Incorporating environmental variables into a MODIS-b for United States corn and soybeans through the use of algorithm

ISPRS Journal of Photogrammetry and Remote Sensing 160, 208-228

DOI: 10.1016/j.isprsjprs.2019.12.012

Citation Report

#	Article	IF	CITATIONS
1	Estimating Wheat Grain Yield Using Sentinel-2 Imagery and Exploring Topographic Features and Rainfall Effects on Wheat Performance in Navarre, Spain. Remote Sensing, 2020, 12, 2278.	4.0	14
2	Estimation of Sugarcane Yield Using a Machine Learning Approach Based on UAV-LiDAR Data. Remote Sensing, 2020, 12, 2823.	4.0	47
3	Using Sentinel-2 Data to Predict Nitrogen Uptake in Maize Crop. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2656-2662.	4.9	31
4	Predicting Soybean Yield at the Regional Scale Using Remote Sensing and Climatic Data. Remote Sensing, 2020, 12, 1936.	4.0	20
5	High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 200-231.	9.6	141
6	Sentinel-3 Super-Resolution Based on Dense Multireceptive Channel Attention. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7359-7372.	4.9	1
7	Improving the Performance of Index Insurance Using Crop Models and Phenological Monitoring. Remote Sensing, 2021, 13, 924.	4.0	13
8	Deriving corn and soybeans fractions with Land Remote-Sensing Satellite (System, Landsat) imagery by accounting for endmember variability on Google Earth Engine. International Journal of Remote Sensing, 2021, 42, 4493-4513.	2.9	4
9	Yield Prediction in Soybean Crop Grown under Different Levels of Water Availability Using Reflectance Spectroscopy and Partial Least Squares Regression. Remote Sensing, 2021, 13, 977.	4.0	10
10	Linking data of ENSO, NDVI-MODIS and crops yield as a base of an early warning system for agriculture in CÃ ³ rdoba, Argentina. Remote Sensing Applications: Society and Environment, 2021, 22, 100480.	1.5	4
11	Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agricultural Water Management, 2021, 252, 106906.	5.6	38
12	Corn Biomass Estimation by Integrating Remote Sensing and Long-Term Observation Data Based on Machine Learning Techniques. Remote Sensing, 2021, 13, 2352.	4.0	25
13	Deep Learning-Based Estimation of Crop Biophysical Parameters Using Multi-Source and Multi-Temporal Remote Sensing Observations. Agronomy, 2021, 11, 1363.	3.0	16
14	Assessment of FSDAF Accuracy on Cotton Yield Estimation Using Different MODIS Products and Landsat Based on the Mixed Degree Index with Different Surroundings. Sensors, 2021, 21, 5184.	3.8	6
15	Assessing the potential of using high spatial resolution daily NDVI-time-series from planet CubeSat images for crop monitoring. International Journal of Remote Sensing, 2021, 42, 7114-7142.	2.9	7
16	Geographically and temporally weighted neural network for winter wheat yield prediction. Remote Sensing of Environment, 2021, 262, 112514.	11.0	39
17	Crop yield prediction from multi-spectral, multi-temporal remotely sensed imagery using recurrent 3D convolutional neural networks. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102436.	2.8	28
18	Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102397.	2.8	35

#	Article	IF	CITATIONS
19	MAIZE YIELD ESTIMATION IN KENYA USING MODIS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 477-482.	0.0	0
20	Algorithms and software for UAV flight planning for monitoring the stress conditions of plantations. Naukovì Dopovìdì Nacìonalʹnogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ Ukı 2020, , .	raÃīni,	0
21	Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data. Remote Sensing, 2021, 13, 4632.	4.0	22
22	Losses Assessment for Winter Crops Based on Satellite Data and Fuzzy Logic. , 2020, , .		1
23	Algorithms and Software for UAV Flight Planning for Monitoring the Stress Conditions of Plantations. , 2020, , .		5
24	Medium-resolution multispectral satellite imagery in precision agriculture: mapping precision canola (Brassica napus L.) yield using Sentinel-2 time series. Precision Agriculture, 2022, 23, 1051-1071.	6.0	11
25	Function fitting for modeling seasonal normalized difference vegetation index time series and early forecasting of soybean yield. Crop Journal, 2022, , .	5.2	4
26	Prediction of multi-year winter wheat yields at the field level with satellite and climatological data. Computers and Electronics in Agriculture, 2022, 194, 106777.	7.7	16
27	Structural equation modelling and factor analysis of the relationship between agronomic traits and vegetation indices in corn. Euphytica, 2022, 218, 1.	1.2	4
28	Cloud detection with boundary nets. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186, 218-231.	11.1	16
29	The Estimation of Chemical Oxygen Demand of Erhai Lake Basin and Its Links with DOM Fluorescent Components Using Machine Learning. Water (Switzerland), 2021, 13, 3629.	2.7	3
30	Machine learning algorithms for soybean yield forecasting in the Brazilian Cerrado. Journal of the Science of Food and Agriculture, 2022, 102, 3665-3672.	3.5	8
31	Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precision Agriculture, 2022, 23, 1093-1123.	6.0	10
32	Accurately mapping global wheat production system using deep learning algorithms. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102823.	1.9	8
34	Historical wheat yield mapping using time-series satellite data and district-wise yield statistics over Uttar Pradesh state, India. Remote Sensing Applications: Society and Environment, 2022, 27, 100808.	1.5	1
35	In-Season Monitoring of Maize Leaf Water Content Using Ground-Based and UAV-Based Hyperspectral Data. Sustainability, 2022, 14, 9039.	3.2	13
36	Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and Random Forest. Journal of Integrative Agriculture, 2022, 21, 3637-3657.	3.5	11
37	Durum wheat yield forecasting using machine learning. Artificial Intelligence in Agriculture, 2022, 6, 156-166.	6.0	0

CITATION REPORT

#	Article	IF	CITATIONS
38	Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery. Crop Journal, 2022, 10, 1376-1385.	5.2	5
40	Estimating Groundnut Yield in Smallholder Agriculture Systems Using PlanetScope Data. Land, 2022, 11, 1752.	2.9	4
41	KSTAGE: A knowledge-guided spatial-temporal attention graph learning network for crop yield prediction. Information Sciences, 2023, 619, 19-37.	6.9	9
42	Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance. Agricultural Water Management, 2023, 277, 108089.	5.6	13
43	Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0. Applied Sciences (Switzerland), 2022, 12, 11828.	2.5	10
44	In-Season Prediction of Corn Grain Yield through PlanetScope and Sentinel-2 Images. Agronomy, 2022, 12, 3176.	3.0	5
45	Data analytics for crop management: a big data view. Journal of Big Data, 2022, 9, .	11.0	11
46	National Scale Maize Yield Estimation by Integrating Multiple Spectral Indexes and Temporal Aggregation. Remote Sensing, 2023, 15, 414.	4.0	2
47	Agricultural productivity and water quality tradeoffs of winter cover crops at a landscape scale through the lens of remote sensing. Journal of Environmental Management, 2023, 330, 117212.	7.8	0
48	The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms. Agriculture (Switzerland), 2023, 13, 99.	3.1	7
49	Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia. European Journal of Agronomy, 2023, 147, 126837.	4.1	4
50	A Generalized Multimodal Deep Learning Model for Early Crop Yield Prediction. , 2022, , .		2
51	AsiaRiceYield4km: seasonal rice yield in Asia from 1995 to 2015. Earth System Science Data, 2023, 15, 791-808.	9.9	6
52	Potential of Establishing the Universal Critical Nitrogen Dilution Curve for Japonica Rice. Plant Phenomics, 2023, 5, .	5.9	3
53	A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103269.	1.9	3
54	A data-driven crop model for maize yield prediction. Communications Biology, 2023, 6, .	4.4	6
55	Developing an operational algorithm for near-real-time monitoring of crop progress at field scales by fusing harmonized Landsat and Sentinel-2 time series with geostationary satellite observations. Remote Sensing of Environment, 2023, 296, 113729.	11.0	4
57	A Novel Approach to Pod Count Estimation Using a Depth Camera in Support of Soybean Breeding Applications. Sensors, 2023, 23, 6506.	3.8	0

CITATION REPORT

#	Article	IF	CITATIONS
58	Improving grain yield prediction through fusion of multi-temporal spectral features and agronomic trait parameters derived from UAV imagery. Frontiers in Plant Science, 0, 14, .	3.6	0
59	Estimation of maize yield incorporating the synergistic effect of climatic and land use change in Jilin, China. Journal of Chinese Geography, 2023, 33, 1725-1746.	3.9	0
60	Assessing the Performance of Satellite-Based Models for Crop Yield Estimation in the Canadian Prairies. Canadian Journal of Remote Sensing, 2023, 49, .	2.4	0
61	Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data. Agricultural and Forest Meteorology, 2023, 342, 109729.	4.8	0
62	Annual 30 m winter wheat yield mapping in the Huang-Huai-Hai plain using crop growth model and long-term satellite images. Computers and Electronics in Agriculture, 2023, 214, 108335.	7.7	0
63	Quantifying synergistic effects of artificial and environmental variables on potato nutrient use efficiency in China. Journal of Cleaner Production, 2023, 432, 139739.	9.3	0
64	Millet yield estimations in Senegal: Unveiling the power of regional water stress analysis and advanced predictive modeling. Agricultural Water Management, 2024, 291, 108618.	5.6	0
65	Predicting Maize Yields with Satellite Information. Lecture Notes in Computer Science, 2023, , 187-198.	1.3	0
66	Large-scale spatio-temporal yield estimation via deep learning using satellite and management data fusion in vineyards. Computers and Electronics in Agriculture, 2024, 216, 108439.	7.7	0
67	MLC30: A New 30 m Land Cover Dataset for Myanmar From 1990 to 2020 Using Training Sample Migration Framework. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 244-260.	4.9	0
68	Early Identification of Corn and Soybean Using Crop Growth Curve Matching Method. Agronomy, 2024, 14, 146.	3.0	0
69	From Satellites to Fields: Machine Learning Applications for Prediction of Corn Production Using NDVI, Precipitation and Land Surface Temperature for Large Producer Countries. , 2023, , .		0
70	Crop Monitoring System Using MODIS Time-Series Data for Within-Season Prediction of Yield and Production of US Corn and Soybeans. Photogrammetric Engineering and Remote Sensing, 2024, 90, 99-119.	0.6	0
71	Daily DeepCropNet: A hierarchical deep learning approach with daily time series of vegetation indices and climatic variables for corn yield estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 209, 249-264.	11.1	0
72	Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest: A Case Study in Henan Province, China. Chinese Geographical Science, 2024, 34, 342-356.	3.0	0
73	Machine learning approach for satellite-based subfield canola yield prediction using floral phenology metrics and soil parameters. Precision Agriculture, 0, , .	6.0	0