Simulating storm surge and compound flooding events Importance of baroclinic effects

Ocean Modelling 145, 101526

DOI: 10.1016/j.ocemod.2019.101526

Citation Report

#	Article	IF	CITATIONS
1	The contribution of short-wave breaking to storm surges: The case Klaus in the Southern Bay of Biscay. Ocean Modelling, 2020, 156, 101710.	2.4	18
2	Compound flooding in Houston-Galveston Bay during Hurricane Harvey. Science of the Total Environment, 2020, 747, 141272.	8.0	53
3	Enhancing an Analysis Method of Compound Flooding in Coastal Areas by Linking Flow Simulation Models of Coasts and Watershed. Sustainability, 2020, 12, 6572.	3.2	7
5	Social Vulnerability Assessment for Flood Risk Analysis. Water (Switzerland), 2020, 12, 558.	2.7	48
6	Simulating compound flooding events in a hurricane. Ocean Dynamics, 2020, 70, 621-640.	2.2	49
7	Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff interactions in urban coastal flooding. Journal of Hydrology, 2021, 595, 125670.	5.4	21
8	Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey. Ocean Modelling, 2021, 158, 101735.	2.4	34
9	Dynamical Downscaling of Coastal Dynamics for Two Extreme Storm Surge Events in Japan. Frontiers in Marine Science, 2021, 7, .	2.5	2
10	3D numerical modelling of asynchronous propagation characteristics of flood and sediment peaks in three gorges reservoir. Journal of Hydrology, 2021, 593, 125896.	5.4	6
11	Developing a Modeling Framework to Simulate Compound Flooding: When Storm Surge Interacts With Riverine Flow. Frontiers in Climate, 2021, 2, .	2.8	14
12	A cross-scale study for compound flooding processes during Hurricane Florence. Natural Hazards and Earth System Sciences, 2021, 21, 1703-1719.	3.6	28
13	Interâ€Model Comparison of Delft3Dâ€FM and 2D HECâ€RAS for Total Water Level Prediction in Coastal to Inland Transition Zones. Journal of the American Water Resources Association, 2022, 58, 34-49.	2.4	12
14	Characterizing the Non-linear Interactions Between Tide, Storm Surge, and River Flow in the Delaware Bay Estuary, United States. Frontiers in Marine Science, 2021, 8, .	2.5	22
15	Towards an efficient storm surge and inundation forecasting system over the Bengal delta: chasing the Supercyclone Amphan. Natural Hazards and Earth System Sciences, 2021, 21, 2523-2541.	3.6	14
16	Hydrodynamic Climate of Port Phillip Bay. Journal of Marine Science and Engineering, 2021, 9, 898.	2.6	4
17	Flood management challenges in transitional environments: Assessing the effects of sea-level rise on compound flooding in the 21st century. Coastal Engineering, 2021, 167, 103872.	4.0	14
18	The prediction of floods in Venice: methods, models and uncertainty (review article). Natural Hazards and Earth System Sciences, 2021, 21, 2679-2704.	3.6	30
19	European Copernicus Services to Inform on Sea-Level Rise Adaptation: Current Status and Perspectives. Frontiers in Marine Science, 2021, 8, .	2.5	11

#	Article	IF	CITATIONS
20	Can Shortâ€Wave Nonlinearity Affect the Prediction of Wave Setup?. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017264.	2.6	0
21	Sediment dynamics and morphological evolution in the Tagus Estuary inlet. Marine Geology, 2021, 440, 106590.	2.1	10
22	Channel curvature improves water quality and nutrient filtering in an artificially deepened mesotidal idealized estuary. Continental Shelf Research, 2021, 231, 104582.	1.8	2
23	Challenges for Appropriate Characterization of Compound Coastal Hazards., 2021,,.		0
24	Accounting for uncertainties in compound flood hazard assessment: The value of data assimilation. Coastal Engineering, 2022, 171, 104057.	4.0	25
25	A Three-Dimensional Coupled Hydrodynamic-Ecological Modeling to Assess the Planktonic Biomass in a Subalpine Lake. Sustainability, 2021, 13, 12377.	3.2	2
26	Time-Varying Univariate and Bivariate Frequency Analysis of Nonstationary Extreme Sea Level for New York City. Environmental Processes, 2022, 9, 1.	3.5	20
27	Tidal simulation revisited. Ocean Dynamics, 2022, 72, 187-205.	2.2	9
28	Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. Nature Climate Change, 2022, 12, 171-178.	18.8	77
29	The contribution of hurricane remote ocean forcing to storm surge along the Southeastern U.S. coast. Coastal Engineering, 2022, 173, 104098.	4.0	14
30	SABER: A Model-Agnostic Postprocessor for Bias Correcting Discharge from Large Hydrologic Models. Hydrology, 2022, 9, 113.	3.0	5
31	Coupled modelling of storm surge, circulation and surface waves in a large stratified lake. Journal of Great Lakes Research, 2022, 48, 1520-1535.	1.9	2
32	Effects of Environmental Factors on Suspended Sediment Plumes in the Continental Shelf Out of Danshuei River Estuary. Water (Switzerland), 2022, 14, 2755.	2.7	3
33	Numerical analysis of propagation characteristics of sediment peak and its implications for the Xiluodu Reservoir. Water Science and Technology: Water Supply, 2022, 22, 7490-7512.	2.1	1
34	Perspective on uncertainty quantification and reduction in compound flood modeling and forecasting. IScience, 2022, 25, 105201.	4.1	14
35	Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh. Hydrology and Earth System Sciences, 2022, 26, 5473-5491.	4.9	9
36	A Numerical Investigation of Hurricane Florenceâ€Induced Compound Flooding in the Cape Fear Estuary Using a Dynamically Coupled Hydrologicalâ€Ocean Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	3
37	Compound effects of rain, storm surge, and river discharge on coastal flooding during Hurricane Irene and Tropical Storm Lee (2011) in the Mid-Atlantic region: coupled atmosphere-wave-ocean model simulation and observations. Natural Hazards, 2023, 116, 693-726.	3.4	1

#	ARTICLE	IF	CITATIONS
39	Compound Coastal, Fluvial, and Pluvial Flooding During Historical Hurricane Events in the Sabine–Neches Estuary, Texas. Water Resources Research, 2022, 58, .	4.2	6
40	Development and Validation of Accumulation Term (Distributed and/or Point Source) in a Finite Element Hydrodynamic Model. Journal of Marine Science and Engineering, 2023, 11, 248.	2.6	2
42	Interacting Effects of Watershed and Coastal Processes on the Evolution of Compound Flooding During Hurricane Irene. Earth's Future, 2023, 11, .	6.3	1
43	A framework for estuarine future sea-level scenarios: Response of the industrialised Elbe estuary to projected mean sea level rise and internal variability. Frontiers in Marine Science, 0, 10, .	2.5	1
44	Relative contributions of water-level components to extreme water levels along the US Southeast Atlantic Coast from a regional-scale water-level hindcast. Natural Hazards, 2023, 117, 2219-2248.	3.4	8
45	Recent Advances and New Frontiers in Riverine and Coastal Flood Modeling. Reviews of Geophysics, 2023, 61, .	23.0	13
46	Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0). Geoscientific Model Development, 2023, 16, 2565-2581.	3.6	3
48	A parallel Python-based tool for meshing watershed rivers at continental scale. Environmental Modelling and Software, 2023, 166, 105731.	4.5	1
49	Barotropic and baroclinic tides increase primary production on the Northwest European Shelf. Frontiers in Marine Science, 0, 10, .	2.5	1
50	Extreme events and impacts on organic carbon cycles from ocean color remote sensing: Review with case study, challenges, and future directions. Earth-Science Reviews, 2023, 243, 104503.	9.1	4
51	Storm Surge Modeling: Influencing Factors. , 2024, , 611-632.		0
52	Techniques to embed channels in finite element shallow water equation models. Advances in Engineering Software, 2023, 185, 103516.	3.8	2
53	Data assimilation of hyper-local water level sensors for real-time monitoring of coastal inundation. Coastal Engineering, 2023, 186, 104398.	4.0	0
54	Weak local upwelling may elevate the risks of harmful algal blooms and hypoxia in shallow waters during the warm season. Environmental Research Letters, 2023, 18, 114031.	5.2	0
55	Hindcasting compound pluvial, fluvial and coastal flooding during Hurricane Harvey (2017) using Delft3D-FM. Natural Hazards, 2024, 120, 851-880.	3.4	0
56	Investigating the Storm Surge and Flooding in Shenzhen City, China. Remote Sensing, 2023, 15, 5002.	4.0	0
57	Understanding the compound flood risk along the coast of the contiguous United States. Hydrology and Earth System Sciences, 2023, 27, 3911-3934.	4.9	1
58	Delayed coastal inundations caused by ocean dynamics post-Hurricane Matthew. Npj Climate and Atmospheric Science, 2024, 7, .	6.8	1

#	Article	IF	CITATIONS
59	Mapping Compound Flooding Risks for Urban Resilience in Coastal Zones: A Comprehensive Methodological Review. Remote Sensing, 2024, 16, 350.	4.0	0
60	Coastal Compound Flood Simulation through Coupled Multidimensional Modeling Framework. Journal of Hydrology, 2024, 630, 130691.	5.4	O
61	Investigating the Data Inputs and Requirements for Response and Recovery Decision Models in Flooding Events. , 2024, , .		0
62	Modeled Coastalâ€Ocean Pathways of Landâ€Sourced Contaminants in the Aftermath of Hurricane Florence. Journal of Geophysical Research: Oceans, 2024, 129, .	2.6	0
63	Nonlinear Interactions of Sea‣evel Rise and Storm Tide Alter Extreme Coastal Water Levels: How and Why?. AGU Advances, 2024, 5, .	5. 4	O