Well-Defined Materials for Heterogeneous Catalysis: Fr Single-Atom Sites

Chemical Reviews 120, 623-682

DOI: 10.1021/acs.chemrev.9b00311

Citation Report

#	Article	IF	CITATIONS
1	Recent Advances in Magnetic Nanoparticles and Nanocomposites for the Remediation of Water Resources. Magnetochemistry, 2020, 6, 49.	1.0	26
2	Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Science China Chemistry, 2020, 63, 1517-1542.	4.2	56
3	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
4	High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, 11, 5149.	5.8	82
5	Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Small, 2020, 16, e2003096.	5.2	110
6	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709.	16.1	123
7	Synthesis, characterization and application of pure and decorated with palladium mesoporous cobalt hydroxide hexagonal nanorings. Journal of Alloys and Compounds, 2020, 846, 156422.	2.8	1
8	Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2020, 12, 54146-54154.	4.0	31
9	Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catalysis, 2020, 10, 14419-14450.	5.5	71
10	Single-Atom Catalysts for Thermal Heterogeneous Catalysis in Liquid: Recent Progress and Future Perspective. , 2020, 2, 1653-1661.		13
11	Deciphering the Nature of Ru Sites in Reductively Exsolved Oxides with Electronic and Geometric Metal–Support Interactions. Journal of Physical Chemistry C, 2020, 124, 25299-25307.	1.5	18
12	Achieving High Activity and Selectivity of Nitrogen Reduction via Fe–N ₃ Coordination on Iron Single-Atom Electrocatalysts at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 12809-12816.	3.2	41
13	Synthetic Organic Transformations of Transitionâ€Metal Nanoparticles as Propitious Catalysts: A Review. Asian Journal of Organic Chemistry, 2020, 9, 1341-1376.	1.3	11
14	Facet-Dependent Long-Term Stability of Gold Aerogels toward Ethylene Glycol Oxidation Reaction. ACS Applied Materials & Interfaces, 2020, 12, 39033-39042.	4.0	15
15	Loading Copper Atoms on Graphdiyne for Highly Efficient Hydrogen Production. ChemPhysChem, 2020, 21, 2145-2149.	1.0	40
16	MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordination Chemistry Reviews, 2020, 422, 213483.	9.5	105
17	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal–Support Interaction Boosts Photocatalysis. Small, 2020, 16, e2002356.	5.2	45
18	Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction. Angewandte Chemie, 2020, 132, 20645-20649.	1.6	16

#	ARTICLE Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene	IF	Citations
19	Frameworks for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2020, 59, 20465-20469.	7.2	104
20	Electroreduction Reaction Mechanism of Carbon Dioxide to C ₂ Products via Cu/Au Bimetallic Catalysis: A Theoretical Prediction. Journal of Physical Chemistry Letters, 2020, 11, 6593-6599.	2.1	41
21	Highâ€Ðensity and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie - International Edition, 2020, 59, 21613-21619.	7.2	103
22	Recent Advances in MOFâ€Đerived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	10.2	265
23	Highâ€Đensity and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie, 2020, 132, 21797-21803.	1.6	19
24	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	5.8	252
25	Platinum Atomic Clusters Embedded in Defects of Anatase/Graphene for Efficient Electro- and Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 40204-40212.	4.0	27
26	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	5.2	71
27	Revitalizing silver nanocrystals as a redox catalyst by modifying their surface with an isocyanide-based compound. Chemical Science, 2020, 11, 11214-11223.	3.7	7
28	Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chemical Reviews, 2020, 120, 12315-12341.	23.0	354
29	Synthesis and Characterization of Rh ^{III} –M ^{II} (M = Pt, Pd) Heterobimetallic Complexes Based on a Bisphosphine Ligand: Tandem Reactions Using Ethanol. Organometallics, 2020, 39, 3879-3891.	1.1	6
30	Carbon-based electrocatalysts for CO2 electroreduction produced via MOF, biomass, and other precursors carbonization: A review. Journal of CO2 Utilization, 2020, 42, 101350.	3.3	25
31	Enhancing the Photocatalytic Activity of TiO ₂ Catalysts. Advanced Sustainable Systems, 2020, 4, 2000197.	2.7	69
32	Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catalysis, 2020, 10, 11011-11045.	5.5	260
33	Revealing the Effect of Nickel Particle Size on Carbon Formation Type in the Methane Decomposition Reaction. Catalysts, 2020, 10, 890.	1.6	23
34	Stabilized Pt Cluster-Based Catalysts Used as Low-Loading Cathode in Proton-Exchange Membrane Fuel Cells. ACS Energy Letters, 2020, 5, 3021-3028.	8.8	39
35	Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catalysis, 2020, 10, 10886-10904.	5.5	38
36	Pentamethylcyclopentadienyl-substituted hypersilylsilylene: reversible and irreversible activation of Cî€C double bonds and dihydrogen. Dalton Transactions, 2020, 49, 13218-13225.	1.6	16

#	Article	IF	CITATIONS
37	A Machine Learning Model on Simple Features for CO ₂ Reduction Electrocatalysts. Journal of Physical Chemistry C, 2020, 124, 22471-22478.	1.5	125
38	The synthetic strategies for single atomic site catalysts based on metal–organic frameworks. Nanoscale, 2020, 12, 20580-20589.	2.8	17
39	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	6.6	184
40	Unusual Copper Oxide Dispersion Achieved by Combining the Confinement Effect and Guest–Host Interaction Modulation. Industrial & Engineering Chemistry Research, 2020, 59, 16296-16304.	1.8	2
41	Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 11910-11930.	2.2	56
42	Dynamics of gold clusters on ceria during CO oxidation. Journal of Catalysis, 2020, 392, 39-47.	3.1	20
43	Selective Hydrogenation on a Highly Active Single-Atom Catalyst of Palladium Dispersed on Ceria Nanorods by Defect Engineering. ACS Applied Materials & Interfaces, 2020, 12, 57569-57577.	4.0	34
44	Dual-Core Fe Catalyst Brings Major Enhancements in ORR Kinetics. Trends in Chemistry, 2020, 2, 872-873.	4.4	7
45	Recent Progress in Synthesis of Nano- and Atomic-Sized Catalysts. ACS Symposium Series, 2020, , 95-128.	0.5	2
46	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
47	Singleâ€Atom Cu Catalysts for Enhanced Electrocatalytic Nitrate Reduction with Significant Alleviation of Nitrite Production. Small, 2020, 16, e2004526.	5.2	188
48	Rare-Earth Single-Atom La–N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO ₂ Reduction. ACS Nano, 2020, 14, 15841-15852.	7.3	283
49	A Review on Particle Size Effect in <scp>Metal atalyzed</scp> Heterogeneous Reactions. Chinese Journal of Chemistry, 2020, 38, 1422-1444.	2.6	69
50	Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer–Tropsch Synthesis. ACS Catalysis, 2020, 10, 7894-7906.	5.5	57
51	Ultrastable and Highly Catalytically Active Nâ€Heterocyclic arbene‣tabilized Gold Nanoparticles in Confined Spaces. Angewandte Chemie, 2020, 132, 16826.	1.6	17
52	Single atomic site catalysts: synthesis, characterization, and applications. Chemical Communications, 2020, 56, 7687-7697.	2.2	53
53	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
54	Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications, 2020, 56, 8916-8919.	2.2	18

# 55	ARTICLE CO2 electrochemical reduction using single-atom catalysts.ÂPreparation, characterization and anchoring strategies: a review. Environmental Chemistry Letters, 2020, 18, 1593-1623.	IF 8.3	CITATIONS
56	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	4.0	74
57	Ultrastable and Highly Catalytically Active Nâ€Heterocyclic arbene‣tabilized Gold Nanoparticles in Confined Spaces. Angewandte Chemie - International Edition, 2020, 59, 16683-16689.	7.2	92
58	Recent Advances in Metalâ€Organic Frameworks and Their Derived Materials for Electrocatalytic Water Splitting. ChemElectroChem, 2020, 7, 1805-1824.	1.7	47
59	Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catalysis, 2020, 10, 5715-5722.	5.5	80
60	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	23.0	806
61	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Research, 2020, 13, 1842-1855.	5.8	532
62	Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Scientific Reports, 2020, 10, 10646.	1.6	30
63	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
64	Singleâ€Atom Catalysts Supported by Crystalline Porous Materials: Views from the Inside. Advanced Materials, 2020, 32, e2002910.	11.1	65
65	Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020, 142, 5709-5721.	6.6	664
66	Heterogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction. Journal of Energy Chemistry, 2021, 54, 612-619.	7.1	57
67	High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Applied Catalysis B: Environmental, 2021, 281, 119471.	10.8	85
68	Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction. Chemical Engineering Journal, 2021, 406, 127135.	6.6	67
69	Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS ES&T Engineering, 2021, 1, 157-172.	3.7	88
70	Subâ€3 nm Ultrafine Cu ₂ O for Visible Light Driven Nitrogen Fixation. Angewandte Chemie - International Edition, 2021, 60, 2554-2560.	7.2	134
71	Singleâ€Atom and Dualâ€Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. ChemSusChem, 2021, 14, 73-93.	3.6	76
72	β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Research, 2021, 14, 1018-1025.	5.8	15

#	Article	IF	CITATIONS
73	Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Research, 2021, 14, 444-449.	5.8	36
74	Interplay between invasive single atom Pt and native oxygen vacancy in anatase TiO2(1Â0Â1) surface: A theoretical study. Applied Surface Science, 2021, 540, 148357.	3.1	17
75	A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors. Journal of Colloid and Interface Science, 2021, 583, 351-361.	5.0	9
76	Anchoring Mo on C9N4 monolayers as an efficient single atom catalyst for nitrogen fixation. Journal of Energy Chemistry, 2021, 57, 443-450.	7.1	41
77	A Nanozymeâ€Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke. Advanced Functional Materials, 2021, 31, 2007130.	7.8	116
78	The assembling principle and strategies of high-density atomically dispersed catalysts. Chemical Engineering Journal, 2021, 417, 127917.	6.6	13
79	Atom migration-trapping towardÂsingle-atom catalysts for energy electrocatalysis. Materials Today Energy, 2021, 19, 100586.	2.5	15
80	Single Ru Atoms Stabilized by Hybrid Amorphous/Crystalline FeCoNi Layered Double Hydroxide for Ultraefficient Oxygen Evolution. Advanced Energy Materials, 2021, 11, .	10.2	223
81	Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants. Chemical Engineering Journal, 2021, 413, 127545.	6.6	102
82	Phosphorene Supported Singleâ€Atom Catalysts for CO Oxidation: A Computational Study. ChemPhysChem, 2021, 22, 378-385.	1.0	12
83	How to select effective electrocatalysts: Nano or single atom?. Nano Select, 2021, 2, 492-511.	1.9	82
84	Use of rare earth elements in single-atom site catalysis: A critical review — CommemoratingÂtheÂ100thÂanniversaryÂofÂtheÂbirthÂofÂAcademicianÂGuangxianÂXu. Journal of Rare Earths, 2021, 39, 233-242.	2.5	28
85	Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9, 1110-1118.	5.2	102
86	Synergistic Pd Single Atoms, Clusters, and Oxygen Vacancies on TiO ₂ for Photocatalytic Hydrogen Evolution Coupled with Selective Organic Oxidation. Small, 2021, 17, e2006255.	5.2	110
87	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
88	Computational Methods in Heterogeneous Catalysis. Chemical Reviews, 2021, 121, 1007-1048.	23.0	198
89	Synthesis of High Metal Loading Single Atom Catalysts and Exploration of the Active Center Structure. ChemCatChem, 2021, 13, 28-58.	1.8	35
90	Theoretical investigation of CO2 electroreduction on N (B)-doped graphdiyne mononlayer supported single copper atom. Applied Surface Science, 2021, 538, 148145.	3.1	34

ARTICLE IF CITATIONS # Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified 6.6 84 91 defective ultrathin graphitic carbon nitride. Chemical Engineering Journal, 2021, 406, 126868. Subâ€3 nm Ultrafine Cu 2 O for Visible Light Driven Nitrogen Fixation. Angewandte Chemie, 2021, 133, 1.6 2584-2590. Evaluating the electro-sensing behaviors of single-atom catalysts based on mechanistic insights. 93 2.5 3 Current Opinion in Electrochemistry, 2021, 25, 100646. High-throughput identification of high activity and selectivity transition metal single-atom catalysts 94 for nitrogen reduction. Nano Energy, 2021, 80, 105527. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. National Science Review, 2021, 8, 95 110 4.6 nwaa213. Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in 5.5 zeolites. Nature Protocols, 2021, 16, 1871-1906. Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 97 9.5 29 213564. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters 23.0 361 with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648. Pristine, metal ion and metal cluster modified conjugated triazine frameworks as electrocatalysts for 99 5.2 23 hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 10146-10159. Electron transfers in graphitized HZSM-5 zeolites. Physical Chemistry Chemical Physics, 2021, 23, 1.3 1914-1922. Electrocatalysis for CO₂conversion: from fundamentals to value-added products. 101 18.7 559 Chemical Society Reviews, 2021, 50, 4993-5061. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chemical Society Reviews, 18.7 194 2021, 50, 3437-3484. Shapes and Shape Transformations of Solution-Phase Metal Particles in the Sub-nanometer to 103 1.5 14 Nanometer Size Range: Progress and Challenges. Journal of Physical Chemistry C, 2021, 125, 3668-3679. Metallic Nanoparticles in Heterogeneous Catalysis. Catalysis Letters, 2021, 151, 2153. 104 1.4 Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions. ACS Applied Materials & amp; 105 4.0 31 Interfaces, 2021, 13, 2530-2537. Accurate assembly of ferrocene-functionalized {Ti22Fc4} clusters with photocatalytic amine 2.2 19 oxidation activity. Chemical Communications, 2021, 57, 2792-2795. Surface activation by electron scavenger metal nanorod adsorption on TiH₂, TiC, TiN, and 107 1.39 Ti₂O₃. Physical Chemistry Chemical Physics, 2021, 23, 16577-16593. Cu oxide deposited on shape-controlled ceria nanocrystals for CO oxidation: influence of interface-driven oxidation states on catalytic activity. Catalysis Science and Technology, 2021, 11, 2.1 19 6134-6142.

#	Article	IF	CITATIONS
109	Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads. New Journal of Chemistry, 2021, 45, 4601-4610.	1.4	9
110	Rational Component and Structure Design of Nobleâ€Metal Composites for Optical and Catalytic Applications. Small Structures, 2021, 2, 2000138.	6.9	31
111	Tuning the shape and crystal phase of TiO ₂ nanoparticles for catalysis. Chemical Communications, 2021, 57, 6838-6850.	2.2	21
112	Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications, 2021, 12, 416.	5.8	97
113	CHAPTER 6. Applications of Colloidal Nanocrystals. RSC Nanoscience and Nanotechnology, 2021, , 209-257.	0.2	0
114	Enabling LIFDI-MS measurements of highly air sensitive organometallic compounds: a combined MS/glovebox technique. Dalton Transactions, 2021, 50, 9031-9036.	1.6	27
115	Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Materials Chemistry Frontiers, 2021, 5, 6803-6823.	3.2	37
116	Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models. Green Chemistry, 2021, 23, 2308-2316.	4.6	4
117	Boosting Room Temperature Sensing Performances by Atomically Dispersed Pd Stabilized via Surface Coordination. ACS Sensors, 2021, 6, 1103-1110.	4.0	16
118	Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catalysis, 2021, 11, 3159-3172.	5.5	175
118 119	Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catalysis, 2021, 11, 3159-3172. Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887.	5.5 4.5	175 86
	Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive		
119	Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887. Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods,	4.5	86
119 120	 Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887. Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194. Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with 	4.5 4.6	86 41
119 120 121	 Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887. Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194. Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928. Atomic Crystal Facet Engineering of Core–Shell Nanotetrahedrons Restricted under Sub-10 	4.5 4.6 3.2	86 41 8
119 120 121 122	Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887. Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194. Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928. Atomic Crystal Facet Engineering of Core–Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. ACS Nano, 2021, 15, 5178-5188. Engineering transition metal-based nanomaterials for high-performance electrocatalysis. Materials	4.5 4.6 3.2 7.3	86 41 8 27
119 120 121 122 123	 Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887. Operando XAS/SAXS: Guiding Design of Singleâ Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194. Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928. Atomic Crystal Facet Engineering of Coreâ E Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. ACS Nano, 2021, 15, 5178-5188. Engineering transition metal-based nanomaterials for high-performance electrocatalysis. Materials Reports Energy, 2021, 1, 100006. Spin-Orbit Coupling Effects in Au 4f Core-Level Electronic Structures in Supported Low-Dimensional 	4.5 4.6 3.2 7.3 1.7	86 41 8 27 14

#	Article	IF	Citations
127	A Novel Carbon Support: Few‣ayered Graphdiyneâ€Decorated Carbon Nanotubes Capture Metal Clusters as Effective Metal‧upported Catalysts. Small, 2021, 17, e2006442.	5.2	32
128	Catalytic activities of hydroxylated gold dimer clusters for water-gas shift reactions. Molecular Catalysis, 2021, 503, 111414.	1.0	1
129	Structural design of metal catalysts based on ZIFs: From nanoscale to atomic level. Nano Select, 2021, 2, 1902-1925.	1.9	6
130	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	5.5	52
131	A straightforward, environmentally beneficial synthesis of spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-triones mediated by a nano-ordered reus catalyst. Scientific Reports, 2021, 11, 4820.	sable	6
132	Probing Singleâ€Atom Catalysts and Catalytic Reaction Processes by Shellâ€Isolated Nanoparticleâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 9306-9310.	7.2	41
133	Probing Singleâ€Atom Catalysts and Catalytic Reaction Processes by Shellâ€Isolated Nanoparticleâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2021, 133, 9392-9396.	1.6	7
134	Selectively Probing Neurochemicals in Living Animals with Electrochemical Systems. ChemNanoMat, 2021, 7, 489-501.	1.5	3
135	Synergistic Effect of Boron Nitride and Carbon Domains in Boron Carbide Nitride Nanotube Supported Singleâ€Atom Catalysts for Efficient Nitrogen Fixation. Chemistry - A European Journal, 2021, 27, 6945-6953.	1.7	17
136	Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands: A Computational Study of Hydrogen Coverage Effects. Journal of Physical Chemistry C, 2021, 125, 5110-5115.	1.5	6
137	Toward Rational Design of Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2837-2847.	2.1	45
138	Unique Coordination Structure of Cobalt Single-Atom Catalyst Supported on Dopant-Free Carbon. Journal of Physical Chemistry C, 2021, 125, 6735-6742.	1.5	1
139	Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. Chemical Record, 2021, 21, 879-892.	2.9	44
140	Theoretical modeling for interfacial catalysis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1531.	6.2	1
141	Electrocatalytic Reduction of N ₂ Using Metal-Doped Borophene. ACS Applied Materials & Interfaces, 2021, 13, 14091-14101.	4.0	70
142	Folic acid self-assembly synthesis of ultrathin N-doped carbon nanosheets with single-atom metal catalysts. Energy Storage Materials, 2021, 36, 409-416.	9.5	39
143	Atomic Indium Catalysts for Switching CO ₂ Electroreduction Products from Formate to CO. Journal of the American Chemical Society, 2021, 143, 6877-6885.	6.6	140
144	Interfacial coordination chemistry for catalyst preparation. Journal of Catalysis, 2021, 396, 104-121.	3.1	9

#	Article	IF	CITATIONS
145	Kinetically Controlled Synthesis of Rhodium Nanocrystals with Different Shapes and a Comparison Study of Their Thermal and Catalytic Properties. Journal of the American Chemical Society, 2021, 143, 6293-6302.	6.6	26
146	New Magic Au ₂₄ Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. Jacs Au, 2021, 1, 660-668.	3.6	21
147	High-Efficiency Water Gas Shift Reaction Catalysis on α-MoC Promoted by Single-Atom Ir Species. ACS Catalysis, 2021, 11, 5942-5950.	5.5	65
148	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	6.2	24
149	Palladium Immobilized on a Polyimide Covalent Organic Framework: An Efficient and Recyclable Heterogeneous Catalyst for the Suzuki–Miyaura Coupling Reaction and Nitroarene Reduction in Water. Catalysis Letters, 0, , 1.	1.4	8
150	Single Transition Metal Atom Bound to the Unconventional Phase of the MoS ₂ Monolayer for Catalytic Oxygen Reduction Reaction: A First-Principles Study. ACS Applied Materials & Interfaces, 2021, 13, 17412-17419.	4.0	26
151	Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Accounts of Chemical Research, 2021, 54, 2579-2590.	7.6	117
152	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5.5	46
153	Structure, Energetics, and Thermal Behavior of Bimetallic Re–Pt Clusters. Journal of Physical Chemistry A, 2021, 125, 4294-4305.	1.1	8
154	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	10.1	20
155	Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: From active sites engineering to mass transfer dynamics. Materials Today Physics, 2021, 18, 100354.	2.9	39
156	Polyoxometalateâ€Single Atom Catalysts (POMâ€SACs) in Energy Research and Catalysis. Advanced Energy Materials, 2021, 11, 2101120.	10.2	57
157	Inducing Electron Dissipation of Pyridinic N Enabled by Single Ni–N ₄ Sites for the Reduction of Aldehydes/Ketones with Ethanol. ACS Catalysis, 2021, 11, 6398-6405.	5.5	43
158	Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coordination Chemistry Reviews, 2021, 435, 213806.	9.5	97
159	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	4.8	38
160	Support Acidity Improves Pt Activity in Propane Combustion in the Presence of Steam by Reducing Water Coverage on the Active Sites. ACS Catalysis, 2021, 11, 6672-6683.	5.5	19
161	Manganese supported on controlled dealumination Y-zeolite for ozone catalytic oxidation of low concentration toluene at low temperature. Chemosphere, 2021, 271, 129604.	4.2	23
162	A new active learning approach for global optimization of atomic clusters. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	12

#	Article	IF	CITATIONS
163	Substrate-Assisted Encapsulation of Pd-Fe Bimetal Nanoparticles on Functionalized Silica Nanotubes for Catalytic Hydrogenation of Nitroarenes and Azo Dyes. ACS Applied Nano Materials, 2021, 4, 5854-5863.	2.4	39
164	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	5.8	605
166	Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers, 2021, 13, 1481.	2.0	20
167	Oxygen-evolving catalytic atoms on metal carbides. Nature Materials, 2021, 20, 1240-1247.	13.3	235
168	Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. Nature Communications, 2021, 12, 3382.	5.8	22
169	Recent advances in single-atom catalysts for advanced oxidation processes in water purification. Journal of Hazardous Materials, 2021, 412, 125253.	6.5	113
170	Porous Membrane Reactors for Liquid-Phase Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2021, 60, 8969-8990.	1.8	13
171	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	6.6	60
172	Identification of the active sites in supported subnanometric metal catalysts. Nature Catalysis, 2021, 4, 453-456.	16.1	58
173	Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms. Chinese Journal of Chemical Engineering, 2021, 38, 18-29.	1.7	16
174	Enhanced hydrogen evolution of single-atom Ru sites via geometric and electronic engineering: N and S dual coordination. Applied Surface Science, 2021, 551, 148742.	3.1	21
175	Amplified Interfacial Effect in an Atomically Dispersed RuO _x â€onâ€Pd 2D Inverse Nanocatalyst for Highâ€Performance Oxygen Reduction. Angewandte Chemie, 2021, 133, 16229-16236.	1.6	12
176	Ensemble-boosting effect of Ru-Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2021, 287, 119960.	10.8	82
177	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	7.8	123
178	Recent progress on single-atom catalysts for CO2 electroreduction. Materials Today, 2021, 48, 95-114.	8.3	63
179	Ethene Conversion at a Zeolite‣upported Ir(I) Complex. A Computational Perspective on a Single‣ite Catalyst System. ChemCatChem, 2021, 13, 3421-3433.	1.8	2
180	Exsolution of Iron Oxide on LaFeO ₃ Perovskite: A Robust Heterostructured Support for Constructing Self-Adjustable Pt-Based Room-Temperature CO Oxidation Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 27029-27040.	4.0	15
181	Wirtâ€Gastâ€Wechselwirkungen in einer Serie isoretikuläer Metallâ€organischer Gerüststrukturen für molekulare photokatalytische CO ₂ â€Reduktion. Angewandte Chemie, 2021, 133, 17998-18004.	1.6	13

#	Article	IF	CITATIONS
182	Amplified Interfacial Effect in an Atomically Dispersed RuO _x â€onâ€Pd 2D Inverse Nanocatalyst for Highâ€Performance Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 16093-16100.	7.2	49
183	Interfacial Interactions between Coâ€Based Cocatalysts and Semiconducting Light Absorbers for Solarâ€Lightâ€Driven Redox Reactions. Solar Rrl, 2021, 5, 2100234.	3.1	2
184	Rational design of nanocatalysts for ambient ammonia electrosynthesis. Pure and Applied Chemistry, 2021, 93, 777-797.	0.9	7
185	Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis, 2021, 11, 7018-7059.	5.5	106
186	Host–Guest Interactions in a Metal–Organic Framework Isoreticular Series for Molecular Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 17854-17860.	7.2	69
187	Activating Basal Surface of Palladium by Electronic Modulation via Atomically Dispersed Nitrogen Doping for High-Efficiency Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2021, 12, 7373-7378.	2.1	3
188	Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces, 2021, , .	4.0	0
189	Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Applied Catalysis B: Environmental, 2021, 289, 120028.	10.8	38
190	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	5.5	146
191	Reusable Manganese Catalyst for Siteâ€Selective Pyridine Câ^H Arylations and Alkylations. Chemistry - A European Journal, 2021, 27, 12737-12741.	1.7	13
192	Active Sites and Interfacial Reducibility of Cu _{<i>x</i>} O/CeO ₂ Catalysts Induced by Reducing Media and O ₂ /H ₂ Activation. ACS Applied Materials & Interfaces, 2021, 13, 35804-35817.	4.0	26
193	A Feasible Strategy for Identifying Singleâ€Atom Catalysts Toward Electrochemical NOâ€ŧoâ€NH ₃ Conversion. Small, 2021, 17, e2102396.	5.2	89
194	Facile synthesis of sandwich-like MnO2@Pd@MnO2 hollow spheres with superior catalytic stability and activity. Journal of Alloys and Compounds, 2021, 870, 159415.	2.8	7
195	Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nature Nanotechnology, 2021, 16, 1141-1149.	15.6	165
196	Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO ₂ . ACS Catalysis, 2021, 11, 8701-8715.	5.5	51
197	Dynamic structure change of Cu nanoparticles on carbon supports for <scp>CO₂</scp> electroâ€reduction toward multicarbon products. InformaÄnA-Materiály, 2021, 3, 1285-1294.	8.5	22
198	Atomically Dispersed Copper Sites in a Metal–Organic Framework for Reduction of Nitrogen Dioxide. Journal of the American Chemical Society, 2021, 143, 10977-10985.	6.6	66
199	Two Types of Single-Atom FeN ₄ and FeN ₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst. Chemistry of Materials, 2021, 33, 5542-5554.	3.2	59

#	Article	IF	CITATIONS
200	Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nature Catalysis, 2021, 4, 595-606.	16.1	52
201	Emerging Dualâ€Atomicâ€6ite Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	11.1	226
202	Ionic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Science China Materials, 2022, 65, 163-169.	3.5	13
203	Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 594, 113-121.	5.0	28
204	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	11.1	175
205	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47
206	Ni Nanoparticles Grown on SiO ₂ Supports Using a Carbon Interlayer Sacrificial Strategy for Chemoselective Hydrogenation of Nitrobenzene and <i>m</i> -Cresol. ACS Applied Nano Materials, 2021, 4, 9353-9360.	2.4	4
207	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	10.2	109
208	A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co–N _{<i>x</i>} Dispersions for Longevous Li–S Full Batteries. ACS Nano, 2021, 15, 14105-14115.	7.3	72
209	Advances and Prospects in Metal–Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. Small, 2021, 17, e2102201.	5.2	12
210	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie, 2021, 133, 22150-22158.	1.6	11
211	A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater. Journal of Water Process Engineering, 2021, 42, 102111.	2.6	29
212	Co-Heteroatom-Based MOFs for Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. Inorganic Chemistry, 2021, 60, 13434-13439.	1.9	6
213	Regulating Electronic Spin Moments of Single-Atom Catalyst Sites via Single-Atom Promoter Tuning on S-Vacancy MoS ₂ for Efficient Nitrogen Fixation. Journal of Physical Chemistry Letters, 2021, 12, 8355-8362.	2.1	63
214	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21979-21987.	7.2	90
215	Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. Journal of Catalysis, 2021, 400, 40-49.	3.1	26
216	Ultraâ€lowâ€loaded Niâ^'Fe Dimer Anchored to Nitrogen/Oxygen Sites for Boosting Electroreduction of Carbon Dioxide. ChemSusChem, 2021, 14, 4499-4506.	3.6	9
217	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77

#	Article	IF	CITATIONS
218	Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Research, 2022, 15, 1838-1844.	5.8	9
219	Thermally stable single atom catalysts: From concept to <i>in situ</i> study. Functional Materials Letters, 2021, 14, .	0.7	7
220	Electrochemical catalysts to meet the challenge for sustainable fuel production from renewable energy. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100492.	3.2	4
221	A New Strategy to Regulate the Selectivity of Photo-Mediated Catalytic Reaction. Frontiers in Chemistry, 2021, 9, 673857.	1.8	0
222	Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2021, 13, 38325-38332.	4.0	14
223	<scp>Fe₃O₄</scp> @C@ <scp>prNHSO₃H</scp> : A novel magnetically recoverable heterogeneous catalyst in green synthesis of diverse triazoles. Journal of the Chinese Chemical Society, 2021, 68, 2071-2084.	0.8	5
224	A Review on the Impact of SO ₂ on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catalysis, 2021, 11, 12446-12468.	5.5	36
225	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	5.8	396
226	Controllable drilling by corrosive Cu1Ox to access highly accessible single-site catalysts for bacterial disinfection. Applied Catalysis B: Environmental, 2021, 293, 120228.	10.8	11
227	Thiol Functionalised Supports for Controlled Metal Nanoparticle Formation for Improved C–C Coupling. Chemistry - an Asian Journal, 2021, 16, 3610-3614.	1.7	1
228	Formation of partial κ-Ce2Zr2O8 phase and its promotion on the supported Pd-only three-way catalysts. Materials Research Bulletin, 2021, 141, 111341.	2.7	10
229	Effect of single atom Platinum (Pt) doping and facet dependent on the electronic structure and light absorption of Lanthanum Titanium Oxide (La2Ti2O7): A Density Functional Theory study. Surface Science, 2022, 715, 121949.	0.8	5
230	Palladium supported on urea-containing porous organic polymers as heterogeneous catalysts for C–C cross coupling reactions and reduction of nitroarenes. Journal of Saudi Chemical Society, 2021, 25, 101317.	2.4	9
231	Catalysis in Single Crystalline Materials: From Discrete Molecules to Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2021, 16, 3544-3557.	1.7	0
232	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Applied Catalysis B: Environmental, 2021, 292, 120162.	10.8	114
233	Heterogeneous Two-Atom Single-Cluster Catalysts for the Nitrogen Electroreduction Reaction. Journal of Physical Chemistry C, 2021, 125, 19821-19830.	1.5	27
234	2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chemistry - an Asian Journal, 2021, 16, 3259-3271.	1.7	8
235	Copper Immobilization on Fe3O4@Agar: An Efficient Superparamagnetic Nanocatalyst for Green Ullmann-Type Cross-Coupling Reaction of Primary and Secondary Amines with Aryl Iodide Derivatives. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4648-4658.	1.9	7

#	Article	IF	CITATIONS
236	Economical concerns of lignin in the energy sector. Cleaner Engineering and Technology, 2021, 4, 100258.	2.1	14
237	Transition metal â€~cocktail'-type catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100502.	3.2	28
238	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	10.8	49
239	The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coordination Chemistry Reviews, 2021, 446, 214117.	9.5	79
240	Molecular approaches to heterogeneous catalysis. Coordination Chemistry Reviews, 2021, 448, 214179.	9.5	29
241	In-situ synthesis of highly dispersed Cu-CuxO nanoparticles on porous carbon for the enhanced persulfate activation for phenol degradation. Separation and Purification Technology, 2021, 276, 119260.	3.9	36
242	Kinetics of cluster shape sensitive heterogeneous catalytic reactions. Chemical Engineering Journal, 2021, 425, 130642.	6.6	5
243	Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxidation of methane to C1 oxygenates. Applied Catalysis B: Environmental, 2021, 299, 120682.	10.8	32
244	Single-atom Co-N-C catalyst for efficient Hg0 oxidation at low temperature. Chemical Engineering Journal, 2022, 428, 132660.	6.6	18
245	Nickel dual-atom catalysts for the selective electrocatalytic debromination of tribromoacetic acid as a green chemistry process. Chemical Engineering Journal, 2022, 427, 131719.	6.6	24
246	Taming the challenges of activity and selectivity in catalysts for electrochemical N2 fixation via single metal atom supported on WS2. Applied Surface Science, 2022, 571, 151357.	3.1	16
247	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
248	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
249	Shape control in seed-mediated synthesis of non-elongated Cu nanoparticles and their optical properties. Nanoscale, 2021, 13, 12505-12512.	2.8	7
250	Interfacial processes in electrochemical energy systems. Chemical Communications, 2021, 57, 10453-10468.	2.2	28
251	Single Metal Atom Decorated Carbon Nitride for Efficient Photocatalysis: Synthesis, Structure, and Applications. Solar Rrl, 2021, 5, 2000609.	3.1	51
252	The atomic-level regulation of single-atom site catalysts for the electrochemical CO ₂ reduction reaction. Chemical Science, 2021, 12, 4201-4215.	3.7	61
253	Revealing Charge Transfer at the Interface of Spinel Oxide and Ceria during CO Oxidation. ACS Catalysis, 2021, 11, 1516-1527.	5.5	20

#	Article	IF	CITATIONS
254	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	15.6	188
255	Investigation of the optical properties of uniform platinum, palladium, and nickel nanocrystals enables direct measurements of their concentrations in solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125007.	2.3	6
256	Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries. New Carbon Materials, 2020, 35, 630-645.	2.9	17
257	Tunable Electronic Metal–Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. Inorganic Chemistry, 2021, 60, 4207-4217.	1.9	24
258	Isolated Palladium Atoms Dispersed on Silicoaluminophosphate-31 (SAPO-31) for the Semihydrogenation of Alkynes. ACS Applied Nano Materials, 2021, 4, 861-868.	2.4	11
259	The supramolecular redox functions of metallomacromolecules. Journal of Leather Science and Engineering, 2020, 2, .	2.7	8
260	High performance lasing in a single ZnO microwire using Rh nanocubes. Optics Express, 2020, 28, 20920.	1.7	11
261	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	2.8	45
262	A combined computational and experimental study of methane activation during oxidative coupling of methane (OCM) by surface metal oxide catalysts. Chemical Science, 2021, 12, 14143-14158.	3.7	5
263	A confined thermal transformation strategy to synthesize single atom catalysts supported on nitrogen-doped mesoporous carbon nanospheres for selective hydrogenation. Journal of Materials Chemistry A, 2021, 9, 25488-25494.	5.2	3
264	Adsorption of alkylamines on Cu surfaces: identifying ideal capping molecules using first-principles calculations. Nanoscale, 2021, 13, 18536-18545.	2.8	3
265	Magnetically Reusable Fe3O4@NC@Pt Catalyst for Selective Reduction of Nitroarenes. Catalysts, 2021, 11, 1219.	1.6	7
266	Boosting the water gas shift reaction on Pt/CeO2-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying. Journal of Energy Chemistry, 2022, 67, 241-249.	7.1	18
267	How can the Dualâ€atom Catalyst FeCo–NC Surpass Singleâ€atom Catalysts Fe–NC/Co–NC in CO ₂ RR? – CO Intermediate Assisted Promotion via a Synergistic Effect. Energy and Environmental Materials, 2023, 6, .	7.3	24
268	Strengthen the Affinity of Element Mercury on the Carbon-Based Material by Adjusting the Coordination Environment of Single-Site Manganese. Environmental Science & Technology, 2021, 55, 14126-14135.	4.6	18
269	Unveiling the Actual Catalytic Sites in Nanozyme atalyzed Oxidation of <i>o</i> â€Phenylenediamine. Small, 2021, 17, e2104083.	5.2	21
270	A Hydrothermally Stable Single-Atom Catalyst of Pt Supported on High-Entropy Oxide/Al ₂ O ₃ : Structural Optimization and Enhanced Catalytic Activity. ACS Applied Materials & Interfaces, 2021, 13, 48764-48773.	4.0	21
271	Acidic hierarchical porous ZSM-5 assembled palladium catalyst: A green substitute to transform primary amides to nitriles. Applied Catalysis B: Environmental, 2022, 302, 120835.	10.8	15

#	Article	IF	Citations
272	Structureâ€Reactivity Relationship for Nano atalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angewandte Chemie, 2021, 133, 26546.	1.6	1
273	Structure–Reactivity Relationship for Nano atalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angewandte Chemie - International Edition, 2021, 60, 26342-26345.	7.2	10
274	Catalytically active gold clusters with atomic precision for noninvasive early intervention of neurotrauma. Journal of Nanobiotechnology, 2021, 19, 319.	4.2	9
275	SBA15-supported nano-ruthenium catalyst for the oxidative cleavage of alkenes to aldehydes under flow conditions. Tetrahedron Letters, 2021, 86, 153509.	0.7	3
276	Factors Affecting the Catalytic Performance of Nanoâ€catalysts. Chinese Journal of Chemistry, 2022, 40, 515-523.	2.6	16
277	One-pot, green and surfactant-less synthesis of polyhedral PdNPs anchored on GO as superior catalyst for reduction of 4-nitrophenol. Synthetic Metals, 2021, 282, 116957.	2.1	2
278	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	2.6	17
279	High spin polarized Fe ₂ cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorganic Chemistry Frontiers, 2021, 8, 5299-5311.	3.0	6
280	Rare earth La single atoms supported MoO3-x for efficient photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2022, 301, 120766.	10.8	76
281	Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. Journal of Hazardous Materials, 2022, 424, 127427.	6.5	39
282	Synthesis of Nanostructured Materials for Conversion of Fuels. ACS Symposium Series, 2020, , 189-206.	0.5	2
283	A single-atom Cu–N ₂ catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chemical Science, 2021, 12, 15045-15053.	3.7	36
284	Water Purification Using Subnanostructured Photocatalysts. ACS Symposium Series, 2020, , 189-225.	0.5	0
285	Influence of the Pt size and CeO ₂ morphology at the Pt–CeO ₂ interface in CO oxidation. Journal of Materials Chemistry A, 2021, 9, 26381-26390.	5.2	28
286	Synthesis of Single-Atom Catalysts Through Top-Down Atomization Approaches. Frontiers in Catalysis, 2021, 1, .	1.8	13
287	Scaling up of cluster beam deposition technology for catalysis application. Frontiers of Chemical Science and Engineering, 2021, 15, 1360-1379.	2.3	8
288	The Sizeâ€Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the Upgrading of Biomassâ€Derived 5â€Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem, 2022, 14, .	1.8	3
289	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	3.7	28

#	Article	IF	CITATIONS
290	Tantalum based single, double, and triple atom catalysts supported on g-C ₂ N monolayer for effective nitrogen reduction reaction: a comparative DFT investigation. Catalysis Science and Technology, 2022, 12, 310-319.	2.1	20
291	Cost-effective and durable electrocatalysts for Co-electrolysis of CO2 conversion and glycerol upgrading. Nano Energy, 2022, 92, 106751.	8.2	35
292	Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coordination Chemistry Reviews, 2022, 452, 214298.	9.5	132
293	Flexible, compressible, versatile biomass-derived freestanding carbon monoliths as binder- and substrate-free tri-functional electrodes for solid-state zinc-air batteries and overall water splitting. Applied Catalysis B: Environmental, 2022, 304, 120977.	10.8	17
294	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) ₄] ²⁺ (BF <sub Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics, 2021, 40, 3876-3885.</sub 	>4 1.1	^{–10}
295	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology, 2022, 17, 174-181.	15.6	279
296	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	2.5	33
298	Strong Metal Phosphide–Phosphate Support Interaction for Enhanced Nonâ€Noble Metal Catalysis. Advanced Materials, 2022, 34, e2106724.	11.1	35
299	Promoting propane dehydrogenation via strain engineering on iridium single-atom catalyst. Fuel, 2022, 311, 122580.	3.4	8
300	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	23.0	104
301	Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming. Chemical Engineering Science, 2022, 252, 117286.	1.9	6
302	Strong metal-support interactions induced by an ultrafast laser. Nature Communications, 2021, 12, 6665.	5.8	80
303	Efficacious CO ₂ Adsorption and Activation on Ag Nanoparticles/CuO Mesoporous Nanosheets Heterostructure for CO ₂ Electroreduction to CO. Inorganic Chemistry, 2021, 60, 19356-19364.	1.9	16
304	Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Materials, 2022, 45, 301-322.	9.5	67
305	A Rhenium Singleâ€Atom Catalyst for the Electrocatalytic Oxygen Reduction Reaction. ChemPlusChem, 2021, 86, 1635-1639.	1.3	7
306	Construction of single-atom copper sites with low coordination number for efficient CO ₂ electroreduction to CH ₄ . Journal of Materials Chemistry A, 2022, 10, 6187-6192.	5.2	24
307	Efficient Reusable Gold-Mesoporous Silica Nanocatalysts for Aromatic Nitro Reduction: Role of Phenolic Chelating Ligands on Immobilizing Gold Nanoparticles and Catalytic Activity. Nano, 2021, 16, .	0.5	0
308	Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering, 2022, 35, 100771.	3.8	20

#	Article	IF	CITATIONS
309	Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. Journal of Energy Chemistry, 2022, 68, 439-453.	7.1	18
310	Single-Atom Ni Sites Anchored on CeO ₂ Nanospheres as an Efficient Catalyst for the Hydrogenolysis of Lignin to Aromatic Monomers. SSRN Electronic Journal, 0, , .	0.4	0
311	Active centers of redox catalysts. Catalysis and Petrochemistry, 2021, , 9-31.	0.2	0
312	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
313	Double-atom catalysts for energy-related electrocatalysis applications: a theoretical perspective. Journal Physics D: Applied Physics, 2022, 55, 203001.	1.3	57
314	Metal–Support Synergistic Catalysis in Pt/MoO _{3–<i>x</i>} Nanorods toward Ammonia Borane Hydrolysis with Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2022, 14, 5275-5286.	4.0	44
315	A polyoxometalate cluster-based single-atom catalyst for NH ₃ synthesis <i>via</i> an enzymatic mechanism. Journal of Materials Chemistry A, 2022, 10, 6165-6177.	5.2	23
316	C2 weakens the turnover frequency during the melting of Fe _{<i>x</i>} C _{<i>y</i>} : insights from reactive MD simulations. New Journal of Chemistry, 2021, 46, 282-293.	1.4	1
317	Functionalized nanoparticles and their environmental remediation potential: a review. Journal of Nanostructure in Chemistry, 2022, 12, 1007-1031.	5.3	29
318	Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Research, 2022, 15, 3980-3990.	5.8	20
319	Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH) ₂ /N-Doped Graphene. Analytical Chemistry, 2022, 94, 1919-1924.	3.2	51
320	Non-metal boron atoms on a CuB ₁₂ monolayer as efficient catalytic sites for urea production. Chemical Science, 2022, 13, 1342-1354.	3.7	34
321	Noble-metal based single-atom catalysts for the water-gas shift reaction. Chemical Communications, 2021, 58, 208-222.	2.2	13
322	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 4097-4115.	1.3	75
323	Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes. Scientific Reports, 2022, 12, 2.	1.6	10
324	Plasmonic catalysis with designer nanoparticles. Chemical Communications, 2022, 58, 2055-2074.	2.2	34
325	Altering Ligand Fields in Single-Atom Sites through Second-Shell Anion Modulation Boosts the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 2197-2207.	6.6	183
326	Boosting nitrogen reduction to ammonia on Fe–N3S sites by introduction S into defect graphene. Materials Today Energy, 2022, 25, 100954.	2.5	4

#	Article	IF	CITATIONS
327	Migration of zeolite-encapsulated Pt and Au under reducing environments. Catalysis Science and Technology, 2022, 12, 1598-1609.	2.1	4
328	Spatially isolated CoNx quantum dots on carbon nanotubes enable a robust radical-free Fenton-like process. Chemical Communications, 2022, 58, 451-454.	2.2	5
329	Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of CdS–Pt Nanorod Photocatalysts for Light Driven H ₂ Generation. Journal of the American Chemical Society, 2022, 144, 2705-2715.	6.6	80
330	Confinement synthesis in porous molecule-based materials: a new opportunity for ultrafine nanostructures. Chemical Science, 2022, 13, 1569-1593.	3.7	18
331	Tertiary amine-bisquaternary ammonium functionalized polyacrylonitrile fiber for catalytic synthesis of pyran-annulated heterocycles. Reactive and Functional Polymers, 2022, 172, 105201.	2.0	4
332	Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. Chinese Chemical Letters, 2022, 33, 5023-5029.	4.8	28
333	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
334	Nanocatalyzed upcycling of the plastic wastes for a circular economy. Coordination Chemistry Reviews, 2022, 458, 214422.	9.5	54
335	Atomic alloys of nickel-platinum on carbon network for methanol oxidation. Nano Energy, 2022, 95, 106984.	8.2	31
336	Accelerating Pd Electrocatalysis for CO ₂ -to-Formate Conversion across a Wide Potential Window by Optimized Incorporation of Cu. ACS Applied Materials & Interfaces, 2022, 14, 8896-8905.	4.0	26
337	Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9, .	4.6	22
338	Framing Silver Nanocrystals with a Second Metal to Enhance Shape Stability and Expand Functionality. Accounts of Materials Research, 2022, 3, 391-402.	5.9	5
339	Nanocatalyzed Upcycling of the Plastic Wastes for a Circular Economy. SSRN Electronic Journal, 0, , .	0.4	0
340	Controlled synthesis and structural modulation to boost intrinsic photocatalytic activity of BiVO ₄ . CrystEngComm, 2022, 24, 2686-2696.	1.3	9
341	Metal@hollow carbon sphere nanoreactors for sustainable biomass and CO ₂ valorization. Journal of Materials Chemistry A, 2022, 10, 7557-7603.	5.2	7
342	2D graphdiyne: an emerging carbon material. Chemical Society Reviews, 2022, 51, 2681-2709.	18.7	225
343	Higher loadings of Pt single atoms and clusters over reducible metal oxides: application to C–O bond activation. Catalysis Science and Technology, 2022, 12, 2920-2928.	2.1	7
344	Efficient Electrocatalytic N2fixation Over Bc3n2monolayer: A Computational Screening of Single-Atom Catalysts. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
345	Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green Chemistry, 2022, 24, 2267-2286.	4.6	45
346	Strategies for boosting the activity of single-atom catalysts for future energy applications. Journal of Materials Chemistry A, 2022, 10, 10297-10325.	5.2	14
347	Engineering Multienzymeâ€Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Advanced Materials, 2022, 34, e2108174.	11.1	91
348	Metal-Coordinating Single-Boron Sites Confined in Antiperovskite Borides for N ₂ -to-NH ₃ Catalytic Conversion. ACS Catalysis, 2022, 12, 2967-2978.	5.5	11
349	MXeneâ€Supported, Atomicâ€Layered Iridium Catalysts Created by Nanoparticle Reâ€Dispersion for Efficient Alkaline Hydrogen Evolution. Small, 2022, 18, e2105226.	5.2	16
350	Constructing Synergistic Znâ€N ₄ and Feâ€N ₄ O Dualâ€Sites from the COF@MOF Derived Hollow Carbon for Oxygen Reduction Reaction. Small Structures, 2022, 3, .	6.9	46
351	Atomically Dispersed Pt on Three-Dimensional Ordered Macroporous SnO ₂ for Highly Sensitive and Highly Selective Detection of Triethylamine at a Low Working Temperature. ACS Applied Materials & Interfaces, 2022, 14, 13440-13449.	4.0	14
352	Synergetic Function of the Single-Atom Ru–N ₄ Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis. ACS Applied Materials & Interfaces, 2022, 14, 15250-15258.	4.0	35
353	Toward accurate and efficient dynamic computational strategy for heterogeneous catalysis: Temperature-dependent thermodynamics and kinetics for the chemisorbed on-surface CO. Chinese Chemical Letters, 2022, 33, 4936-4942.	4.8	7
354	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	6.4	35
355	Catalytic Potential of Postâ€Transition Metal Doped Grapheneâ€Based Singleâ€Atom Catalysts for the CO ₂ Electroreduction Reaction. ChemPhysChem, 2022, 23, .	1.0	6
356	Effect of surface acidity modulation on Pt/Al2O3 single atom catalyst for carbon monoxide oxidation and methanol decomposition. Catalysis Today, 2022, 402, 149-160.	2.2	12
357	What Insights Can the Development of Single-Atom Photocatalysts Provide for Water and Air Disinfection?. ACS ES&T Engineering, 2022, 2, 1053-1067.	3.7	4
358	Emerging Ultrahighâ€Density Singleâ€Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures, 2022, 3, .	6.9	41
359	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
360	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	1.6	21
361	Top-down synthetic strategies toward single atoms on the rise. Matter, 2022, 5, 788-807.	5.0	28
362	Heterogeneous Trimetallic Nanoparticles as Catalysts. Chemical Reviews, 2022, 122, 6795-6849.	23.0	61

#	Article	IF	CITATIONS
363	Size-Dependent Pt Nanoparticle/Carbon-Catalyzed Hydrogenation of 6-Chloroquinoline. ACS Applied Nano Materials, 2022, 5, 4252-4259.	2.4	4
364	Synergistic Electronic Effects in AuCo Nanoparticles Stabilized in a Triazine-Based Covalent Organic Framework: A Catalyst for Methyl Orange and Methylene Blue Reduction. ACS Applied Nano Materials, 2022, 5, 4744-4753.	2.4	10
365	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
366	Shape-controlled nanostructured MoO3/CeO2 catalysts for selective cyclohexene epoxidation. Catalysis Communications, 2022, 164, 106433.	1.6	5
367	Rational design and precise manipulation of nano-catalysts. Chinese Journal of Catalysis, 2022, 43, 898-912.	6.9	7
368	Electrochemical synthesis of catalytic materials for energy catalysis. Chinese Journal of Catalysis, 2022, 43, 1001-1016.	6.9	23
369	Comparative assessment of heterogeneous and homogeneous Suzuki-Miyaura catalytic reactions using bio-Profiles and bio-Factors. Journal of Organometallic Chemistry, 2022, 965-966, 122319.	0.8	6
370	Ligand assistance via solid-state coordination for promoting nickel dispersion over the Ni/Beta hydroisomerization catalyst. Fuel, 2022, 318, 123568.	3.4	14
371	Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid. Nano Energy, 2022, 97, 107191.	8.2	17
372	Single noble metals (Pd, Pt and Ir) anchored Janus MoSSe monolayers: Efficient oxygen reduction/evolution reaction bifunctional electrocatalysts and harmful gas detectors. Journal of Colloid and Interface Science, 2022, 616, 177-188.	5.0	10
373	Dual confinement strategy based on metal-organic frameworks to synthesize MnOx@ZrO2 catalysts for toluene catalytic oxidation. Fuel, 2022, 320, 123983.	3.4	11
374	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
375	Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega, 2022, 7, 17-31.	1.6	46
376	Heterometallic Ce ^{IV} /V ^V Oxo Clusters with Adjustable Catalytic Reactivities. Journal of the American Chemical Society, 2021, 143, 21056-21065.	6.6	21
377	Heterogeneous Cu catalyst in organic transformations. Nano Research, 2022, 15, 2810-2833.	5.8	29
378	Recent Advances in the Marriage of Catalyst Nanoparticles and Mesoporous Supports. Advanced Materials Interfaces, 2022, 9, .	1.9	10
379	Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. Science China Materials, 2022, 65, 1303-1312.	3.5	10
380	Unveiling the Ir single atoms as selective active species for the partial hydrogenation of butadiene by <i>operando</i> XAS. Nanoscale, 2022, 14, 7641-7649.	2.8	5

#	Article	IF	CITATIONS
381	Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science, 2022, 13, 5606-5615.	3.7	9
382	Reducing Valence States of Co Active Sites in a Singleâ€Atom Nanozyme for Boosted Tumor Therapy. Advanced Functional Materials, 2022, 32, .	7.8	47
383	Supported Subâ€Nanometer Clusters for Electrocatalysis Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
384	Identification of the Stable Pt Single Sites in the Environment of Ions: From Mechanism to Design Principle. Advanced Materials, 2022, 34, e2108504.	11.1	6
385	Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43, 1433-1443.	6.9	37
386	Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon. Chemical Engineering Journal, 2022, 443, 136416.	6.6	10
387	Tailoring the coordination environment of cobalt in a single-atom catalyst through phosphorus doping for enhanced activation of peroxymonosulfate and thus efficient degradation of sulfadiazine. Applied Catalysis B: Environmental, 2022, 312, 121408.	10.8	80
388	High Pt-mass activity of PtIV1/β-MnO ₂ surface for low-temperature oxidation of CO under O ₂ -rich conditions. Catalysis Science and Technology, 2022, 12, 2749-2754.	2.1	1
389	Screening of transition metal single-atom catalysts supported by a WS ₂ monolayer for electrocatalytic nitrogen reduction reaction: insights from activity trend and descriptor. Physical Chemistry Chemical Physics, 2022, 24, 13384-13398.	1.3	10
390	Exploring the Zn-regulated function in Co–Zn catalysts for efficient hydrogenation of ethyl levulinate to γ-valerolactone. Catalysis Science and Technology, 2022, 12, 4325-4338.	2.1	5
391	Dual transition metal atoms embedded in N-doped graphene for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2022, 10, 13527-13543.	5.2	30
392	Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nature Nanotechnology, 2022, 17, 606-612.	15.6	39
393	Identification of Active Sites in HCHO Oxidation over TiO ₂ -Supported Pt Catalysts. ACS Catalysis, 2022, 12, 5565-5573.	5.5	24
394	Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Research, 2022, 15, 9747-9763.	5.8	19
395	Reactive Molecular Dynamics Simulations of the Depolymerization of Polyethylene Using Graphene-Oxide-Supported Platinum Nanoparticles. Journal of Physical Chemistry A, 2022, 126, 3167-3173.	1.1	4
396	Enhanced Dualâ€Directional Sulfur Redox via a Biotemplated Singleâ€Atomic Fe–N ₂ Mediator Promises Durable Li–S Batteries. Advanced Materials, 2022, 34, e2202256.	11.1	60
397	Kinetic and Thermodynamic Factors Influencing Palladium Nanoparticle Redispersion into Mononuclear Pd(II) Cations in Zeolite Supports. Journal of Physical Chemistry C, 2022, 126, 8337-8353.	1.5	12
398	Effect of ceria surface facet on stability and reactivity of isolated platinum atoms. Nano Research, 2022, 15, 5922-5932.	5.8	11

#	Article	IF	CITATIONS
399	Reduction-Controlled Atomic Migration for Single Atom Alloy Library. Nano Letters, 2022, 22, 4232-4239.	4.5	20
400	Defective NiO as a Stabilizer for Au Single-Atom Catalysts. ACS Catalysis, 2022, 12, 6149-6158.	5.5	30
401	Direct Visualization of the Evolution of a Singleâ€Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution. Advanced Science, 2022, 9, e2200592.	5.6	15
402	Enhancing the oxidative desulfurization efficiency of cobalt-loaded-porous carbon catalyst via nitrogen doping on carbon support. Journal of Cleaner Production, 2022, 360, 132168.	4.6	19
403	Transformation of reduced graphene aerogel-supported atomically dispersed iridium into stable clusters approximated as Ir6 during ethylene hydrogenation catalysis. Journal of Catalysis, 2022, 413, 603-613.	3.1	2
404	Revisiting the mechanism of highly efficient CO oxidation by single iron atom catalysis on Pt(100). Materials Today Communications, 2022, 31, 103609.	0.9	0
405	Anchoring single Ni atoms on CeO2 nanospheres as an efficient catalyst for the hydrogenolysis of lignin to aromatic monomers. Fuel, 2022, 324, 124499.	3.4	20
406	Synergistic effect of Cu+ single atoms and Cu nanoparticles supported on alumina boosting water-gas shift reaction. Applied Catalysis B: Environmental, 2022, 313, 121468.	10.8	25
407	Iron Single-Atom nanocatalysts in response to tumor microenvironment for highly efficient Chemo-chemodynamic therapy. Journal of Industrial and Engineering Chemistry, 2022, 112, 210-217.	2.9	6
408	Redispersion of Pt nanoparticles encapsulated within ZSM-5 in oxygen and catalytic properties in partial oxidation of methane. Journal of Porous Materials, 0, , 1.	1.3	0
409	Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. Chinese Journal of Catalysis, 2022, 43, 1830-1841.	6.9	16
410	Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 446, 137127.	6.6	48
411	SMN-based catalytic membranes for environmental catalysis. , 2022, , 171-196.		0
412	Future of SMNs catalysts for industry applications. , 2022, , 319-346.		0
413	Ultrafine PdZn bimetallic nanoparticles anchored on sulfur-doped mesoporous carbon for the partial hydrogenation of alkynols. Catalysis Today, 2022, , .	2.2	3
414	Surface modification of metallic catalysts for the design of selective processes. Catalysis Reviews - Science and Engineering, 0, , 1-47.	5.7	6
415	Boosting the performance of single-atom catalysts via external electric field polarization. Nature Communications, 2022, 13, .	5.8	52
416	Revealing synergetic structural activation of a CuAu surface during water–gas shift reaction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5

#	Article	IF	CITATIONS
417	Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438.	1.3	11
418	Oxygen reduction reaction in ethanol fuel cells. , 2022, , 337-378.		0
419	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	2.2	1
420	Biological Pathway to Synthesize Nano-Materials with High Catalytic Performance: Magnetotactic Bacteria Derived Ag/Fe3o4 Heterostructures. SSRN Electronic Journal, 0, , .	0.4	0
421	Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nature Communications, 2022, 13, .	5.8	39
422	Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Scientific Reports, 2022, 12, .	1.6	17
423	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
424	Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catalysis, 2022, 2, 1480-1493.	2.9	26
425	Supramolecular confinement pyrolysis to carbon-supported Mo nanostructures spanning four scales for hydroquinone determination. Journal of Hazardous Materials, 2022, 437, 129327.	6.5	12
426	AgNPs@Fe-N-C oxygen reduction catalysts for anion exchange membrane fuel cells. Nano Energy, 2022, 100, 107466.	8.2	31
427	Single Zn Atom Catalyst on Ti2cn2 Mxenes for Efficient Co. SSRN Electronic Journal, 0, , .	0.4	0
428	Binderless Zro2/Hzsm-5 Fibrillar Composites by Electrospinning as Catalysts for the Dimethyl Ether-to-Olefins Process. SSRN Electronic Journal, 0, , .	0.4	0
429	Electrochemical CO ₂ reduction on Cu single atom catalyst and Cu nanoclusters: an <i>ab initio</i> approach. Physical Chemistry Chemical Physics, 2022, 24, 15767-15775.	1.3	4
430	Advances in the Key Metalâ€Based Catalysts for Efficient Electrochemical Conversion of CO ₂ . ChemBioEng Reviews, 0, , .	2.6	0
431	Engineering Electronic Platinum–Carbon Support Interaction to Tame Carbon Monoxide Activation. Fundamental Research, 2022, , .	1.6	2
432	Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science, 2022, 377, 204-208.	6.0	73
433	Singleâ€atom catalysis for carbon neutrality. , 2022, 4, 1021-1079.		96
434	Single Ti ³⁺ Ion Catalyzes NO Reduction on Stoichiometric Titanium Oxide Cluster Anions (TiO ₂) _{<i>n</i>} ^{â€"} (<i>n</i> > = 1â€"11). ACS Catalysis. 2022. 12. 8768-87	75 ^{.5}	6

#	Article	IF	Citations
# 435	Binderless ZrO2/HZSM-5 fibrillar composites by electrospinning as catalysts for the dimethyl ether-to-olefins process. Microporous and Mesoporous Materials, 2022, 342, 112102.	2.2	4
436	Plastic Waste Valorization by Leveraging Multidisciplinary Catalytic Technologies. ACS Catalysis, 2022, 12, 9307-9324.	5.5	47
437	General Strategy toward Hydrophilic Single Atom Catalysts for Efficient Selective Hydrogenation. Advanced Science, 2022, 9, .	5.6	21
438	Calculation screening of Janus WSSe monolayer modified with single platinum group metal atom as efficient bifunctional oxygen electrocatalysts. Applied Catalysis A: General, 2022, 643, 118777.	2.2	6
439	Anchored Fe atoms for N O bond activation to boost electrocatalytic nitrate reduction at low concentrations. Applied Catalysis B: Environmental, 2022, 317, 121721.	10.8	27
440	Highly Efficient MOF-Driven Silver Subnanometer Clusters for the Catalytic Buchner Ring Expansion Reaction. Inorganic Chemistry, 2022, 61, 11796-11802.	1.9	8
441	Metallopolymer Particle Engineering via Etching of Boronate Polymers toward Highâ€Performance Overall Water Splitting Catalysts. Small, 2022, 18, .	5.2	2
442	Embedding isolated iron into biomass-derived porous carbon as efficient electrocatalysts for O2 and CO2 reduction. Journal of Materials Science, 0, , .	1.7	0
443	Sizeâ€Dependence of Ptâ€Based Catalysts for Ethane Catalytic Combustion. ChemistrySelect, 2022, 7, .	0.7	1
444	Super Stability of Cu-Mn/Y Bimetallic Catalyst for Ozone-assisted Catalytic Oxidation of Toluene. Water, Air, and Soil Pollution, 2022, 233, .	1.1	2
445	Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	81
446	Palladium Supported on Porous Organic Polymer as Heterogeneous and Recyclable Catalyst for Cross Coupling Reaction. Molecules, 2022, 27, 4777.	1.7	5
447	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
448	Copper dual-atom catalyst mediated C3–H amination of indoles at room temperature. Catalysis Science and Technology, 2022, 12, 5390-5396.	2.1	7
449	Size Sensitivity of Supported Palladium Species on Layered Double Hydroxides for the Electro-oxidation Dehydrogenation of Hydrazine: From Nanoparticles to Nanoclusters and Single Atoms. ACS Catalysis, 2022, 12, 10711-10717.	5.5	22
450	Constructing singleâ€atom Ni on Nâ€doped carbon via chelationâ€anchored strategy for the hydrogenolysis of lignin. AICHE Journal, 2023, 69, .	1.8	15
451	The strengthened Pd-(CeO2-ZrO2) interaction by κ-Ce2Zr2O8 and the improved three-way catalytic performance. Applied Catalysis A: General, 2022, 646, 118831.	2.2	5
452	Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nature Communications, 2022, 13, .	5.8	52

#	Article	IF	Citations
453	Transformation of Platinum Singleâ€Atom Catalysts to Singleâ€Atom Alloys on Supported Nickel: TEM and XAS Spectroscopic Investigation. ChemCatChem, 2022, 14, .	1.8	4
454	Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angewandte Chemie, 2022, 134, .	1.6	14
455	Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping. Nano Research, 2023, 16, 318-324.	5.8	13
456	Heterogeneous hydroformylation of alkenes by Rh-based catalysts. CheM, 2022, 8, 2630-2658.	5.8	35
457	Improving the Energetic Stability and Electrocatalytic Performance of Au/WSSe Single-Atom Catalyst with Tensile Strain. Nanomaterials, 2022, 12, 2793.	1.9	8
458	A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2?. Journal of Water Process Engineering, 2022, 49, 103077.	2.6	10
459	Emerging Heterogeneous Supports for Efficient Electrocatalysis. Small Methods, 2022, 6, .	4.6	15
460	Synthesis of Fully Exposed Singleâ€Atomâ€Layer Metal Clusters on 2D Ordered Mesoporous TiO ₂ Nanosheets. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
461	Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production. Renewable and Sustainable Energy Reviews, 2022, 169, 112918.	8.2	46
462	Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. Energy Storage Materials, 2022, 52, 685-735.	9.5	38
463	Recent Process in the <i>in situ </i> Generated Metal Nanocluster Catalysis. Chinese Journal of Organic Chemistry, 2022, 42, 2331.	0.6	1
464	In-Situ Growth of Co/Zn Bimetallic Mof on Go Surface to Prepare Go Supporting Co@C Single-Atom Catalyst for Hg0 Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
465	Dual-Atom Cu2/N-Doped Carbon Catalyst for Electroreduction of Co2 to C2h4. SSRN Electronic Journal, 0, , .	0.4	0
466	Self-Assembly of AU Nanocrystals into Large-Area 3-D Ordered Flexible Superlattice Nanostructures Arrays for Ultrasensitive Trace Multi-Hazard Detection. SSRN Electronic Journal, 0, , .	0.4	0
467	Interplay of Pd Ensemble Sites Induced by Gaox Modification in Boosting Co2 Hydrogenation to Formic Acid. SSRN Electronic Journal, 0, , .	0.4	0
468	Rational design, application and dynamic evolution of Cu–N–C single-atom catalysts. Journal of Materials Chemistry A, 2022, 10, 21769-21796.	5.2	7
469	Metal oxide composites in organic transformations. , 2022, , 601-632.		0
470	Electroreduction of nitrate to ammonia on atomically-dispersed Cu-N4 active sites with high efficiency and stability. Fuel, 2023, 332, 126106.	3.4	8

#	Article	IF	CITATIONS
471	MOF-derived single-atom catalysts: The next frontier in advanced oxidation for water treatment. Chemical Engineering Journal, 2023, 452, 139446.	6.6	28
472	Interplay of Pd ensemble sites induced by GaO modification in boosting CO2 hydrogenation to formic acid. Applied Catalysis B: Environmental, 2023, 320, 122022.	10.8	16
473	Time-Domain Photothermal AFM Spectroscopy via Femtosecond Pulse Shaping. Analytical Chemistry, 2022, 94, 12374-12382.	3.2	3
474	Electronic structure and physicochemical properties of the metal and semimetal oxide nanoclusters. Journal of Molecular Modeling, 2022, 28, .	0.8	1
475	Facet Engineering of a Metalâ€Organic Framework Support Modulates the Microenvironment of Pd Nanoparticles for Selective Hydrogenation. Angewandte Chemie, 0, , .	1.6	0
476	Activating Molybdenum Carbide Nanoparticle Catalysts under Mild Conditions Using Thermally Labile Ligands. Chemistry of Materials, 2022, 34, 8849-8857.	3.2	5
477	Synthesis of Fully Exposed Singleâ€Atom‣ayer Metal Clusters on 2D Ordered Mesoporous TiO ₂ Nanosheets. Angewandte Chemie, 2022, 134, .	1.6	1
478	The Progress and Outlook of Metal Single-Atom-Site Catalysis. Journal of the American Chemical Society, 2022, 144, 18155-18174.	6.6	151
479	Facet Engineering of a Metal–Organic Framework Support Modulates the Microenvironment of Palladium Nanoparticles for Selective Hydrogenation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
480	Influences of Ni Content on the Microstructural and Catalytic Properties of Perovskite LaNixCr1â^'xO3 for Dry Reforming of Methane. Catalysts, 2022, 12, 1143.	1.6	2
481	Precise Regulation of Iron Spin States in Single FeN ₄ Sites for Efficient Peroxidaseâ€Mimicking Catalysis. Small, 2022, 18, .	5.2	11
482	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
483	Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. CheM, 2022, 8, 3252-3262.	5.8	21
484	Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catalysis, 2022, 12, 12138-12161.	5.5	12
485	Termolecular Eley–Rideal pathway for efficient <scp>CO</scp> oxidation on phosphoreneâ€supported singleâ€atom cobalt catalyst. Bulletin of the Korean Chemical Society, 2022, 43, 1254-1261.	1.0	5
486	Bimetallic dual-atom catalysts: A step toward bioinspired catalysis. CheM, 2022, 8, 2584-2586.	5.8	6
487	Rational design and synthesis of cerium dioxide-based nanocomposites. Nano Research, 2023, 16, 3622-3640.	5.8	3
488	Recent Advances in Designing Efficient Electrocatalysts for Electrochemical Nitrate Reduction to Ammonia. Small Structures, 2023, 4, .	6.9	32

ARTICLE IF CITATIONS Environmental remediation and sustainable energy generation via photocatalytic technology using 489 2.8 76 rare earth metals modified g-C3N4: A review. Journal of Alloys and Compounds, 2023, 931, 167469. Modulated Hydrothermal Chemistry of Metal–Organic Frameworks. Accounts of Materials Research, 2022, 3, 1106-1114. Tailoring the Dispersion of Metals on ZnO with Preadsorbed Water. Journal of Physical Chemistry 491 2.1 0 Letters, 2022, 13, 10207-10215. Looking beyond Adsorption Energies to Understand Interactions at Surface using Machine Learning. ChemistrySelect, 2022, 7, . Tuning the Properties of Metalâ€Organic Cages through Platinum Nanoparticle Encapsulation. 493 0.7 0 ChemistrySelect, 2022, 7, . Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction 494 5.8 for boosting CO2 hydrogenation. Nano Research, 2023, 16, 2209-2217 Low-loading gold in situ doped with sulfur by biomolecule-assisted approach for promoted 495 5.8 2 electrochemical carbon dioxide reduction. Nano Research, 0, , . Discerning the Contributions of Gold Species in Butadiene Hydrogenation: From Single Atoms to 496 7.2 Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, . Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional 497 4.3 5 cátalyst. Rénewable Energy, 2022, 201, 724-733. Interfacial water engineering boosts neutral water reduction. Nature Communications, 2022, 13, . 5.8 Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34, 107959. 499 4.8 6 Perspective of p-block single-atom catalysts for electrocatalysis. Trends in Chemistry, 2022, 4, 4.4 1135-1148. Discerning the Contributions of Gold Species in Butadiene Hydrogenation: From Single Atoms to 501 1.6 0 Nanoparticles. Angewandte Chemie, 0, , . Engineered MoS2 nanostructures for improved photocatalytic applications in water treatment. 1.9 Materials Today Sustainability, 2023, 21, 100264. Galvanic replacement reaction to prepare catalytic materials. Bulletin of the Korean Chemical Society, 503 1.0 10 2023, 44, 4-22. Multicomponent magnetic nanoparticle engineering: the role of structure-property relationship in 504 advanced applications. Materials Today Chemistry, 2022, 26, 101220. Single-atom Co-N5 catalytic sites on carbon nanotubes as peroxymonosulfate activator for 505 sulfamerazine degradation via enhanced electron transfer pathway. Separation and Purification 3.9 15 Technology, 2023, 304, 122398. Self-assembly of Au nanocrystals into large-area 3-D ordered flexible superlattice nanostructures arrays for ultrasensitive trace multi-hazard detection. Journal of Hazardous Materials, 2023, 443, 6.5 130124.

#	Article	IF	CITATIONS
507	In-situ growth of Co/Zn bimetallic MOF on GO surface to prepare GO supporting Co@C single-atom catalyst for HgO oxidation. Fuel, 2023, 333, 126135.	3.4	11
508	Metal nanoparticles with a clean surface via clay-nanosheets as stabilizers and supports for catalytic hydrogenation reactions in aqueous-phase. Fuel, 2023, 334, 126648.	3.4	0
509	Theoretical studies of non-noble metal single-atom catalyst Ni1/MoS2: Electronic structure and electrocatalytic CO2 reduction. Science China Materials, 2023, 66, 1079-1088.	3.5	27
510	Lightâ€Induced Agglomeration of Singleâ€Atom Platinum in Photocatalysis. Advanced Materials, 2023, 35, .	11.1	23
511	Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis. Accounts of Chemical Research, 2023, 56, 52-65.	7.6	14
512	Cobalt atom sites anchored on sulfhydryl decorated UiO-66 to activate peroxymonosulfate for norfloxacin degradation. Journal of Environmental Chemical Engineering, 2023, 11, 108972.	3.3	3
513	Axial nitrogen-coordination engineering over Fe-Nx active species for enhancing Fenton-like reaction performance. Chemical Engineering Journal, 2023, 454, 140382.	6.6	5
514	Comprehensive Review for an Efficient Charge Transfer in Single Atomic Site Catalyst/Organic Polymers toward Photocatalytic CO ₂ Reduction. Advanced Materials Interfaces, 2023, 10, .	1.9	8
515	Highly Exposed NH ₂ Edge on Fragmented gâ€C ₃ N ₄ Framework with Integrated Molybdenum Atoms for Catalytic CO ₂ Cycloaddition: DFT and Technoâ€Economic Assessment. Small, 2023, 19, .	5.2	1
516	Gas-phase synthesis of nanoparticles: current application challenges and instrumentation development responses. Physical Chemistry Chemical Physics, 2023, 25, 897-912.	1.3	2
517	Hydroperoxyl-mediated C-H bond activation on Cr single atom catalyst: An alternative to the Fenton mechanism. Journal of Catalysis, 2023, 417, 323-333.	3.1	4
518	Metal–organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chemical Communications, 2023, 59, 836-851.	2.2	4
519	Single Zn atom catalyst on Ti2CN2 MXenes for efficient CO oxidation. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115595.	1.3	3
520	Design strategies and effect comparisons toward efficient piezocatalytic system. Nano Energy, 2023, 107, 108093.	8.2	30
521	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	16.0	23
522	Atomically dispersed cerium sites in carbon-doped boron nitride for photodriven CO2 reduction: Local polarization and mechanism insight. Applied Catalysis B: Environmental, 2023, 324, 122235.	10.8	9
523	FePO4 Supported Rh Subnano Clusters with Dual Active Sites for Efficient Hydrogenation of Quinoline under Mild Conditions. Nanoscale, 0, , .	2.8	1
524	Coupling Fe and Mo single atoms on hierarchical N-doped carbon nanotubes enhances electrochemical nitrogen reduction reaction performance. Nano Research, 2023, 16, 5743-5749.	5.8	4

#	Article	IF	CITATIONS
525	Valorisation of Corncob Residue towards the Sustainable Production of Glucuronic Acid. Catalysts, 2022, 12, 1603.	1.6	1
526	xmlns:mml= http://www.w3.org/1998/Math/MathML altimg= si84.svg display= inline id="d1e394"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2a^`<mml:mi>l´</mml:mi></mml:mn></mml:mrow>supported Pd<mml:math <="" altimg="si83.svg" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>><<mark>\$</mark>mml:ma</td><td>atlo></td></mml:math></mml:mrow </mml:msub>	>< <mark>\$</mark> mml:ma	at lo >
527	/> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> Kinetics of Heterogeneous Singleâ€6ite Catalysis. ChemCatChem, 2023, 15, .	1.8	4
528	Hybrid Lamellar Superlattices with Monoatomic Platinum Layers and Programmable Organic Ligands. Journal of the American Chemical Society, 2023, 145, 717-724.	6.6	6
529	Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H ₂ Production in 2D TiO ₂ -Bronze Nanosheets. ACS Sustainable Chemistry and Engineering, 2022, 10, 17286-17296.	3.2	14
530	Atomic-Scale Engineering of CuO _x –Au Interfaces over AuCu Single-Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 55644-55652.	4.0	2
531	Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage. Transactions of Tianjin University, 2023, 29, 151-187.	3.3	4
532	Atomic Replacement of PtNi Nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO ₂ Reduction Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 23223-23229.	6.6	42
533	Grand challenges present great opportunities in environmental catalysis. , 0, 1, .		0
534	Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones. Nature Communications, 2022, 13, .	5.8	15
535	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	5.5	10
536	Chitin-Derived Nanocatalysts for Reductive Amination Reactions. Materials, 2023, 16, 575.	1.3	3
537	Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers, 2023, 15, 375.	2.0	2
538	Pseudopyrolysis of Metal–Organic Frameworks: A Synchronous Nucleation Mechanism to Synthesize Ultrafine Metal Compound Nanoparticles. Nano Letters, 2023, 23, 1600-1607.	4.5	4
539	Highly dispersed Rh single atoms over graphitic carbon nitride as a robust catalyst for the hydroformylation reaction. Catalysis Science and Technology, 2023, 13, 1425-1436.	2.1	8
540	Impaired conjugation boosts CO ₂ electroreduction by Ni(<scp>ii</scp>) macrocyclic catalysts immobilized on carbon nanotubes. Journal of Materials Chemistry A, 2023, 11, 2969-2978.	5.2	5
541	High Durability of Fe–N–C Singleâ€Atom Catalysts with Carbon Vacancies toward theÂOxygen Reduction Reaction in Alkaline Media. Advanced Materials, 2023, 35, .	11.1	103
542	Cobalt-phthalocyanine-modified two-dimensional cobalt hydroxide complexes for highly selective electrocatalytic reduction of CO ₂ to CO. Journal of Materials Chemistry A, 2023, 11, 1123-1128.	5.2	6

#	Article	IF	CITATIONS
543	Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene in Water. Nanomaterials, 2023, 13, 348.	1.9	0
544	Dual-atom Cu2/N-doped carbon catalyst for electroreduction of CO2 to C2H4. Applied Catalysis A: General, 2023, 651, 119025.	2.2	13
545	Heterogeneous selective oxidation over supported metal catalysts: From nanoparticles to single atoms. Applied Catalysis B: Environmental, 2023, 325, 122384.	10.8	20
546	Size-dependent interfacial thermal transport in supported platinum nanocatalysts. Chemical Engineering Science, 2023, 269, 118456.	1.9	0
547	Nickel metaphosphate supported ruthenium for all pH hydrogen evolution: From single atom, cluster to nanoparticle. Applied Catalysis B: Environmental, 2023, 325, 122331.	10.8	11
548	Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catalysis, 2023, 13, 974-1019.	5.5	11
549	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50
550	Boosting Electrochemical Catalysis and Nonenzymatic Sensing Toward Glucose by Singleâ€Atom Pt Supported on Cu@CuO Core–Shell Nanowires. Small, 2023, 19, .	5.2	12
551	Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene Hydroxylation Reaction. ACS Catalysis, 2023, 13, 1316-1325.	5.5	32
552	Densityâ€Controlled Metal Nanocluster with Modulated Surface for pHâ€Universal and Robust Water Splitting. Advanced Functional Materials, 2023, 33, .	7.8	11
553	Theoretical exploration of the origin of selectivity for the oxidative carbonylation reaction catalyzed by a single Pd atom embedded on graphene. Catalysis Science and Technology, 2023, 13, 2421-2431.	2.1	1
554	Controlled alcohol oxidation reactions by supported non-noble metal nanoparticles on chitin-derived N-doped carbons. Catalysis Science and Technology, 2023, 13, 2223-2238.	2.1	4
555	Electronic property-dependent activity and durability in Pd/C-catalysed hydrogenation of benzoic acid. Chemical Communications, 0, , .	2.2	0
556	Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011.	5.8	4
557	Gold Nanoparticles Immobilized in Porous Aromatic Frameworks with Abundant Metal Anchoring Sites as Heterogeneous Nanocatalysts. ACS Applied Materials & Interfaces, 0, , .	4.0	1
558	Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen. Chemical Engineering Journal, 2023, 462, 142084.	6.6	21
559	A Review of the Use of Carbon Nanostructures and Other Reducing Agents During Auto-reduction for Fischer–Tropsch Synthesis and Other Applications. Catalysis Letters, 2024, 154, 366-386.	1.4	1
560	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9

#	Article	IF	CITATIONS
561	Built-in electric field-assisted W-C3/X-C3 van der Waals heterogeneous single-atom catalysts for enhanced electrocatalytic nitrogen reduction. Applied Surface Science, 2023, 619, 156790.	3.1	4
562	Breakdown of the correlation between oxidation states and core electron binding energies at the sub-nanoscale. Applied Surface Science, 2023, 619, 156755.	3.1	1
563	Regulating spin state of Fe active sites by the P-doping strategy for enhancing peroxymonosulfate activation. Applied Catalysis B: Environmental, 2023, 330, 122618.	10.8	9
564	Engineering CeO2 configurations to regulate the CuO dispersion and switch pathways of preferential CO oxidation. Applied Catalysis B: Environmental, 2023, 331, 122686.	10.8	13
565	A novel peroxymonosulfate activation process by single-atom iron catalyst from waste biomass for efficient singlet oxygen-mediated degradation of organic pollutants. Journal of Hazardous Materials, 2023, 453, 131333.	6.5	10
566	Bimetallic substrate induction synthesis of binder-free electrocatalysts for stable seawater oxidation at industrial current densities. Chemical Engineering Journal, 2023, 458, 141457.	6.6	8
567	Screening of single-atom catalysts of transition metal supported on MoSe2 for high-efficiency nitrogen reduction reaction. Molecular Catalysis, 2023, 537, 112967.	1.0	4
568	Atomically precise electrocatalysts for oxygen reduction reaction. CheM, 2023, 9, 280-342.	5.8	36
569	Coordination-Driven Self-Assembly Strategy-Activated Cu Single-Atom Nanozymes for Catalytic Tumor-Specific Therapy. Journal of the American Chemical Society, 2023, 145, 4279-4293.	6.6	61
570	Ni–Co Alloy Nanoparticles Catalyze Selective Electrochemical Coupling of Nitroarenes into Azoxybenzene Compounds in Aqueous Electrolyte. ACS Nano, 2023, 17, 3984-3995.	7.3	11
571	General Synthesis of a Diatomic Catalyst Library via a Macrocyclic Precursor-Mediated Approach. Journal of the American Chemical Society, 2023, 145, 4819-4827.	6.6	50
572	Interaction between Single Metal Atoms and UiO-66 Framework Revealed by Low-Dose Imaging. Nano Letters, 2023, 23, 1787-1793.	4.5	5
573	Lanthanide modified Pt/CeO2-based catalysts for methane partial oxidation: Relationship between catalytic activity and structure. International Journal of Hydrogen Energy, 2023, 48, 19074-19086.	3.8	1
574	Confinement Effects in Well-Defined Metal–Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. International Journal of Molecular Sciences, 2023, 24, 4228.	1.8	2
575	Metalâ€Ion/Metal Nanoparticleâ€Anchored Porous Organic Polymers as Efficient Catalysts for Organic Transformations – A Recent Overview. Chemistry - an Asian Journal, 2023, 18, .	1.7	6
576	A universal strategy for green synthesis of biomass-based transition metal single-atom catalysts by simple hydrothermal and compression treatment. Chemical Engineering Journal, 2023, 461, 142104.	6.6	2
577	Alternative Energy Carriers: Unique Interfaces for Electrochemical Hydrogenic Transformations. Advanced Energy Materials, 2023, 13, .	10.2	4
578	Direct Observation of Transition Metal Ions Evolving into Single Atoms: Formation and Transformation of Nanoparticle Intermediates. Advanced Science, 2023, 10, .	5.6	3

#	ARTICLE	IF	CITATIONS
579	Pyridyl-containing graphdiyne stabilizes sub-2 nm ultrasmall copper nanoclusters for the electrochemical reduction of CO ₂ . Inorganic Chemistry Frontiers, 2023, 10, 2189-2196.	3.0	3
580	Ni-based catalysts supported on nanodiamonds for phenol hydrogenation: the effect of support surface treatment on the catalytic performance. Catalysis Science and Technology, 2023, 13, 2385-2392.	2.1	4
581	Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Research, 2023, 16, 6380-6401.	5.8	5
582	<i>In situ</i> study of catalytic CO oxidation on ultrathin MgO film supported Pd nanoparticles by sum frequency generation: size and site effects. Physical Chemistry Chemical Physics, 2023, 25, 10845-10852.	1.3	1
583	An ode to nanoparticles in catalysis. Journal of Molecular and Engineering Materials, 0, , .	0.9	0
584	Theory of Anisotropic Metal Nanostructures. Chemical Reviews, 2023, 123, 4146-4183.	23.0	12
585	Nanomaterials in Catalysis Applications. Catalysts, 2023, 13, 627.	1.6	1
586	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	23.0	81
587	Adsorption of Molecules on Defective CeO ₂ for Advanced Catalysis. ACS Catalysis, 2023, 13, 4629-4645.	5.5	15
588	Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. National Science Review, 2023, 10, .	4.6	6
589	Regulated adsorption sites using atomically single cluster over biochar for efficient elemental mercury uptake. Biochar, 2023, 5, .	6.2	3
590	Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by precise electronic perturbation of the active site. Chem Catalysis, 2023, 3, 100583.	2.9	3
591	Reconciling experimental catalytic data stemming from structure sensitivity. Chemical Science, 2023, 14, 4337-4345.	3.7	2
592	Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Research, 2023, 16, 6477-6506.	5.8	25
593	Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production. Nature Communications, 2023, 14, .	5.8	9
594	Controllable Conversion of Platinum Nanoparticles to Single Atoms in Pt/CeO ₂ by Laser Ablation for Efficient CO Oxidation. Journal of the American Chemical Society, 2023, 145, 9540-9547.	6.6	22
595	ZnS/CuS nanocomposites: synthesis and catalytic activity on thymol oxidation. Journal of Sol-Gel Science and Technology, 2023, 107, 149-160.	1.1	2
596	Acceleration of Stepwise Carbon-Polygold Bonding Cleavage in Hypercoordinated Carbon-Centered Gold(I) Clusters. Inorganic Chemistry, 2023, 62, 6147-6154.	1.9	0

#	Article	IF	CITATIONS
597	Hierarchical Porous Pt/ZrO ₂ Nanoframework for Efficient Oxygen Reduction Reaction. ACS Catalysis, 2023, 13, 5397-5405.	5.5	12
598	In-situ observation of structural evolution of single-atom catalysts: From synthesis to catalysis. ChemPhysMater, 2024, 3, 24-35.	1.4	1
599	Atomic understanding of the strain-induced electrocatalysis from DFT calculation: progress and perspective. Physical Chemistry Chemical Physics, 2023, 25, 12565-12586.	1.3	9
600	Nanoparticle exsolution <i>via</i> electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. Journal of Materials Chemistry A, O, , .	5.2	4
601	Scalable synthesis of soluble crystalline ionic-graphdiyne by controlled ion expansion. Chemical Science, 2023, 14, 4612-4619.	3.7	1
602	In Situ High-Temperature Reaction-Induced Local Structural Dynamic Evolution of Single-Atom Pt on Oxide Support. , 2023, 1, 299-308.		1
603	A Double Open-Shelled Au ₄₃ Nanocluster with Increased Catalytic Activity and Stability. Journal of the American Chemical Society, 2023, 145, 9304-9312.	6.6	11
604	Theoretical investigation on NO reduction electro-catalyzed by transition-metal-anchored SnOSe nanotubes. Nano Research, 2023, 16, 8533-8541.	5.8	3
605	Synthesis of LiTiO ₂ Nanocrystals/Ordered Mesoporous Carbon Composite Hosts for Highâ€Performance Lithium–Sulfur Batteries. Small Science, 2023, 3, .	5.8	3
606	General Method to Synthesize Highly Stable Nanoclusters via Pickering-Stabilized Microemulsions. Langmuir, 0, , .	1.6	0
607	Electronic perturbation of atomically dispersed Au for optimal H2O2 production. Chem Catalysis, 2023, 3, 100617.	2.9	0
635	Conversion of glycerol to acrylic acid: a review of strategies, recent developments and prospects. Reaction Chemistry and Engineering, 2023, 8, 1819-1838.	1.9	2
659	Progress in photocatalytic CO ₂ reduction based on single-atom catalysts. RSC Advances, 2023, 13, 20889-20908.	1.7	3
683	Towards sustainable electrochemical ammonia synthesis. Journal of Materials Chemistry A, 2023, 11, 18626-18645.	5.2	4
684	Single-atom site catalysis in Li–S batteries. Physical Chemistry Chemical Physics, 2023, 25, 25942-25960.	1.3	1
685	Structure–performance relationship of nanomaterials. , 2024, , 43-92.		0
706	Recent progress in high-loading single-atom catalysts and their applications. , 2023, 1, 486-500.		2
707	Single atom catalyst-mediated generation of reactive species in water treatment. Chemical Society Reviews, 2023, 52, 7673-7686.	18.7	4

#	Article	IF	CITATIONS
710	Future outlooks. , 2024, , 547-551.		0
723	Thermal, photonic, and electrocatalysis in lignin depolymerization research. RSC Advances, 2023, 13, 32627-32640.	1.7	0
771	Introduction to single-atom catalysts. , 2024, , 1-33.		0
778	Cu-based catalysts for electrocatalytic nitrate reduction to ammonia: fundamentals and recent advances. , 0, , .		0
786	Nanophotocatalytic conversion of biomass to bioenergy. , 2024, , 189-214.		0