmentally-friendly technology to promote heavy metals immobilization: Batch studies and application in smelting-affected soils. Journal of Environmental Management, 2021, 291, 112711.	3.8	10
126	Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. Journal of Hazardous Materials, 2021, 416, 125805.	6.5	15

#	Article	IF	CITATIONS
127	Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. Toxics, 2021, 9, 184.	1.6	29
128	Heavy Metal Contamination in Soils and Crops Irrigated by Kali River in Uttar Pradesh, India. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 931-937.	1.3	6
129	Escalating health risk of thallium and arsenic from farmland contamination fueled by cement-making activities: A hidden but significant source. Science of the Total Environment, 2021, 782, 146603.	3.9	28
130	In-situ and ex-situ remediation of potentially toxic elements by humic acid extracted from different feedstocks: Experimental observations on a contaminated soil subjected to long-term irrigation with sewage effluents. Environmental Technology and Innovation, 2021, 23, 101599.	3.0	15
131	Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 2021, 416, 125702.	6.5	46
132	How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 2021, 13, 1731-1764.	2.5	286
133	Biochar blended humate and vermicompost enhanced immobilization of heavy metals, improved wheat productivity, and minimized human health risks in different contaminated environments. Journal of Environmental Chemical Engineering, 2021, 9, 105700.	3.3	26
134	Dispersion of hazardous nanoparticles on beaches around phosphogypsum factories. Marine Pollution Bulletin, 2021, 169, 112493.	2.3	8
135	Copper uptake, physiological response, and phytoremediation potential of <i>Brassica juncea</i> under biochar application. International Journal of Phytoremediation, 2022, 24, 474-482.	1.7	13
136	Biochar and urban solid refuse ameliorate the inhospitality of acidic mine tailings and foster effective spontaneous plant colonization under semiarid climate. Journal of Environmental Management, 2021, 292, 112824.	3.8	3
137	Effects of Different Types of Organic Fertilizer on Biomass Yield, Bioactive Compounds and Heavy Metals Contents of Phyllanthus Niruri. Journal of Physics: Conference Series, 2021, 2000, 012005.	0.3	3
138	Small structures with big impact: Multi-walled carbon nanotubes enhanced remediation efficiency in hyperaccumulator Solanum nigrum L. under cadmium and arsenic stress. Chemosphere, 2021, 276, 130130.	4.2	39
139	Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, 2021, 788, 147815.	3.9	99
140	Plumbojarosite formation in contaminated soil to mitigate childhood exposure to lead, arsenic and antimony. Journal of Hazardous Materials, 2021, 418, 126312.	6.5	18
142	Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability. Environmental Pollution, 2021, 285, 117268.	3.7	19
143	Chemical Fractionation, Environmental, and Human Health Risk Assessment of Potentially Toxic Elements in Soil of Industrialised Urban Areas in Serbia. International Journal of Environmental Research and Public Health, 2021, 18, 9412.	1.2	11
144	The use of mercapto-modified palygorskite prevents the bioaccumulation of cadmium in wheat. Journal of Hazardous Materials, 2021, 417, 125917.	6.5	17
145	Do New-Generation Recycled Phosphorus Fertilizers Increase the Content of Potentially Toxic Elements in Soil and Plants?. Minerals (Basel, Switzerland), 2021, 11, 999.	0.8	6

#	Article	IF	CITATIONS
146	Managing soils of environmental significance: A critical review. Journal of Hazardous Materials, 2021, 417, 125990.	6.5	17
147	A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell. Environmental Research, 2022, 204, 112125.	3.7	57
148	A comprehensive insight into ecological risk assessment and remediation of metal contaminated coal mine soil: Towards a cleaner and sustainable environment. Journal of Cleaner Production, 2021, 324, 129185.	4.6	16
149	Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review. Journal of Hazardous Materials, 2021, 417, 126039.	6.5	213
150	Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environmental Pollution, 2021, 285, 117414.	3.7	67
151	Ecological and Health Risk Assessments of an Abandoned Gold Mine (Remance, Panama): Complex Scenarios Need a Combination of Indices. International Journal of Environmental Research and Public Health, 2021, 18, 9369.	1.2	15
152	A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. Journal of Environmental Management, 2021, 294, 113108.	3.8	46
153	Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash. Environmental Pollution, 2021, 284, 117120.	3.7	9
154	Biotransfer, bioaccumulation and detoxification of nickel along the soil - faba bean - aphid - ladybird food chain. Science of the Total Environment, 2021, 785, 147226.	3.9	13
155	Pollution control in biochar-driven clean composting: Emphasize on heavy metal passivation and gaseous emissions mitigation. Journal of Hazardous Materials, 2021, 420, 126635.	6.5	40
156	Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. Journal of Hazardous Materials, 2021, 419, 126464.	6.5	39
157	Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 2021, 419, 126421.	6.5	65
158	(Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. Environmental Pollution, 2021, 286, 117199.	3.7	40
159	Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methodsï¼A critical review. Journal of Cleaner Production, 2021, 321, 128730.	4.6	119
160	A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils. Environmental Pollution, 2021, 287, 117611.	3.7	48
161	Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy. Renewable and Sustainable Energy Reviews, 2021, 151, 111540.	8.2	8
162	Soil moisture influences performance of selected stabilizing amendments in soil remediation. Geoderma, 2021, 402, 115307.	2.3	4
163	Mechanistic insights into the (im)mobilization of arsenic, cadmium, lead, and zinc in a multi-contaminated soil treated with different biochars. Environment International, 2021, 156, 106638.	4.8	61

#	Article	IF	Citations
164	Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere, 2021, 282, 131016.	4.2	36
165	Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 2021, 156, 106749.	4.8	116
166	Arsenic and cadmium load in rice tissues cultivated in calcium enriched biochar amended paddy soil. Chemosphere, 2021, 283, 131102.	4.2	18
167	Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environment International, 2021, 156, 106628.	4.8	77
168	Radionuclide and trace metal accumulation in a variety of mosses used as bioindicators for atmospheric deposition. Science of the Total Environment, 2021, 797, 149224.	3.9	16
169	On the state of the art of crystalline structure reconstruction of coal fly ash: A focus on zeolites. Chemosphere, 2021, 283, 131010.	4.2	37
170	Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake, China. Environmental Pollution, 2021, 290, 118018.	3.7	43
171	Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Science of the Total Environment, 2021, 801, 149623.	3.9	61
172	Biofuel potential of compost-like output from municipal solid waste: Multiple analyses of its seasonal variation and blends with lignite. Energy, 2021, 236, 121457.	4.5	10
173	Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Science of the Total Environment, 2021, 798, 149272.	3.9	34
174	Efficiency of CH4N2Sâ^'modified biochar derived from potato peel on the adsorption and fractionation of cadmium, zinc and copper in contaminated acidic soil. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100468.	1.7	4
175	Comparing the effects of humic acid and oxalic acid on Pb(II) immobilization by a green synthesized nanocrystalline hydroxyapatite. Chemosphere, 2021, 285, 131411.	4.2	21
176	Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. Ecotoxicology and Environmental Safety, 2021, 226, 112805.	2.9	15
177	Factors that affect physicochemical and acid-base properties of compost and vermicompost and its potential use as a soil amendment. Journal of Environmental Management, 2021, 300, 113702.	3.8	13
178	Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. Journal of Hazardous Materials, 2022, 421, 126647.	6.5	32
179	How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production?. Science of the Total Environment, 2022, 803, 149933.	3.9	28
180	Modification of naturally abundant resources for remediation of potentially toxic elements: A review. Journal of Hazardous Materials, 2022, 421, 126755.	6.5	32
181	Recent developments in phosphate-assisted phytoremediation of potentially toxic metal(loid)s-contaminated soils. , 2022, , 345-370.		3

#	Article	IF	CITATIONS
182	Biochemical composite material using corncob powder as a carrier material for ureolytic bacteria in soil cadmium immobilization. Science of the Total Environment, 2022, 802, 149802.	3.9	25
183	Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of the Total Environment, 2022, 804, 149985.	3.9	75
184	Sustainable removal of arsenic from simulated wastewater using solid waste seed pods biosorbents of Cassia fistula L. Chemosphere, 2022, 287, 132308.	4.2	19
185	Surface corrosion by microbial flora enhances the application potential of phosphate rock for cadmium remediation. Chemical Engineering Journal, 2022, 429, 132560.	6.6	7
186	The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil. Chemosphere, 2022, 286, 131810.	4.2	42
187	Plant-assisted bioremediation: Soil recovery and energy from biomass. , 2022, , 25-48.		4
188	Nanomaterials for soil remediation: Pollutant immobilization and opportunities for hybrid technologies. , 2021, , 701-723.		6
189	Aromatic and Medicinal Plants for Phytoremediation: A Sustainable Approach. , 2021, , 485-543.		3
190	Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability. Agriculture (Switzerland), 2021, 11, 75.	1.4	28
191	Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes. Paddy and Water Environment, 2021, 19, 569-584.	1.0	24
192	Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality. Bioresource Technology, 2020, 311, 123553.	4.8	54
193	How does the microenvironment change during the stabilization of cadmium in exogenous remediation sediment?. Journal of Hazardous Materials, 2020, 398, 122836.	6.5	21
194	Impact of biochar amendment on the uptake, fate and bioavailability of pharmaceuticals in soil-radish systems. Journal of Hazardous Materials, 2020, 398, 122852.	6.5	26
195	Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil: A review. Nanotechnology Reviews, 2020, 9, 736-750.	2.6	35
196	Influence of Iron-Enriched Biochar on Cd Sorption, Its Ionic Concentration and Redox Regulation of Radish under Cadmium Toxicity. Agriculture (Switzerland), 2021, 11, 1.	1.4	49
197	An approach for evaluating the bioavailability and risk assessment of potentially toxic elements using edible and inedible plants—the Remance (Panama) mining area as a model. Environmental Geochemistry and Health, 2023, 45, 151-170.	1.8	3
198	Distinct Responses of Rare and Abundant Microbial Taxa to <i>In Situ</i> Chemical Stabilization of Cadmium-Contaminated Soil. MSystems, 2021, 6, e0104021.	1.7	43
199	A Case Study on Metal Contamination in Water and Sediment near a Coal Thermal Power Plant on the Eastern Coast of Bangladesh. Environments - MDPI, 2021, 8, 108.	1.5	29

#	Article	IF	CITATIONS
200	Interactions between biochar and clay minerals in changing biochar carbon stability. Science of the Total Environment, 2022, 809, 151124.	3.9	33
201	Effect of Commercial Amendments on Immobilization of Arsenic, Copper, and Zinc in Contaminated Soil: Comprehensive Assessing to Plant Uptake Combined with a Microbial Community Approach. Minerals (Basel, Switzerland), 2021, 11, 1143.	0.8	4
202	Superâ€stable mineralization effect of layered double hydroxides for heavy metals: Application in soil remediation and perspective. Exploration, 2021, 1, 20210052.	5.4	10
203	Bacterial diversity rather than available Cd is the main driver of exoenzyme activity and stoichiometry after soil amendments in mildly contaminated soil. Journal of Soils and Sediments, 2022, 22, 443-456.	1.5	3
204	Remediation of metal-contaminated mine tailings by the application of organic and mineral amendments. Journal of Soils and Sediments, 2022, 22, 482-495.	1.5	10
205	Uptake of potentially toxic elements by edible plants in experimental mining Technosols: preliminary assessment. Environmental Geochemistry and Health, 2022, 44, 1649-1665.	1.8	4
206	Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar, 2021, 3, 485-498.	6.2	26
207	Passive treatment of acid mine drainage from the Sidi-Kamber mine wastes (Mediterranean coastline,) Tj ETQq1 1 Environment, 2022, 807, 151002.	0.784314 3.9	rgBT /Over 7
208	Application of different alkaline materials as polluted soil amendments: A comparative assessment of their impact on trace element mobility and microbial functions. Ecotoxicology and Environmental Safety, 2021, 227, 112927.	2.9	14
209	Field observations to establish the impact of fluvial flooding on potentially toxic element (PTE) mobility in floodplain soils. Science of the Total Environment, 2022, 811, 151378.	3.9	1
210	A study of different strategical views into heavy metal(oid) removal in the environment. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	23
211	Bioavailability and Solubility of Heavy Metals and Trace Elements during Composting of Cow Manure and Tree Litter. Applied and Environmental Soil Science, 2020, 2020, 1-20.	0.8	4
212	Chelate-assisted phytoextraction using Brassicaceae plants. Open Journal of Environmental Biology, 2020, , 022-026.	0.1	0
213	Using soil amendments to reduce microcystin-LR bioaccumulation in lettuce. Environmental Pollution, 2022, 292, 118354.	3.7	9
214	Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. Environment International, 2022, 158, 106924.	4.8	68
215	Abatement of Cd in rice grain and toxic risks to human health by the split application of silicon at transplanting and jointing period. Journal of Environmental Management, 2022, 302, 114039.	3.8	5
216	The history of phytoremediation. , 2022, , 1-18.		1
217	Antimony contamination and its risk management in complex environmental settings: A review. Environment International, 2022, 158, 106908.	4.8	125

#	Article	IF	CITATIONS
218	Biomass amendments and phytoremediation of environmental pollutants. , 2022, , 139-162.		1
219	Environmental challenges related to cyanidation in Central American gold mining; the Remance mine (Panama). Journal of Environmental Management, 2022, 302, 113979.	3.8	12
220	In‒situ immobilization remediation, soil aggregate distribution, and microbial community composition in weakly alkaline Cd‒contaminated soils: A field study. Environmental Pollution, 2022, 292, 118327.	3.7	18
221	Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations. Environmental Pollution, 2022, 292, 118323.	3.7	12
222	Immobilization of lead by amendments in a mine-waste impacted soil: Assessing Pb retention with desorption kinetic, sequential extraction and XANES spectroscopy. Science of the Total Environment, 2022, 807, 150711.	3.9	14
223	IMPACT OF PORTLAND CEMENT ON GROWTH OF BEAN CROPS. Journal of Plant Development, 2020, 27, 121-127.	0.2	0
224	Determination of Poultry Manure and Plant Residues Effects on Zn Bioavailable Fraction in Contaminated Soil via DGT Technique. Archives of Environmental Contamination and Toxicology, 2022, 82, 72-81.	2.1	0
225	Bioremediation of contaminated soils by bacterial biosurfactants. , 2022, , 67-85.		3
226	Immobilization of W(VI) and/or Cr(VI) in soil treated with montmorillonite modified by a gemini surfactant and tetrachloroferrate (FeCl4–). Journal of Hazardous Materials, 2022, 425, 127768.	6.5	7
227	Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review. Environmental Geochemistry and Health, 2022, 44, 3725-3742.	1.8	6
228	Evaluation of acid mine drainage sludge as soil substitute for the reclamation of mine solid wastes. Environmental Science and Pollution Research, 2022, 29, 21184-21197.	2.7	2
229	Technologies for the cobalt-contaminated soil remediation: A review. Science of the Total Environment, 2022, 813, 151908.	3.9	14
230	A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Research, 2022, 103, 487-501.	3.0	44
231	Influence of soil inorganic amendments on heavy metal accumulation by leafy vegetables. Environmental Science and Pollution Research, 2023, 30, 8617-8632.	2.7	6
232	Combined amendment improves soil health and Brown rice quality in paddy soils moderately and highly Co-contaminated with Cd and As. Environmental Pollution, 2022, 295, 118590.	3.7	19
233	Functionalized Magnetic Nanomaterials in Agricultural Applications. Nanomaterials, 2021, 11, 3106.	1.9	28
234	Conditioning with Lime and Fertilizer Improves Ionic Rare Earth Mine Tailings. Adsorption Science and Technology, 2021, 2021, 1-7.	1.5	3
235	Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution. Journal of Hazardous Materials, 2022, 425, 127876.	6.5	109

#	Article	IF	CITATIONS
236	Impact of Tailing Outflow on Soil Quality Around the Former Stolice Mine (Serbia). Innovations in Landscape Research, 2022, , 553-570.	0.2	0
237	Understanding and Monitoring Chemical and Biological Soil Degradation. Innovations in Landscape Research, 2022, , 75-124.	0.2	5
238	Agrosoils in the City of St. Petersburg: Anthropogenic Evolution and Current State. Innovations in Landscape Research, 2022, , 775-796.	0.2	1
239	Ferrihydrite reduces the bioavailability of copper and cadmium and phosphorus release risk in hydroxyapatite amended soil. Journal of Environmental Chemical Engineering, 2021, 9, 106756.	3.3	7
240	Effects of modified biochar on As-contaminated water and soil: A recent update. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 107-136.	0.3	2
241	Heavy Metal Accumulation in the Surrounding Areas Affected by Mining in China: Spatial Distribution Patterns, Risk Assessment, and Influencing Factors. SSRN Electronic Journal, 0, , .	0.4	0
243	Remediation of heavy metal contaminated soil: Role of biochar. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 39-63.	0.3	2
245	Biochar for modification of manure properties. Advances in Chemical Pollution, Environmental Management and Protection, 2021, , 137-174.	0.3	0
246	Nitrate-mediated biomigration and transformation of As/Fe in arsenic-bearing ferrihydrite. Applied Geochemistry, 2022, 138, 105204.	1.4	6
247	Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration. Environmental Pollution, 2022, 294, 118656.	3.7	12
248	Influence of commercial amendments on Cu and Zn mobility, phytoavailability, and microbial activities on two contaminated soils. Journal of Environmental Chemical Engineering, 2022, 10, 107098.	3.3	1
249	Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review. Chemosphere, 2022, 290, 133266.	4.2	15
250	Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd2+) and zinc (Zn2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations. Science of the Total Environment, 2022, 813, 152668.	3.9	44
251	Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. Journal of Hazardous Materials, 2022, 427, 128131.	6.5	31
252	Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate. Chemosphere, 2022, 292, 133355.	4.2	11
253	Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. Journal of Hazardous Materials, 2022, 428, 128205.	6.5	30
254	Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago) Tj ETQq0 0 0	rgBT/Over 4.2	lock 10 Tf 50

255	Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method. Science of the Total Environment, 2022, 815, 152922.	3.9)	31
-----	---	-----	---	----

#	Article	IF	CITATIONS
256	Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Chemosphere, 2022, 292, 133389.	4.2	37
257	Prospects of Using Soil Microbiome of Mine Tips for Remediation of Anthropogenically Disturbed Ecosystems. Food Processing: Techniques and Technology, 2022, 51, 883-904.	0.3	4
258	Calcium amendments affect heavy metal bioavailability in acidic and calcareous soils. International Journal of Environmental Science and Technology, 2022, 19, 10067-10076.	1.8	11
259	Potentially Toxic Elements' Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments - MDPI, 2022, 9, 11.	1.5	20
260	Smart fertilizers—toward implementation in practice. , 2022, , 81-102.		3
261	Exploring the potential effect of Achnatherum splendens L–derived biochar treated with phosphoric acid on bioavailability of cadmium and wheat growth in contaminated soil. Environmental Science and Pollution Research, 2022, 29, 37676-37684.	2.7	21
262	Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environmental Science and Pollution Research, 2022, 29, 42742-42767.	2.7	16
263	Appraising growth, daily intake, health risk index, and pollution load of Zn in wheat (Triticum) Tj ETQq1 1 0.7843 Research, 2022, 29, 34685-34700.	14 rgBT /C 2.7	overlock 10 6
264	Potential of green nanoparticles for sensing and remediation of heavy metals from mining applications. , 2022, , 445-476.		2
265	Effect of pH on the mechanical performances of cement/slag-stabilized marine sediments: Experimental and analytical constitutive modelling. Bulletin of Engineering Geology and the Environment, 2022, 81, 1.	1.6	1
266	Assessment of the structure, composition, and agrochemical properties of fly ash and ash-and-slug waste from coal-fired power plants for their possible use as soil ameliorants. Journal of Cleaner Production, 2022, 333, 130088.	4.6	17
267	Electrokinetic-Assisted Bioremediation and Phytoremediation for the Treatment of Polluted Soil. , 2022, , 379-397.		1
268	Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. International Journal of Phytoremediation, 2022, 24, 1310-1320.	1.7	9
269	Phytoremediation of soils contaminated by lead and cadmium in Ethiopia, using Endod (<i>Phytolacca) Tj ETQq1</i>	1 0.78431 1.7	14 ₂ rgBT /Ove
270	Utilization of beneficial fungal strain/bacterial strains in climate-resilient agriculture. , 2022, , 313-331.		0
271	Immobilization Remediation of a Heavy Metals Contaminated Soil: A Case Study of Dump Site at Bangalore, India. Journal of the Institution of Engineers (India): Series A, 2022, 103, 105-114.	0.6	1
272	Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil. Environmental Science and Pollution Research, 2022, 29, 40745-40754.	2.7	13
273	Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar, 2022, 4, 1.	6.2	21

#	Article	IF	CITATIONS
274	Effects of mining on the potentially toxic elements in the surrounding soils in China: A meta-analysis. Science of the Total Environment, 2022, 821, 153562.	3.9	13
275	Regrow Napier grass–Chinese milk vetch relay intercropping system: A cleaner production strategy in Cd-contaminated farmland. Journal of Cleaner Production, 2022, 339, 130724.	4.6	4
276	Graphite particles as third electrodes to enhance metal removal and energy saving in a stationary electrodialytic soil system. Electrochimica Acta, 2022, 407, 139896.	2.6	4
277	Heavy metal pollution and net greenhouse gas emissions in a rice-wheat rotation system as influenced by partial organic substitution. Journal of Environmental Management, 2022, 307, 114599.	3.8	10
278	Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk. Environmental Pollution, 2022, 299, 118911.	3.7	24
279	Simultaneous elimination of black-odor and stabilization of heavy metals in contaminated sediment using calcium peroxide/hydroxyapatite: Microbial responses and ecotoxicological effects. Journal of Hazardous Materials, 2022, 429, 128298.	6.5	16
280	Effects of Fe oxide-based nanoparticles on yield and nutrient content of corn in Cobalt-contaminated soils. Environmental Technology and Innovation, 2022, 26, 102314.	3.0	6
281	Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 2022, 209, 112807.	3.7	43
282	Antimony Immobilization in Primary-Explosives-Contaminated Soils by Fe–Al-Based Amendments. International Journal of Environmental Research and Public Health, 2022, 19, 1979.	1.2	2
283	Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1.	1 0.78431 1.8	L4 rgBT /Ονerl 5
283 284	Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1		\mathbf{U}
	Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1.	1.8	5
284	Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769. Modeling the Life Cycle Inventory of a Centralized Composting Facility in Greece. Applied Sciences	1.8	5
284 285	 Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769. Modeling the Life Cycle Inventory of a Centralized Composting Facility in Greece. Applied Sciences (Switzerland), 2022, 12, 2047. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture (Switzerland), 	1.8 1.9 1.3	5 49 4
284 285 286	 Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769. Modeling the Life Cycle Inventory of a Centralized Composting Facility in Greece. Applied Sciences (Switzerland), 2022, 12, 2047. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture (Switzerland), 2022, 12, 321. Evolutions and Managements of Soil Microbial Community Structure Drove by Continuous Cropping. 	1.8 1.9 1.3 1.4	5 49 4 15
284 285 286 287	 Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769. Modeling the Life Cycle Inventory of a Centralized Composting Facility in Greece. Applied Sciences (Switzerland), 2022, 12, 2047. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture (Switzerland), 2022, 12, 321. Evolutions and Managements of Soil Microbial Community Structure Drove by Continuous Cropping. Frontiers in Microbiology, 2022, 13, 839494. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A 	1.8 1.9 1.3 1.4 1.5	5 49 4 15 27
284 285 286 287 288	Origin and risk assessment, and evaluation of heavy metal pollution in the soil and air of Tehran (case) Tj ETQq1 Technology, 0, , 1. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769. Modeling the Life Cycle Inventory of a Centralized Composting Facility in Greece. Applied Sciences (Switzerland), 2022, 12, 2047. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture (Switzerland), 2022, 12, 321. Evolutions and Managements of Soil Microbial Community Structure Drove by Continuous Cropping. Frontiers in Microbiology, 2022, 13, 839494. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. Frontiers in Plant Science, 2022, 13, 773815. Iron Oxide and Silicon Nanoparticles Modulate Mineral Nutrient Homeostasis and Metabolism in	1.8 1.9 1.3 1.4 1.5 1.7	5 49 4 15 27 77

		CITATION REPORT	
#	Article	IF	Citations
293	Soil Contamination by Heavy Metals and Metalloids. Environments - MDPI, 2022, 9, 32.	1.5	8
294	Assessment of goethite modified biochar on the immobilization of cadmium and arsenic and upta Chinese cabbage in paddy soil. Archives of Agronomy and Soil Science, 2023, 69, 1039-1054.	ke by 1.3	5
295	Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. Water (Switzerland), 2022, 14, 942.	1.2	6
296	Boosting extraction of Pb in contaminated soil via interfacial solar evaporation of multifunctional sponge. Green Energy and Environment, 2023, 8, 1459-1468.	4.7	8
297	An assessment of various potentially toxic elements and associated health risks in agricultural soil along the middle Gangetic basin, India. Chemosphere, 2022, 300, 134433.	4.2	21
298	Biochar, compost, iron oxide, manure, and inorganic fertilizer affect bioavailability of arsenic and improve soil quality of an abandoned arsenic-contaminated gold mine spoil. Ecotoxicology and Environmental Safety, 2022, 234, 113358.	2.9	20
299	Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea ma on Soil Polluted with Petrol. Materials, 2022, 15, 2623.	ys L.) 1.3	8
300	Phosphate fertilizers facilitated the Cd contaminated soil remediation by sepiolite: Cd mobilization plant toxicity, and soil microbial community. Ecotoxicology and Environmental Safety, 2022, 234, 113388.	ı, 2.9	21
301	Enhancement of the electrokinetic removal of heavy metals, cations, anions, and other elements f soil by integrating PCPSS and a chelating agent. Journal of the Taiwan Institute of Chemical Engin 2022, 134, 104306.	rom eers, 2.7	3
302	Heavy metal accumulation in the surrounding areas affected by mining in China: Spatial distribution patterns, risk assessment, and influencing factors. Science of the Total Environment, 2022, 825, 154004.	on 3.9	45
303	Adsorption and immobilization of soil lead by two phosphate-based biochars and phosphorus relearisk assessment. Science of the Total Environment, 2022, 824, 153957.	ase 3.9	23
304	Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments a improved their potential as fertilizers. Science of the Total Environment, 2022, 826, 154043.	nd 3.9	49
305	Spatial changes of nutrients and metallic contaminants in topsoil with multi-geostatistical approaches in a large-size watershed. Science of the Total Environment, 2022, 824, 153888.	3.9	7
306	Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among divers soil components. Science of the Total Environment, 2022, 825, 153862.	se 3.9	96
307	Immobilization of soil Cd by sulfhydryl grafted palygorskite in wheat-rice rotation mode: A field-sc investigation. Science of the Total Environment, 2022, 826, 154156.	ale 3.9	19
308	Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China. Agriculture (Switzerland), 2021, 11, 1234.	1.4	3
309	Sequential extraction and risk assessment of pollutants from one major tributary of the Ganga. Water Science and Technology: Water Supply, 2022, 22, 2767-2781.	1.0	1
310	Rationally designed ultrathin Ni(OH)2/titanate nanosheet heterostructure for photocatalytic CO2 reduction. Green Chemical Engineering, 2022, 3, 240-249.	3.3	11

#	Article	IF	CITATIONS
311	Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review. Biochar, 2022, 4, 1.	6.2	54
312	A Multi-Medium Analysis of Human Health Risk of Toxic Elements in Rice-Crayfish System: A Case Study from Middle Reach of Yangtze River, China. Foods, 2022, 11, 1160.	1.9	7
313	Nature-Based Solutions for the Sustainable Management of Urban Soils and Quality of Life Improvements. Land, 2022, 11, 569.	1.2	0
314	Nanoplastic stimulates metalloid leaching from historically contaminated soil via indirect displacement. Water Research, 2022, 218, 118468.	5.3	15
315	Hazardous enrichment of toxic elements in soils and olives in the urban zone of Lavrio, Greece, a legacy, millennia-old silver/lead mining area and related health risk assessment. Journal of Hazardous Materials, 2022, 434, 128906.	6.5	20
316	Effects of fly ash and steel slag on cadmium and arsenic accumulation in rice grains and soil health: A field study over four crop seasons in Guangdong, China. Geoderma, 2022, 419, 115879.	2.3	15
317	Goethite-based carbon foam nanocomposites for concurrently immobilizing arsenic and metals in polluted soils. Chemosphere, 2022, 301, 134645.	4.2	4
318	Use of Alkali-Activated Slag as a Clinker-Free Agent for High Performance Stabilized Soil. SSRN Electronic Journal, 0, , .	0.4	0
319	Effects of aging on the persistence of cadmium adsorption on organic fertilizers. International Journal of Environmental Science and Technology, 0, , .	1.8	0
320	Softwood-derived Biochar as a Green Material for the Recovery of Environmental Media Contaminated with Potentially Toxic Elements. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	6
321	Pollution assessment and mapping of potentially toxic elements (PTE) distribution in urban wastewater fed natural wetland, Kolkata, India. Environmental Science and Pollution Research, 2022, ,	2.7	7
322	Dynamics of weight loss of dolomite dropouts at different stages of dissolution in Albic Retisol . Biological Communications, 2022, 67, .	0.4	0
323	Assessment of the phytoremediation effectiveness in the restoration of uranium mine tailings. Ecological Engineering, 2022, 180, 106669.	1.6	7
324	Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 2022, 183, 96-110.	2.8	29
325	Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. Environmental Pollution, 2022, 306, 119400.	3.7	8
326	Removal mechanisms of Cd from water and soil using Fe–Mn oxides modified biochar. Environmental Research, 2022, 212, 113406.	3.7	34
327	Combined remediation effects of biochar, zeolite and humus on Cd-contaminated weakly alkaline soils in wheat farmland. Chemosphere, 2022, 302, 134851.	4.2	9
328	Trends and Opportunities of Bivalve Shells' Waste Valorization in a Prospect of Circular Blue Bioeconomy. Resources, 2022, 11, 48.	1.6	21

#	ARTICLE	IF	CITATIONS
329	Pyrolysis of domestic sewage sludge: influence of operational conditions on the product yields using factorial design. Heliyon, 2022, 8, e09418.	1.4	7
330	Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes. Environments - MDPI, 2022, 9, 61.	1.5	4
331	The efficiency of potato peel biochar for the adsorption and immobilization of heavy metals in contaminated soil. International Journal of Phytoremediation, 2023, 25, 263-273.	1.7	3
332	Biochars' potential role in the remediation, revegetation, and restoration of contaminated soils. , 2022, , 381-399.		0
333	Biochar for sustainable immobilization of potentially toxic elements in contaminated farmland. , 2022, , 293-304.		1
334	Biochar for remediation of alkaline soils contaminated with toxic elements. , 2022, , 223-240.		0
335	Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. Toxics, 2022, 10, 259.	1.6	2
336	Assessing the Influence of Contaminated Rice Straw Decompose on the Speciation of Cadmium and Arsenic in a Naturally Contaminated Soil. SSRN Electronic Journal, 0, , .	0.4	0
337	Three Amendments Reduced the Bioavailability of Heavily Co-Contaminated Soil with as and Cd and Increased the Relative Feeding Value of Lolium Perenne L. SSRN Electronic Journal, 0, , .	0.4	0
338	Effect of Biochar on Metal Distribution and Microbiome Dynamic of a Phytostabilized Metalloid-Contaminated Soil Following Freeze–Thaw Cycles. Materials, 2022, 15, 3801.	1.3	5
339	One stone two birds: Bone char as a cost-effective material for stabilizing multiple heavy metals in soil and promoting crop growth. Science of the Total Environment, 2022, 840, 156163.	3.9	29
340	The application of biochar and oyster shell reduced cadmium uptake by crops and modified soil fertility and enzyme activities in contaminated soil. Soil, 2022, 8, 409-419.	2.2	7
341	Influence of addition of two typical activated carbons on fertility properties and mechanical strength of vegetation concrete under freeze-thaw conditions. Science of the Total Environment, 2022, 838, 156446.	3.9	6
342	Legacy Lead in Urban Garden Soils: Communicating Risk and Limiting Exposure. Frontiers in Ecology and Evolution, 0, 10, .	1.1	9
343	Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Frontiers in Veterinary Science, 0, 9, .	0.9	4
344	Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of the Total Environment, 2022, 839, 156373.	3.9	43
345	Chemical Stabilization Used to Reduce Geogenic Selenium, Molybdenum, Sulfates and Fluorides Mobility in Rocks and Soils from the Parisian Basin. Environments - MDPI, 2022, 9, 78.	1.5	0
346	The preparation of paddy soil amendment using granite and marble waste: Performance and mechanisms. Journal of Environmental Sciences, 2023, 127, 564-576.	3.2	3

#	Article	IF	CITATIONS
347	Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. Sustainability, 2022, 14, 7266.	1.6	8
348	Lead (Pb) stabilization in a polluted calcareous soil using cost-effective biochar and zeolite amendments after spinach cultivation. Pedosphere, 2022, , .	2.1	3
349	Insight into modified biochars and their immobilizing effects on heavy metal(loid)s in contaminated soils: Mechanisms and influencing factors. Pedosphere, 2023, 33, 23-33.	2.1	6
350	Remediation of cadmium-polluted weakly alkaline dryland soils using iron and manganese oxides for immobilized wheat uptake. Journal of Cleaner Production, 2022, 365, 132794.	4.6	21
351	Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. Journal of Hazardous Materials, 2022, 437, 129330.	6.5	62
352	Assessing the Influence of ContaminatedÂRice StrawÂDecompose on the Speciation of Cadmium and Arsenic in a Naturally Contaminated Soil. SSRN Electronic Journal, 0, , .	0.4	ο
353	Chlorpyrifos Degradation in Semi-Arid Soil by <i>Pseudomonas fluorescens</i> Strain CD5 Isolated from Manured Soil. Soil and Sediment Contamination, 2023, 32, 460-477.	1.1	2
354	Spatio-temporal variation and assessment of trace metal contamination in sediments along the Lom River in the gold mining site of Gankombol (Adamawa Cameroon). Environmental Earth Sciences, 2022, 81, .	1.3	4
355	Optimization strategies for Cd and Pb immobilization in soil using meta-analysis combined with numerical modeling. Pedosphere, 2023, 33, 61-73.	2.1	5
356	Simultaneously immobilization of Cd and Pb in paddy soil by magnetic modified biochar based on textile dyeing sludge: metal speciation and soil microbial community evolution. Journal of Soils and Sediments, 2022, 22, 2765-2776.	1.5	8
357	Long-Term Sustainability of Marble Waste Sludge in Reducing Soil Acidity and Heavy Metal Release in a Contaminated Mine Technosol. Applied Sciences (Switzerland), 2022, 12, 6998.	1.3	3
358	Study of the Effect of Mercury Salt on the Presence of Annelida (Lumbricus terrestris) in Soil and the Histological Changes on the Skin Tissue. Applied and Environmental Soil Science, 2022, 2022, 1-7.	0.8	1
359	In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars. Environmental Pollution, 2022, 309, 119733.	3.7	8
360	Zero valent iron or Fe3O4-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth. Environmental Pollution, 2022, 308, 119702.	3.7	16
361	Investigating the effect of Eh and pH on binding forms of Co, Cu, and Pb in wetland sediments from Zambia. Journal of Environmental Management, 2022, 319, 115543.	3.8	9
362	Biochar-pesticides interactions: An overview and applications of wood feedstock for atrazine contamination. Journal of Environmental Chemical Engineering, 2022, 10, 108192.	3.3	15
363	Phytoavailability and uptake of arsenic in ryegrass affected by various amendments in soil of an abandoned gold mining site. Environmental Research, 2022, 214, 113729.	3.7	11
364	Arsenic(V) immobilization in fly ash and mine tailing-based geopolymers: Performance and mechanism insight. Chemosphere, 2022, 306, 135636.	4.2	12

#	Article	IF	CITATIONS
365	Optimal remediation strategies for simultaneously immobilizing arsenic and cadmium using combination of vermicompost and zero-valent iron in two soil types. Environmental Technology and Innovation, 2022, 28, 102807.	3.0	4
366	Effects of hydrochar derived from hydrothermal treatment of sludge and lignocellulose mixtures on soil properties, nitrogen transformation, and greenhouse gases emissions. Chemosphere, 2022, 307, 135792.	4.2	9
367	Three amendments reduced the bioavailability of heavily contaminated soil with arsenic and cadmium and increased the relative feeding value of Lolium perenne L Science of the Total Environment, 2022, 847, 157572.	3.9	5
368	Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Frontiers in Environmental Science, 0, 10, .	1.5	13
369	Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon, 2022, 8, e10221.	1.4	13
370	Evaluation of dendroremediation potential of ten Quercus spp. for heavy metals contaminated soil: A three-year field trial. Science of the Total Environment, 2022, 851, 158232.	3.9	8
371	Ecological and contamination assessment of soil in the region of coal-fired thermal power plant. International Journal of Environmental Health Research, 2023, 33, 1558-1567.	1.3	5
372	Zeolites Reduce the Transfer of Potentially Toxic Elements from Soil to Leafy Vegetables. Materials, 2022, 15, 5657.	1.3	6
373	Novel Fuller Earth, Rock Phosphate, and Biochar for Phytomanagement of Toxic Metals in Polluted Soils. Agriculture (Switzerland), 2022, 12, 1216.	1.4	2
374	Eco-biochemical responses, phytoremediation potential and molecular genetic analysis of Alhagi maurorum grown in metal-contaminated soils. BMC Plant Biology, 2022, 22, .	1.6	6
375	Rice hull biochar enhances the mobilization and methylation of mercury in a soil under changing redox conditions: Implication for Hg risks management in paddy fields. Environment International, 2022, 168, 107484.	4.8	14
376	Hydrous zirconium oxide modified biochar for in situ remediation of arsenic contaminated agricultural soil. Journal of Environmental Chemical Engineering, 2022, 10, 108360.	3.3	7
377	Behavior and fate of microcystin-LR in soils amended with biochar and peat. Environmental Pollution, 2022, 310, 119913.	3.7	2
378	Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere, 2022, 307, 135889.	4.2	29
379	Effective immobilization of geogenic As and Pb in excavated marine sedimentary material by magnesia under wet–dry cycle, freeze–thaw cycle, and anaerobic exposure scenarios. Science of the Total Environment, 2022, 848, 157734.	3.9	11
380	Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere, 2022, 307, 136138.	4.2	38
381	Pristine and biochar-supported nano zero-valent iron to immobilize As, Zn and Pb in soil contaminated by smelting activities. Journal of Environmental Management, 2022, 321, 116017.	3.8	10
382	Potential of mercapto montmorillonites for immobilization remediation of Hg-contaminated paddy soil: Perspective from soil environmental quality. Applied Clay Science, 2022, 229, 106661.	2.6	1

#	Article	IF	CITATIONS
383	Co-incorporation of Chinese milk vetch (Astragalus sinicus L.), rice straw, and biochar strengthens the mitigation of Cd uptake by rice (Oryza sativa L.). Science of the Total Environment, 2022, 850, 158060.	3.9	14
384	The Combined Effect of Arbuscular Mycorrhizal Fungi and Compost Improves Growth and Soil Parameters and Decreases Cadmium Absorption in Cacao (Theobroma cacao L.) Plants. Journal of Soil Science and Plant Nutrition, 2022, 22, 5174-5182.	1.7	1
385	Comparison of Different Machine Learning Methods for Predicting Cation Exchange Capacity Using Environmental and Remote Sensing Data. Sensors, 2022, 22, 6890.	2.1	7
386	Bringing soil chemistry to environmental health science to tackle soil contaminants. Frontiers in Environmental Science, 0, 10, .	1.5	5
387	Sedimentary records and stable lead isotopes reveal increasing anthropogenic impacts on heavy metal accumulation in a plateau lake of China over the last 100 years. Journal of Hazardous Materials, 2022, 440, 129860.	6.5	13
388	Combined remediation effects of biochar and organic fertilizer on immobilization and dissipation of neonicotinoids in soils. Environment International, 2022, 169, 107500.	4.8	7
389	Subcellular localization and compartment-specific toxicokinetics of cadmium, arsenic, and zinc in brandling worm Eisenia fetida. Chemosphere, 2022, 308, 136482.	4.2	2
390	Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of the Total Environment, 2022, 853, 158562.	3.9	76
391	Value-added materials recovered from waste bone biomass: technologies and applications. RSC Advances, 2022, 12, 22302-22330.	1.7	10
392	Background level, occurrence, speciation, bioavailability, uptake detoxification mechanisms and management of Zn-polluted soils. , 2022, , 165-220.		0
393	Impact of soil-water contaminants on tropical agriculture, animal and societal environment. Advances in Agronomy, 2022, , 209-274.	2.4	4
394	Microbial responses to immobilization of potentially toxic elements in soils. , 2022, , 315-330.		2
395	Soil pollution remediation. , 2024, , 631-645.		0
396	Cow manure simultaneously reshaped antibiotic and metal resistome in the earthworm gut tract by metagenomic analysis. Science of the Total Environment, 2023, 856, 159010.	3.9	4
397	ZAT10 plays dual roles in cadmium uptake and detoxification in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	15
399	Cadmium fractionation in soils affected by organic matter application: Transfer of cadmium to cacao (Theobroma cacao L.) tissues. Frontiers in Environmental Science, 0, 10, .	1.5	2
400	Effect of basic oxygen furnace slag incorporation into calcium-based materials on solidification/stabilization of a zinc-contaminated kaolin clay. Environmental Earth Sciences, 2022, 81,	1.3	3
401	Microbial-assisted soil chromium immobilization through zinc and iron-enriched rice husk biochar. Frontiers in Microbiology, 0, 13, .	1.5	4

#	Article	IF	CITATIONS
402	Biochar Shifts the Negative Effect of N Addition on Lotus corniculatus L. Growth in TEs Contaminated Soil, Regardless of Exogenous Arbuscular Mycorrhizal Fungi Inoculation. Journal of Soil Science and Plant Nutrition, 2022, 22, 4883-4896.	1.7	1
405	Remediation via biochar and potential health risk of heavy metal contaminated soils. Environmental Earth Sciences, 2022, 81, .	1.3	2
406	Synergistic effects of microorganisms and passivation materials on the growth and Cd uptake of coriander (Coriandrum sativum L.) in Cd-contaminated soils. Rhizosphere, 2022, 24, 100604.	1.4	4
407	Bioremediation Technologies for the Treatment of Water Contaminated by Organic and Inorganic Contaminants. , 2022, , 61-129.		2
409	Soil Properties of Different Planting Combinations of Zanthoxylum planispinum var. dintanensis Plantations and Their Effect on Stoichiometry. Agronomy, 2022, 12, 2562.	1.3	3
410	Toxic effects of antimony in plants: Reasons and remediation possibilities—A review and future prospects. Frontiers in Plant Science, 0, 13, .	1.7	10
411	Application of Rhizobacteria, Paraburkholderia fungorum and Delftia sp. Confer Cadmium Tolerance in Rapeseed (Brassica campestris) through Modulating Antioxidant Defense and Glyoxalase Systems. Plants, 2022, 11, 2738.	1.6	3
412	Fractionation and risk assessment of potentially toxic elements in surface soil from northeast China mountains. Journal of Soils and Sediments, 0, , .	1.5	0
413	Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments - MDPI, 2022, 9, 133.	1.5	10
414	Biochar Applications Reduces the Mobility of Cadmium Under Differing Soil Moisture Regimes. Gesunde Pflanzen, 2023, 75, 1047-1060.	1.7	2
415	Shrimp-Waste-Derived Biochar Induces Metal Toxicity Tolerance of Wastewater-Irrigated Quinoa (Chenopodium quinoa). Agriculture (Switzerland), 2022, 12, 1748.	1.4	3
416	Lactic acid bacteria promoted soil quality and enhanced phytoextraction of Cd and Zn by mustard: A trial for bioengineering of toxic metal contaminated mining soils. Environmental Research, 2023, 216, 114646.	3.7	13
417	Stimulated leaching of metalloids along 3D-printed fractured rock vadose zone. Water Research, 2022, 226, 119224.	5.3	11
418	Regional metal pollution risk assessment based on a big data framework: A case study of the eastern Tianshan mining area, China. Ecological Indicators, 2022, 145, 109585.	2.6	1
419	Role and importance of microorganisms in plant nutrition and remediation of potentially toxic elements contaminated soils. , 2023, , 179-208.		3
420	Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. Journal of Hazardous Materials, 2023, 443, 130203.	6.5	45
421	Morphophysiological responses of sweet basil (Ocimum basilicum L.) to the nickel stress and inoculation with Pseudomonas strains. Acta Physiologiae Plantarum, 2023, 45, .	1.0	1
422	Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms. Journal of Hazardous Materials, 2023, 444, 130391.	6.5	13

#	Article	IF	CITATIONS
423	A comparative assessment of humic acid and biochar altering cadmium and arsenic fractions in a paddy soil. Journal of Soils and Sediments, 2023, 23, 845-855.	1.5	4
424	Effect of Carbon Nanoparticles in Biochar and Sulphur as aÂFoliar Spray on Onion Plants: AÂNew Orientation. Gesunde Pflanzen, 0, , .	1.7	4
425	Heat–induced changes in soil properties: fires as cause for remobilization of chemical elements. Journal of Hydrology and Hydromechanics, 2022, 70, 421-431.	0.7	3
426	Prediction of arsenic accumulation in a calcareous soil-wheat/maize rotation system with continuous amendment of sewage sludge. Plant, Soil and Environment, 0, , .	1.0	0
427	Soil acidification and the liming potential of biochar. Environmental Pollution, 2023, 317, 120632.	3.7	45
428	Coriander (Coriandrum sativum L.) in Combination with Organic Amendments and Arbuscular Mycorrhizal Inoculation: An Efficient Option for the Phytomanagement of Trace Elements-Polluted Soils. Microorganisms, 2022, 10, 2287.	1.6	2
429	In situ preparation of a multifunctional adsorbent by optimizing the Fe2+/Fe3+/Mn2+/HA ratio for simultaneous and efficient removal of Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous environment: Behaviors and mechanisms. Journal of Hazardous Materials, 2023, 444, 130389.	6.5	9
430	Adsorption and immobilization performance of pine-cone pristine and engineered biochars for antimony in aqueous solution and military shooting range soil: An integrated novel approach. Environmental Pollution, 2023, 317, 120723.	3.7	11
431	Enhanced silicate remediation in cadmium-contaminated alkaline soil: Amorphous structure improves adsorption performance. Journal of Environmental Management, 2023, 326, 116760.	3.8	7
432	The accumulation of selected elements in wood from archaelogical site in Biskupin (Poland). Journal of Cultural Heritage, 2023, 59, 151-162.	1.5	1
433	Chromium removal from contaminated soil using a novel FeOx/granular activated carbon-based three-dimensional electrokinetic system. Chemical Engineering Journal, 2023, 455, 140613.	6.6	10
434	In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment. Chemosphere, 2023, 313, 137412.	4.2	18
435	Phytomanagement of iron mine soil by Ricinus communis L. and garden soil. Chemosphere, 2023, 313, 137534.	4.2	1
436	Microbial community characteristics of cadmium speciation transformation in soil after iron-based materials application. Applied Soil Ecology, 2023, 183, 104745.	2.1	3
437	Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece. Minerals (Basel, Switzerland), 2022, 12, 1475.	0.8	3
438	Heavy metals in agricultural soil in China: A systematic review and meta-analysis. , 2022, 1, 219-228.		27
439	Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. Science of the Total Environment, 2023, 860, 160439.	3.9	39
440	Cistus monspeliensis extract as a prospective biostimulant in enhancing tolerance to cadmium in sorghum plant. Biomass Conversion and Biorefinery, 0, , .	2.9	4

#	Article	IF	Citations
441	Does Current Knowledge Give a Variety of Possibilities for the Stabilization/Solidification of Soil Contaminated with Heavy Metals?—A Review. Materials, 2022, 15, 8491.	1.3	1
442	The Distribution of Metallic Elements among Humus Substances in Soil from Volcanic Rocks. Sustainability, 2022, 14, 16427.	1.6	0
443	Identification of the Xyloglucan Endotransglycosylase/Hydrolase (XTH) Gene Family Members Expressed in Boehmeria nivea in Response to Cadmium Stress. International Journal of Molecular Sciences, 2022, 23, 16104.	1.8	4
444	Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications. Earth Systems and Environment, 2023, 7, 321-345.	3.0	23
445	Nanoporous zeolite and its effect on the immobilization of trace elements in soils from scrap landfills under aided phytostabilization. Land Degradation and Development, 0, , .	1.8	0
446	Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. Environmental Health Perspectives, 2022, 130, .	2.8	8
447	Copper selects for siderophore-mediated virulence in Pseudomonas aeruginosa. BMC Microbiology, 2022, 22, .	1.3	4
448	Modified oyster shell powder with iron (II) sulfate heptahydrate to improve arsenic uptake in solution and in contaminated soils. Environmental Science and Pollution Research, 0, , .	2.7	0
449	Nanoparticulate Iron Oxide Minerals for Arsenic Removal from Contaminated Water. Environmental Science and Engineering, 2023, , 459-479.	0.1	0
450	Arsenic in Gold Mining Wastes: An Environmental and Human Health Threat in Ghana. Environmental Science and Engineering, 2023, , 49-83.	0.1	0
451	Minimizing salinity-induced Pb toxicity to microbial N cycling processes in saline Pb-polluted soils amended with biochar. Pedobiologia, 2023, 96, 150861.	0.5	1
452	Controls on Spatial Variability in Mean Concentrations and Export Patterns of River Chemistry Across the Australian Continent. Water Resources Research, 2022, 58, .	1.7	5
453	Assessing the influence of contaminated rice straw decomposition on the speciation of cadmium and arsenic in a naturally contaminated soil. Journal of Soils and Sediments, 2023, 23, 1415-1427.	1.5	3
454	Spatial distribution and source analysis of airborne trace metal deposition using moss biomonitoring in Huai'an, China. Environmental Science and Pollution Research, 2023, 30, 34022-34036.	2.7	1
455	Application of phosphorus amendments reduces metal uptake and increases yield of Oryza saliva L. (rice) in Cd/Cu-contaminated paddy field. Chemosphere, 2023, 318, 137875.	4.2	2
456	Impact of H ₂ O on the Microscopic Oxidation Mechanism of Lollingite: Experimental and Theoretical Analyses. Langmuir, 0, , .	1.6	0
457	Blocking the arsenic transportation from micro-polluted lake water to water spinach by in situ addition of titanyl sulfate. Journal of Cleaner Production, 2023, 385, 135686.	4.6	2
458	Quantitative analysis of fertilizer using laser-induced breakdown spectroscopy combined with random forest algorithm. Frontiers in Chemistry, 0, 11, .	1.8	1

#	Article	IF	Citations
459	Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon, 2023, 9, e12949.	1.4	4
460	Zeolite amendment reduces lead accumulation and improves growth and yield in tomato plants irrigated with sewage water. Environmental Science and Pollution Research, 2023, 30, 41970-41982.	2.7	3
461	Reduction of Cd Uptake in Rice (Oryza sativa) Grain Using Different Field Management Practices in Alkaline Soils. Foods, 2023, 12, 314.	1.9	2
462	Nano-Microbial Remediation of Polluted Soil: A Brief Insight. Sustainability, 2023, 15, 876.	1.6	9
463	Co-application of combined amendment (limestone and sepiolite) and Si fertilizer reduces rice Cd uptake and transport through Cd immobilization and Si–Cd antagonism. Chemosphere, 2023, 316, 137859.	4.2	8
464	Reduced pollution level and ecological risk of mercury-polluted sediment in a alkali-chlorine factory's brine water storage pond after corrective actions: A case study in Southern Taiwan. Environmental Technology and Innovation, 2023, 29, 103003.	3.0	1
465	Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation. Chemical Engineering Journal, 2023, 457, 141194.	6.6	16
466	Stabilization of arsenic, antimony, and lead in contaminated soil with montmorillonite modified by ferrihydrite: Efficiency and mechanism. Chemical Engineering Journal, 2023, 457, 141182.	6.6	12
467	Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. Environmental Pollution, 2023, 319, 120937.	3.7	19
468	Improving the humification by additives during composting: A review. Waste Management, 2023, 158, 93-106.	3.7	33
469	Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. Journal of Environmental Management, 2023, 330, 117163.	3.8	8
470	Beryllium contamination and its risk management in terrestrial and aquatic environmental settings. Environmental Pollution, 2023, 320, 121077.	3.7	7
471	Super-stable mineralization of Cu, Cd, Zn and Pb by CaAl-layered double hydroxide: Performance, mechanism, and large-scale application in agriculture soil remediation. Journal of Hazardous Materials, 2023, 447, 130723.	6.5	11
472	Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. Science of the Total Environment, 2023, 867, 161468.	3.9	27
473	Synchronous stabilization of As, Cd, and Pb in soil by sustained-release of iron-phosphate. Science of the Total Environment, 2023, 867, 161369.	3.9	9
474	Positive contribution of predatory bacterial community to multiple nutrient cycling and microbial network complexity in arsenic-contaminated soils. Applied Soil Ecology, 2023, 185, 104792.	2.1	4
475	Efficient Management of Environmental Resources through Sustainable Crop Production Intensification. , 0, , .		0
476	Dendroremediation Potential of Six Quercus Species to Polluted Soil in Historic Copper Mining Sites. Forests, 2023, 14, 62.	0.9	0

#	Article	IF	CITATIONS
477	Combined application of sewage sludge, bagasse, and molybdenum tailings ameliorates rare earth mining wasteland soil. Journal of Soils and Sediments, 2023, 23, 1775-1788.	1.5	5
478	Nanoscale zero-valent iron mitigates arsenic mobilization and accumulation in Sinapis alba grown on a metal(loid)-polluted soil treated with a dunite mining waste-compost amendment. Plant and Soil, 2024, 497, 241-255.	1.8	4
479	Bioconversion of hazardous organic wastes using invertebrates. , 2023, , 297-357.		0
480	Effects of exogenous phosphates on speciation and bioavailability of arsenic and cadmium in farmland soils. Journal of Soils and Sediments, 0, , .	1.5	0
481	A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. Environmental Research, 2023, 225, 115592.	3.7	34
482	How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. Journal of Hazardous Materials, 2023, 448, 130939.	6.5	9
483	Effects of organic and inorganic amendments on cadmium fraction in the submersion process of contaminated paddy soil. Environmental Technology and Innovation, 2023, 30, 103105.	3.0	0
484	Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 2023, 10, 100293.	1.2	3
485	Significant difference in the efficacies of silicon application regimes on cadmium species and environmental risks in rice rhizosphere. Environmental Pollution, 2023, 327, 121521.	3.7	2
486	New insight into the mechanisms of preferential encapsulation of metal(loid)s by wheat phytoliths under silicon nanoparticle amendment. Science of the Total Environment, 2023, 875, 162680.	3.9	8
487	Cooperative effect of slow-release ferrous and phosphate for simultaneous stabilization of As, Cd and Pb in soil. Journal of Hazardous Materials, 2023, 452, 131232.	6.5	4
488	The leaching behaviors of lead, zinc, and sulfate in pyrite ash contaminated soil: mineralogical assessments and environmental implications. Journal of Environmental Chemical Engineering, 2023, 11, 109687.	3.3	3
489	Aquaculture sediments amended with biochar improved soil health and plant growth in a degraded soil. Marine Pollution Bulletin, 2023, 191, 114899.	2.3	7
490	Stabilization of Hg2+ and Pb2+ in soil using humic acid residue modified by NH4H2PO4. Journal of Molecular Structure, 2023, 1282, 135250.	1.8	2
491	Anthropogenic hyperactivity for natural resources increases heavy metals concentrations in the environment: Toxicity of healthy food and cancer risks estimated. , 2023, 4, 100057.		5
492	Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. Journal of Environmental Management, 2023, 336, 117674.	3.8	6
493	Potentially toxic element accumulation of bryophyte taxa in contaminated soils at Tak Province, Thailand. Ecological Indicators, 2023, 147, 109971.	2.6	5
494	Responses and detoxification mechanisms of earthworm Amynthas hupeiensis to metal contaminated soils of North China. Environmental Pollution, 2023, 327, 121584.	3.7	5

#	Article	IF	CITATIONS
495	Nanomaterials in biochar: Review of their effectiveness in remediating heavy metal-contaminated soils. Science of the Total Environment, 2023, 880, 163330.	3.9	6
496	Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. Science of the Total Environment, 2023, 881, 163311.	3.9	7
497	Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil. Environmental Research, 2023, 222, 115383.	3.7	3
498	Biochar from Agro-byproducts for Use as a Soil Amendment and Solid Biofuel. Journal of Biosystems Engineering, 2023, 48, 93-103.	1.2	3
499	Composite Biochar with Municipal Sewage Sludge Compost—A New Approach to Phytostabilization of PTE Industrially Contaminated Soils. Energies, 2023, 16, 1778.	1.6	0
500	Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Frontiers in Environmental Science, 0, 11, .	1.5	20
501	Composite phosphorylated-modified rice straw prepared for highly effective immobilisation of cadmium in agriculture contaminated soil. Environmental Chemistry, 2023, 19, 495-505.	0.7	0
502	Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety. Agriculture (Switzerland), 2023, 13, 471.	1.4	8
503	Molecular Sieve, Halloysite, Sepiolite and Expanded Clay as a Tool in Reducing the Content of Trace Elements in Helianthus annuus L. on Copper-Contaminated Soil. Materials, 2023, 16, 1827.	1.3	1
504	Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite. Molecules, 2023, 28, 2225.	1.7	1
505	Pb contaminated soil from a lead-acid battery plant immobilized by municipal sludge and raw clay. Environmental Technology (United Kingdom), 0, , 1-13.	1.2	1
506	Persistence of Micro- and Nanoplastics in Soil. , 2023, , 97-124.		0
507	Opportunities and Challenges Associated with Bioavailability-Based Remediation Strategies for Lead-Contaminated Soil with Arsenic as a Co-Contaminant—A Critical Review. Current Pollution Reports, 2023, 9, 213-225.	3.1	5
508	Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review. Environmental Geochemistry and Health, 2023, 45, 4127-4163.	1.8	11
509	Effects of Shellfish and Organic Fertilizer Amendments on Soil Nutrients and Tea Yield and Quality. Toxics, 2023, 11, 262.	1.6	3
510	Remediation of Lead Toxicity Using Phosphorus in Lead ontaminated Agricultural Soils. Clean - Soil, Air, Water, 2023, 51, .	0.7	0
511	The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture (Switzerland), 2023, 13, 735.	1.4	3
512	Biogeochemical behavior and pollution control of arsenic in mining areas: A review. Frontiers in Microbiology, 0, 14, .	1.5	11

#	Article	IF	CITATIONS
513	Sustainable remediation and redevelopment of brownfield sites. Nature Reviews Earth & Environment, 2023, 4, 271-286.	12.2	46
514	Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by Coreopsis grandiflora by Remodeling the Rhizospheric Environment. Plants, 2023, 12, 1484.	1.6	3
515	Physiological responses of wild grass Holcus lanatus L. to potentially toxic elements in soils: a review. Environmental Science and Pollution Research, 2023, 30, 54470-54482.	2.7	0
516	Remediation of Cd and Cu Contaminated Agricultural Soils near Oilfields by Biochar Combined with Sodium Humate-Wood Vinegar. Agronomy, 2023, 13, 1009.	1.3	2
517	Review on Rice Husk Biochar as an Adsorbent for Soil and Water Remediation. Plants, 2023, 12, 1524.	1.6	4
518	Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere, 2023, 328, 138574.	4.2	26
519	Polycyclic Aromatic Hydrocarbon (PAH)–Contaminated Soil Decontamination Through Vermiremediation. Water, Air, and Soil Pollution, 2023, 234, .	1.1	4
520	Removal of Heavy Metals Using Bio-remedial Techniques. , 2023, , 117-130.		1
521	Assessing the Feasibility of Sustainable Materials to Boost the Sorption of Pharmaceutical Active Compounds When Included in Reactive Barriers in Soil Aquifer Treatment for Water Reuse. Water (Switzerland), 2023, 15, 1393.	1.2	0
522	Remediation of Soil Contaminated with Heavy Metals by Immobilization with Organic and Inorganic Amendments. , 2023, , 181-210.		1
523	Effects of biochar-based materials on nickel adsorption and bioavailability in soil. Scientific Reports, 2023, 13, .	1.6	1
524	Efficiency comparison of mixture formulations in the stabilisation/solidification of the loess silt contaminated with zinc in terms of mechanical properties. Budownictwo I Architektura, 2023, 22, 025-035.	0.1	0
525	Role of Biochar in the Adsorption of Heavy Metals. Sustainable Agriculture Reviews, 2023, , 293-307.	0.6	0
526	<i>In situ</i> determination of crop productivity in metal-contaminated, remediated, and reclaimed soils: Significance of ecotoxicological data on assessing soil quality. Environmental Engineering Research, 2023, 28, 220785-0.	1.5	2
527	Application of ferromanganese functionalized biochar simultaneously reduces Cd and Pb uptake of wheat in contaminated alkaline soils. Ecotoxicology and Environmental Safety, 2023, 257, 114930.	2.9	7
541	Screening of Bacterial Isolates from Coal Mining Region in Chhattisgarh. Environmental Science and Engineering, 2023, , 99-112.	0.1	0
543	Ecological Risks of Post-artisanal Mining Sites and Their Sustainable Cleaning Techniques. Springer Proceedings in Earth and Environmental Sciences, 2023, , 146-153.	0.2	0
552	Effects of Biotic and Abiotic Aging Techniques on Physiochemical and Molecular Characteristics of Biochar and Their Impacts on Environment and Agriculture: A Review. Journal of Soil Science and Plant Nutrition, 2023, 23, 1535-1564.	1.7	2

#	Article	IF	CITATIONS
577	Synthesis and Characterization of Clay-Biochar Composites. Advances in Material Research and Technology, 2023, , 91-112.	0.3	0
579	Methods of Rating Heavy Metal Pollution in Soils Using Indices. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 122-140.	0.3	0
580	Soil Pollution by Nickel in Sub-Saharan Africa. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 252-267.	0.3	0
591	Modified Biochar for Arsenic Immobilization in Soil: A Critical Review. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	1
600	Heavy Metal Contamination in Groundwater: Environmental Concerns and Mitigation Measures. , 2023, , 139-165.		0
604	Engineered Magnetic Nanoparticles as Environmental Remediation Agents. , 2023, , 163-192.		0
610	Sustainable Approaches for the Remediation of Agrochemicals in the Environment. Sustainable Development and Biodiversity, 2023, , 511-543.	1.4	0
654	Underlying mechanisms involved in biochar-induced metal stabilization. , 2024, , 9-43.		0
662	Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. BioMetals, 0, , .	1.8	0
670	In Situ Immobilization of Potentially Toxic Elements in Arable Soil by Adding Soil Amendments and the Best Ways to Maximize Their Use Efficiency. Journal of Soil Science and Plant Nutrition, 2024, 24, 115-134.	1.7	0