In vitro and in vivo evaluation of chitosan-alginate/gen nanofibrous with high antibacterial performance

Polymer Testing 82, 106298

DOI: 10.1016/j.polymertesting.2019.106298

Citation Report

#	Article	IF	CITATIONS
1	An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics, 2020, 12, 983.	2.0	116
2	Synthesis of Antibacterial Gelatin/Sodium Alginate Sponges and Their Antibacterial Activity. Polymers, 2020, 12, 1926.	2.0	18
3	Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. Materials, 2020, 13, 3980.	1.3	49
4	Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants, 2020, 9, 1309.	2.2	199
5	Sustainable Rabbit Skin Glue to Produce Bioactive Nanofibers for Nonactive Wound Dressings. Materials, 2020, 13, 5388.	1.3	6
6	Electrospun Nano-Fibers for Biomedical and Tissue Engineering Applications: A Comprehensive Review. Materials, 2020, 13, 2153.	1.3	108
7	Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials, 2020, 13, 2663.	1.3	52
8	2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1626.	3.3	145
9	Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chemical Engineering Journal, 2021, 404, 126518.	6.6	51
10	Advancements and future directions in the antibacterial wound dressings – A review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 703-716.	1.6	47
11	Delivery of Therapeutics from Layer-by-Layer Electrospun Nanofiber Matrix for Wound Healing: An Update. Journal of Pharmaceutical Sciences, 2021, 110, 635-653.	1.6	81
12	Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polymer Testing, 2021, 93, 106872.	2.3	45
13	Alginate-based bionanocomposites in wound dressings. , 2021, , 351-375.		1
14	Antimicrobial textiles for skin and wound infection management. , 2021, , 313-347.		2
15	Additive Manufacturing of Polymer Matrix Composites. , 2021, , 1013-1028.		4
16	Antimicrobial Double-Layer Wound Dressing Based on Chitosan/Polyvinyl Alcohol/Copper: In vitro and in vivo Assessment. International Journal of Nanomedicine, 2021, Volume 16, 223-235.	3.3	79
17	Antibiotic-Loaded Psyllium Husk Hemicellulose and Gelatin-Based Polymeric Films for Wound Dressing Application. Pharmaceutics, 2021, 13, 236.	2.0	15
18	Electrospun nanofibrous scaffolds of ε-polycaprolactone containing graphene oxide and encapsulated with magnetite nanoparticles for wound healing utilizations. Materials Research Express, 2021, 8, 025013	0.8	19

#	Article	IF	Citations
19	Natural Ingredients in Functional Coatings—Recent Advances and Future Challenges. Coatings, 2021, 11, 429.	1.2	4
20	Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics, 2021, 13, 587.	2.0	55
21	Evaluation of a novel bioactive wound dressing: an in vitro and in vivo study. Journal of Wound Care, 2021, 30, 482-490.	0.5	2
22	A Brief Review on Additive Manufacturing of Polymeric Composites and Nanocomposites. Micromachines, 2021, 12, 704.	1.4	19
23	Electrospinning for drug delivery applications: A review. Journal of Controlled Release, 2021, 334, 463-484.	4.8	345
24	Application of Electrospinning in Antibacterial Field. Nanomaterials, 2021, 11, 1822.	1.9	39
25	Natural Polymer-Based Composite Wound Dressings. Advances in Material Research and Technology, 2022, , 401-423.	0.3	2
26	<i>In vitro</i> and <i>in vivo</i> advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. Journal of Biomedical Materials Research - Part A, 2022, 110, 443-461.	2.1	41
27	Polymeric wound dressings, an insight into polysaccharide-based electrospun membranes. Applied Materials Today, 2021, 24, 101148.	2.3	45
28	In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor. Journal of Polymer Research, 2021, 28, 1.	1.2	9
29	Facile design and development of nano-clustery graphene-based macromolecular protein hydrogel loaded with ciprofloxacin to antibacterial improvement for the treatment of burn wound injury. Polymer Bulletin, 2022, 79, 7953-7968.	1.7	6
30	A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Materials and Design, 2021, 209, 109942.	3.3	52
31	Recent Updates on Biopolymers based Wound Dressings. Asian Journal of Chemistry, 2021, 33, 1457-1470.	0.1	1
32	Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. Membranes, 2021, 11, 7.	1.4	19
33	Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics, 2021, 13, 1666.	2.0	61
34	An Upâ€ŧoâ€Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Advanced Materials Interfaces, 2021, 8, 2100809.	1.9	44
35	Biological macromolecules as antimicrobial agents. , 2022, , 165-202.		4
36	Nanofibrous scaffolds for skin tissue engineering and wound healing applications. , 2022, , 645-681.		4

CITATION REPORT

#	Article	IF	CITATIONS
37	Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies. Journal of Materials Science and Technology, 2022, 111, 167-180.	5.6	26
38	Therapeutic potential of dexamethasone Nano chitosan synthesized from chitosan as a novel treatment of pulmonary fibrosis in C57BL/6 mice. Alexandria Journal of Medicine, 2021, 57, 247-259.	0.4	2
39	Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose, 2022, 29, 1331-1347.	2.4	15
40	Effects of solvents on electrospun fibers and the biological application of different hydrophilic electrospun mats. Materials Today Communications, 2022, 30, 103093.	0.9	7
41	Chitosan/Alginate Hydrogel Dressing Loaded FGF/VE-Cadherin to Accelerate Full-Thickness Skin Regeneration and More Normal Skin Repairs. International Journal of Molecular Sciences, 2022, 23, 1249.	1.8	33
42	Nanobiomaterials for wound healing. , 2022, , 109-139.		1
43	Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics—Miniâ€review. Polymers for Advanced Technologies, 2022, 33, 1031-1046.	1.6	9
44	Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. International Journal of Biological Macromolecules, 2022, 204, 62-75.	3.6	62
45	Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends in Food Science and Technology, 2022, 120, 308-324.	7.8	88
46	Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane. Scientific Reports, 2022, 12, 2181.	1.6	20
47	Development and Characterization of Gentamicin-Loaded Arabinoxylan-Sodium Alginate Films as Antibacterial Wound Dressing. International Journal of Molecular Sciences, 2022, 23, 2899.	1.8	16
48	Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers, 2022, 14, 1508.	2.0	17
49	Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Advanced Engineering Materials, 2022, 24, .	1.6	30
50	Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. International Journal of Biological Macromolecules, 2022, 206, 74-91.	3.6	29
51	Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. International Journal of Molecular Sciences, 2022, 23, 321.	1.8	19
52	An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromolecular Bioscience, 2022, 22, e2200014.	2.1	26
53	Advancement of Nanofibrous Mats and Common Useful Drug Delivery Applications. Advances in Pharmacological and Pharmaceutical Sciences, 2022, 2022, 1-14.	0.7	1
54	Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Marine Drugs, 2022, 20, 314.	2.2	22

#	Article	IF	CITATIONS
55	Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics, 2022, 11, 623.	1.5	17
56	Development of green and sustainable smart biochromic and therapeutic bandage using red cabbage (Brassica oleracea L. Var. capitata) extract encapsulated into alginate nanoparticles. International Journal of Biological Macromolecules, 2022, 211, 390-399.	3.6	11
57	A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. European Polymer Journal, 2022, 173, 111293.	2.6	35
58	Electrohydrodynamic processing of phycocolloids for food-related applications: Recent advances and future prospects. Trends in Food Science and Technology, 2022, 125, 114-125.	7.8	5
59	A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers, 2022, 14, 2238.	2.0	24
60	Comparison of antibacterial property of herbal plant–based bio-active extract loaded polymer electrospun nanofibrous mat wound dressings. Journal of Industrial Textiles, 2022, 51, 1793S-1814S.	1.1	4
61	Layered Fibrous Scaffolds/Membranes in Wound Healing. Advances in Polymer Science, 2022, , .	0.4	0
62	Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics, 2022, 14, 1307.	2.0	21
63	Alginate-based wound dressings for skin healing and regeneration. , 2022, , 381-416.		1
64	Natural polymer based electrospun systems for wound management. , 2022, , 167-186.		0
65	Accelerating the excisional wound closure by using the patterned microstructural nanofibrous mats/gentamicin-loaded hydrogel composite scaffold. Materials Today Bio, 2022, 16, 100347.	2.6	15
67	The effect of silver nanoparticles toward properties and antibacterial activity of silver-alginate nanocomposite films. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	3
68	Simultaneous loading of clarithromycin and zinc oxide into the chitosan/gelatin/polyurethane core–shell nanofibers for wound dressing. Journal of Dispersion Science and Technology, 2023, 44, 2664-2674.	1.3	2
69	Natural polymers for wound dressing applications. Studies in Natural Products Chemistry, 2022, , 367-441.	0.8	6
70	Nanocomposite scaffolds and coatings for wound healing and infection control. , 2023, , 69-99.		2
71	Plasma-Initiated Grafting of Bioactive Peptide onto Nano-CuO/Tencel Membrane. Polymers, 2022, 14, 4497.	2.0	1
72	Recent Advances in Functional Wound Dressings. Advances in Wound Care, 2023, 12, 399-427.	2.6	4
73	Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules, 2022, 27, 7045.	1.7	2

CITATION REPORT

#	Article	IF	CITATIONS
74	Controlled Drug Release Using Chitosan-Alginate-Gentamicin Multi-Component Beads. Materials, 2022, 15, 7682.	1.3	0
75	Fabrication and development of PVA/Alginate nanofibrous mats containing Arnebia Euchroma extract as a burn wound dressing. Reactive and Functional Polymers, 2022, 181, 105440.	2.0	13
76	Stretchable, conductive, breathable and moisture-sensitive e-skin based on CNTs/graphene/GelMA mat for wound monitoring. , 2022, 143, 213172.		10
77	Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Materials Today Communications, 2022, 33, 104813.	0.9	20
78	Influence of Triplaris gardneriana Wedd ethanolic extract in the chemic-mechanics properties of chitosan: Polyvinyl alcohol membranes as intelligent curatives. Materials Today Communications, 2023, 34, 105153.	0.9	0
79	Production of Gentamycin-Loaded Poly(Vinyl Alcohol)/Gelatin Nanofiber by Electrospinning Method as Wound Dressing Material. Konya Journal of Engineering Sciences, 2022, 10, 878-888.	0.1	1
80	Asymmetric wettable polycaprolactone-chitosan/chitosan oligosaccharide nanofibrous membrane as antibacterial dressings. Carbohydrate Polymers, 2023, 304, 120485.	5.1	24
81	Citric acid crosslinked biocompatible silk fibroin-mediated porous chitosan films for sustained drug release application. Materials Today Communications, 2023, 34, 105373.	0.9	8
82	Antimicrobial Natural Hydrogels in Biomedicine: Properties, Applications, and Challenges—A Concise Review. International Journal of Molecular Sciences, 2023, 24, 2191.	1.8	14
83	Bacterial cellulose as a potential biopolymer for wound care. A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 455-477.	1.8	5
84	Antimicrobial electrospun membranes. , 2023, , 501-519.		1
85	A multifunctional sateen woven dressings for treatment of skin injuries. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113197.	2.5	1
86	A Novel Strategy as a Potential Rapid Therapy Modality in the Treatment of Corneal Ulcers: Fluconazole/Vancomycin Dual Drug‣oaded Nanofibrous Patches. Macromolecular Materials and Engineering, 2023, 308, .	1.7	2
87	Advancement and future perspectives on ampicillin-loaded antimicrobial polymers- A review. Journal of Drug Delivery Science and Technology, 2023, 81, 104227.	1.4	2
88	Nanofibres in Drug Delivery Applications. Fibers, 2023, 11, 21.	1.8	21
89	Recent trends in diabetic wound healing with nanofibrous scaffolds. European Journal of Pharmacology, 2023, 945, 175617.	1.7	6
90	Synthesis and characterization of polyvinyl alcohol/dextran/Zataria wound dressing with superior antibacterial and antioxidant properties. Journal of Vinyl and Additive Technology, 2023, 29, 380-394.	1.8	4
91	Wound Dressing Modifications for Accelerated Healing of Infected Wounds. International Journal of Molecular Sciences, 2023, 24, 7193.	1.8	9

		TIATION REPORT	
#	Article	IF	CITATIONS
92	Preclinical performance testing of medical devices with antimicrobial effects. , 2023, 1, 589-605.		1
99	A Review on the Recent Developments in Electrospinned Nanofibers for Drug Delivery. , 2024, 2, 342-364.		0
105	Advantages of Nanomedicine Over Conventional Therapeutics. Learning Materials in Biosciences, 20 , 45-85.	0.2	0