Rapid and on-site simultaneous electrochemical detecti the Amazon river

Sensors and Actuators B: Chemical 307, 127620

DOI: 10.1016/j.snb.2019.127620

Citation Report

#	Article	IF	Citations
1	Recent advances in portable heavy metal electrochemical sensing platforms. Environmental Science: Water Research and Technology, 2020, 6, 2676-2690.	2.4	99
2	Development of Heavy Metal Potentiostat for Batik Industry. Applied Sciences (Switzerland), 2020, 10, 7804.	2.5	4
3	Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts, 2020, 10, 680.	3.5	43
4	A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. Journal of Molecular Liquids, 2020, 309, 113041.	4.9	45
5	Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. Analytical and Bioanalytical Chemistry, 2020, 412, 6449-6457.	3.7	15
6	Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sensors and Actuators B: Chemical, 2021, 326, 128957.	7.8	45
7	Simultaneous detection of trace $Pb(II)$, $Cd(II)$ and $Hg(II)$ by anodic stripping analyses with glassy carbon electrode modified by solid phase synthesized iron-aluminate nano particles. Sensors and Actuators B: Chemical, 2021, 329, 129052.	7.8	32
8	Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchemical Journal, 2021, 160, 105765.	4.5	109
9	Silica-based nanoenzymes for rapid and ultrasensitive detection of mercury ions. Sensors and Actuators B: Chemical, 2021, 330, 129304.	7.8	21
10	Performance of Heavy Metal Potentiostat for Batik Industry. Lecture Notes in Mechanical Engineering, 2021, , 885-894.	0.4	1
11	A Simple Method for Developing a Handâ€Drawn Paperâ€Based Sensor for Mercury; Using Green Synthesized Silver Nanoparticles and Smartphone as a Handâ€Heldâ€Device for Colorimetric Assay. Global Challenges, 2021, 5, 2000099.	3.6	12
12	Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO. Cosmetics, 2021, 8, 17.	3.3	11
13	A portable instrument for on-site detection of heavy metal ions in water. Analytical and Bioanalytical Chemistry, 2021, 413, 3471-3477.	3.7	14
14	Voltammetric Determination of Amoxicillin Using a Reduced Graphite Oxide Nanosheet Electrode. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-12.	1.6	15
15	Platinum-Based Interdigitated Micro-Electrode Arrays for Reagent-Free Detection of Copper. Sensors, 2021, 21, 3544.	3.8	20
16	Electrochemical monitoring of marine nutrients: From principle to application. TrAC - Trends in Analytical Chemistry, 2021, 138, 116242.	11.4	12
17	Electrochemical sensors for in-situ measurement of ions in seawater. Sensors and Actuators B: Chemical, 2021, 334, 129635.	7.8	31
18	Portable Au Nanoparticle-Based Colorimetric Sensor Strip for Rapid On-Site Detection of Cd2+ Ions in Potable Water. Biochip Journal, 2021, 15, 276-286.	4.9	17

#	Article	IF	CITATIONS
19	Microfluidic sensor integrated with nanochannel liquid conjunct Ag/AgCl reference electrode for trace Pb(II) measurement. Analytica Chimica Acta, 2021, 1164, 338511.	5.4	8
20	Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2021, 152, 705-723.	1.8	13
21	A novel electrochemical sensor based on PVP–Co(OH)2 nanocomposite forÂtheÂsensitive detection ofÂCu(II) ions. Ionics, 2021, 27, 4439-4448.	2.4	2
22	Polyethyleneimine-Functionalized Carbon Nanotube/Graphene Oxide Composite: A Novel Sensing Platform for Pb(II) Acetate in Aqueous Solution. ACS Omega, 2021, 6, 18190-18199.	3 . 5	9
23	Trends in sensor development toward next-generation point-of-care testing for mercury. Biosensors and Bioelectronics, 2021, 183, 113228.	10.1	45
24	Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open, 2021, 3, 100032.	3.7	130
25	Contemporary electrochemical sensing and affinity biosensing to assist traces metal ions determination in clinical samples. Electrochemical Science Advances, 2022, 2, e2100144.	2.8	1
26	High concentrations of metals in the waters from Araguari River lower section (Amazon biome): Relationship with land use and cover, ecotoxicological effects and risks to aquatic biota. Chemosphere, 2021, 285, 131451.	8.2	14
27	Electrochemical detection of heavy metal ions in water. Chemical Communications, 2021, 57, 7215-7231.	4.1	160
28	A Microfluidic Aptamer-Based Sensor for Detection of Mercury(II) and Lead(II) lons in Water. Micromachines, 2021, 12, 1283.	2.9	17
29	Optical and electrochemical microfluidic sensors for water contaminants: A short review. Materials Today: Proceedings, 2022, 48, 1673-1679.	1.8	7
30	Au nanoparticle-hydrogel nanozyme-based colorimetric detection for on-site monitoring of mercury in river water. Mikrochimica Acta, 2021, 188, 382.	5.0	21
31	A Portable Sensor System with Ultramicro Electrode Chip for the Detection of Heavy-Metal Ions in Water. Micromachines, 2021, 12, 1468.	2.9	9
32	Sustainable Copper Electrochemical Stripping onto a Paper-Based Substrate for Clinical Application. ACS Measurement Science Au, 2022, 2, 177-184.	4.4	15
33	A phenanthro[9,10-d]imidazole-based highly selective fluorescence and visual sensor for Cu2+ ion. Optical Materials, 2022, 123, 111834.	3 . 6	4
34	An innovative autonomous robotic system for on-site detection of heavy metal pollution plumes in surface water. Environmental Monitoring and Assessment, 2022, 194, 122.	2.7	12
35	Assessment of dissolved mercury by diffusive gradients in thin films devices in abandoned ponds impacted by small scale gold mining. Environmental Research, 2022, 208, 112633.	7.5	7
36	Wastewater-based epidemiology in hazard forecasting and early-warning systems for global health risks. Environment International, 2022, 161, 107143.	10.0	8

#	ARTICLE	IF	CITATIONS
37	A Hybrid Screen-Printed Strip for Enhanced Electroanalysis towards Lead and Cadmium in Multi-Matrices. Journal of the Electrochemical Society, 2022, 169, 037516.	2.9	14
38	Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Critical Reviews in Analytical Chemistry, 2023, 53, 253-288.	3 . 5	23
39	A portable screen-printing electrode modified by COFDATA-TP with abundant carboxyl and secondary amine groups for simultaneous detection of Hg2+, Cu2+, Pb2+, and Cd2+. lonics, 2022, 28, 4025-4033.	2.4	7
40	A Robust Electrochemical Sensor Based on Butterflyâ€shaped Silver Nanostructure for Concurrent Quantification of Heavy Metals in Water Samples. Electroanalysis, 2023, 35, .	2.9	11
41	MoS ₂ modified screen printed carbon electrode based flexible sensor for detection of Copper., 2022,,.		4
42	A Critical Analysis on the Sensitivity Enhancement of Surface Plasmon Resonance Sensors with Graphene. Nanomaterials, 2022, 12, 2562.	4.1	8
43	Sensitive, Selective and Simultaneous Monitorâ€,of Multipleâ€,Heavyâ€,Metalsâ€,in Environment Using a Low-Cost MIL-53(Fe)/Ag ₂ CrO ₄ Modified GCE Sensor. Journal of the Electrochemical Society, 2022, 169, 097508.	2.9	0
44	Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification. Sensors and Actuators B: Chemical, 2023, 375, 132922.	7.8	7
45	Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coordination Chemistry Reviews, 2023, 476, 214920.	18.8	72
46	Simultaneous detection of copper and mercury in water samples using in-situ pH control with electrochemical stripping techniques. Electrochimica Acta, 2023, 439, 141668.	5. 2	6
47	Coâ€detection of Copper and Lead in Artisanal Sugarcane Spirit Using Caffeic Acidâ€modified Graphite Electrodes. Electroanalysis, 2023, 35, .	2.9	1
48	Competitive fiber optic sensors for the highly selective detection of mercury in water. Applied Optics, 2023, 62, 592.	1.8	1
49	Development in electrochemical technology for environmental wastewater treatment. International Journal of Electrochemical Science, 2022, 17, 2212110.	1.3	4
50	Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Materials Today Advances, 2023, 17, 100340.	5. 2	33
51	Optimized porous carbon-fibre microelectrode for multiplexed, highly reproducible and repeatable detection of heavy metals in real water samples. Environmental Research, 2023, 220, 115192.	7.5	3
52	PortAqua: a low-cost, compact water quality meter for science communication. Environmental Monitoring and Assessment, 2023, 195, .	2.7	1
53	Microfluidic Device Integrated With PDMS Microchannel and Unmodified ITO Glass Electrodes for Highly Sensitive, Specific, and Point-of-Care Detection of Copper and Mercury. IEEE Transactions on Nanobioscience, 2023, 22, 881-888.	3.3	2
54	Development of soft polymer blend for copper ion detection by electrochemical route. Journal of Applied Polymer Science, 2023, 140, .	2.6	2

#	ARTICLE	IF	CITATIONS
55	Low ost, On‧ite, Nanoâ€Impact Detection of Silver Nanoparticles via Laserâ€Ablated Screenâ€Printed Microelectrodes. Advanced Materials Technologies, 0, , 2201880.	5.8	0
56	Sensor design strategy for environmental and biological monitoring. EcoMat, 2023, 5, .	11.9	9
58	Green synthesis of copper oxide nanoparticles using <i>Ficus elastica</i> extract for the electrochemical simultaneous detection of Cd ²⁺ , Pb ²⁺ , and Hg ²⁺ . RSC Advances, 2023, 13, 18734-18747.	3.6	4
59	Advances in Biosensors for Detection of Foodborne Microorganisms, Toxins, and Chemical Contaminants., 2024,, 372-384.		2
60	Simultaneous Sensing of Cd(II), Pb(II), and Cu(II) Using Gold Nanoparticle-Modified APTES-Functionalized Indium Tin Oxide Electrode: Effect of APTES Concentration. ACS Omega, 2023, 8, 16587-16599.	3.5	2
61	Three-Dimensional Inkjet-Printed Electrochemical Sensor on Shape Memory Polymer for Aqueous Lead Detection. IEEE Sensors Journal, 2023, 23, 13868-13875.	4.7	1
62	Phosphate ions detection by using an electrochemical sensor based on laser-scribed graphene oxide on paper. Electrochimica Acta, 2023, 461, 142600.	5.2	2
63	Nanomaterials-modified disposable electrodes and portable electrochemical systems for heavy metals detection in wastewater streams: A review. Microchemical Journal, 2023, 193, 109043.	4.5	11
64	Bioremediation of environments contaminated with mercury. Present and perspectives. World Journal of Microbiology and Biotechnology, 2023, 39, .	3.6	1
65	Heavy metal water pollution sensor based on Green Fluorescent Protein. , 2023, , .		0
66	Electroactive poly(thionine) as imprinted polymer and reference probe simultaneously for ratiometric ion imprinted electrochemical Pb ²⁺ sensor. Nanotechnology, 2023, 34, 505709.	2.6	0
67	Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Critical Reviews in Food Science and Nutrition, 0, , 1-19.	10.3	1
68	Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices Chemosphere, 2023, 344, 140231.	8.2	1
69	Ecological risk assessment for metals in sediment and waters from the Brazilian Amazon region. Chemosphere, 2023, 345, 140413.	8.2	1
71	Recent advances in miniaturized electrochemical analyzers for hazardous heavy metal sensing in environmental samples. Coordination Chemistry Reviews, 2024, 499, 215487.	18.8	3
72	A phytic acid (PA)-doped polypyrrole (PPy)/molybdenum disulfide (MoS2) nanocomposite-modified electrode for simultaneous electrochemical analysis of Pb2+ and Cd2+ in water. Polymer Bulletin, 0, ,	3.3	0
73	Voltammetry for quantitative determination of trace mercury ions in water via acetylene black modified carbon paste electrode. AEJ - Alexandria Engineering Journal, 2024, 87, 107-113.	6.4	0
74	Facile Fabrication and Analysis of Highly Sensitive PtTFPP/Carbon Black/Polystyrene Oxygen-Sensitive Composite Films for Optical Dissolved-Oxygen Sensor. ACS Applied Electronic Materials, 2024, 6, 1617-1627.	4.3	0

Article IF Citations

A portable magnetic electrochemical sensor for highly efficient Pb(II) detection based on bimetal composites from Fe-on-Co-MOF. Environmental Research, 2024, 250, 118499.