Explainable Artificial Intelligence (XAI): Concepts, taxor challenges toward responsible AI

Information Fusion 58, 82-115 DOI: 10.1016/j.inffus.2019.12.012

Citation Report

#	Article	IF	CITATIONS
1	Using Visual Salience in Empirical Game Theory. SSRN Electronic Journal, 2019, , .	0.4	3
2	A Novel Decomposing Model With Evolutionary Algorithms for Feature Selection in Long Non-Coding RNAs. IEEE Access, 2020, 8, 181683-181697.	2.6	9
3	HFER: Promoting Explainability in Fuzzy Systems via Hierarchical Fuzzy Exception Rules. , 2020, , .		8
4	Beyond Cross-Validation—Accuracy Estimation for Incremental and Active Learning Models. Machine Learning and Knowledge Extraction, 2020, 2, 327-346.	3.2	5
5	Energy Efficient Pupil Tracking Based on Rule Distillation of Cascade Regression Forest. Sensors, 2020, 20, 5141.	2.1	4
6	Trustworthy artificial intelligence. Electronic Markets, 2021, 31, 447-464.	4.4	179
7	The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability, 2020, 12, 8548.	1.6	124
8	Explainable Artificial Intelligence for Digital Forensics: Opportunities, Challenges and a Drug Testing Case Study. , 2020, , .		4
9	A critical literature survey and prospects on tampering and anomaly detection in image data. Applied Soft Computing Journal, 2020, 97, 106727.	4.1	15
10	Machine Learning-based traffic prediction models for Intelligent Transportation Systems. Computer Networks, 2020, 181, 107530.	3.2	119
11	On the Logical Design of a Prototypical Data Lake System for Biological Resources. Frontiers in Bioengineering and Biotechnology, 2020, 8, 553904.	2.0	7
12	Explainable Automated Essay Scoring: Deep Learning Really Has Pedagogical Value. Frontiers in Education, 2020, 5, .	1.2	34
13	The Next Generation of Medical Decision Support: A Roadmap Toward Transparent Expert Companions. Frontiers in Artificial Intelligence, 2020, 3, 507973.	2.0	37
14	Pre-trained models for natural language processing: A survey. Science China Technological Sciences, 2020, 63, 1872-1897.	2.0	674
15	Evidence-Based Analysis of Cyber Attacks to Security Monitored Distributed Energy Resources. Applied Sciences (Switzerland), 2020, 10, 4725.	1.3	4
16	Rapid Trust Calibration through Interpretable and Uncertainty-Aware Al. Patterns, 2020, 1, 100049.	3.1	59
17	Explainable Artificial Intelligence for 6G: Improving Trust between Human and Machine. IEEE Communications Magazine, 2020, 58, 39-45.	4.9	131
18	Explainable Artificial Intelligence for Developing Smart Cities Solutions. Smart Cities, 2020, 3, 1353-1382.	5.5	35

λτιών Ρερώ

#	Article	IF	CITATIONS
19	Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities. Frontiers in Big Data, 2020, 3, 577974.	1.8	24
20	Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with Dimensionality Reduction. Sensors, 2020, 20, 6626.	2.1	29
21	Identification of phishing websites through hyperlink analysis and rule extraction. Electronic Library, 2020, 38, 1073-1093.	0.8	5
22	Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. Frontiers in Neuroergonomics, 2020, 1, .	0.6	42
23	Critical success factors for integrating artificial intelligence and robotics. Digital Policy, Regulation and Governance, 2020, 22, 307-331.	1.0	40
24	Climatic Characteristics and Modeling Evaluation of Pan Evapotranspiration over Henan Province, China. Land, 2020, 9, 229.	1.2	3
25	A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Information Fusion, 2020, 64, 205-237.	11.7	223
26	Blockchain in healthcare: A systematic literature review, synthesizing framework and future research agenda. Computers in Industry, 2020, 122, 103290.	5.7	231
27	Elucidating the Behavior of Nanophotonic Structures through Explainable Machine Learning Algorithms. ACS Photonics, 2020, 7, 2309-2318.	3.2	58
28	Simulation Support for Explainable Cyber-Physical Energy Systems. , 2020, , .		1
29	Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples. , 2020, , .		6
30	Why Not? Tell us the Reason for Writer Dissimilarity. , 2020, , .		1
31	Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images. Computers in Biology and Medicine, 2020, 126, 104027.	3.9	17
32	Gaining Insight Into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools. IEEE Access, 2020, 8, 187814-187823.	2.6	80
33	A Decentralized Approach to Explanatory Artificial Intelligence for Autonomic Systems. , 2020, , .		4
34	A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 4793-4813.	7.2	702
35	Applying Genetic Programming to Improve Interpretability in Machine Learning Models. , 2020, , .		15
36	Learning CNN Filters From User-Drawn Image Markers for Coconut-Tree Image Classification. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	12

#	Article	IF	CITATIONS
37	A robust cyberattack detection approach using optimal features of SCADA power systems in smart grids. Applied Soft Computing Journal, 2020, 96, 106658.	4.1	40
38	A Time-Critical Topic Model for Predicting the Survival Time of Sepsis Patients. Scientific Programming, 2020, 2020, 1-13.	0.5	2
39	Classification of Alpine Skiing Styles Using GNSS and Inertial Measurement Units. Sensors, 2020, 20, 4232.	2.1	19
40	Chi-BD-DRF: Design of Scalable Fuzzy Classifiers for Big Data via A Dynamic Rule Filtering Approach. , 2020, , .		5
41	Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance. Radiotherapy and Oncology, 2020, 153, 55-66.	0.3	147
42	Macro and Exogenous Factors in Computational Advertising: Key Issues and New Research Directions. Journal of Advertising, 2020, 49, 377-393.	4.1	40
43	Middle-Level Features for the Explanation of Classification Systems by Sparse Dictionary Methods. International Journal of Neural Systems, 2020, 30, 2050040.	3.2	14
44	Contrastive Explanations for a Deep Learning Model on Time-Series Data. Lecture Notes in Computer Science, 2020, , 235-244.	1.0	4
46	Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. American Journal of Neuroradiology, 2020, 41, 1718-1725.	1.2	31
47	COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3595-3605.	3.9	252
48	Illuminating the Black Box: Interpreting Deep Neural Network Models for Psychiatric Research. Frontiers in Psychiatry, 2020, 11, 551299.	1.3	43
49	Elaborating Hungarian Segment of the Global Map of Salt-Affected Soils (GSSmap): National Contribution to an International Initiative. Remote Sensing, 2020, 12, 4073.	1.8	19
50	3D Non-Local Neural Network: A Non-Invasive Biomarker for Immunotherapy Treatment Outcome Prediction. Case-Study: Metastatic Urothelial Carcinoma. Journal of Imaging, 2020, 6, 133.	1.7	11
51	Role of Artificial Intelligence in Shaping Consumer Demand in E-Commerce. Future Internet, 2020, 12, 226.	2.4	56
52	GIMO: A multi-objective anytime rule mining system to ease iterative feedback from domain experts. Expert Systems With Applications: X, 2020, 8, 100040.	4.6	1
53	Deep learning for tomographic image reconstruction. Nature Machine Intelligence, 2020, 2, 737-748.	8.3	233
54	Explainable deep convolutional learning for intuitive model development by non–machine learning domain experts. Design Science, 2020, 6, .	1.1	1
55	Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ, The, 2020, 371, m3919.	3.0	59

#	Article		CITATIONS
56	On the integration of symbolic and sub-symbolic techniques for XAI: A survey. Intelligenza Artificiale, 2020, 14, 7-32.	1.0	50
57	Prediction of forging dies wear with the modified Takagi–Sugeno fuzzy identification method. Materials and Manufacturing Processes, 2020, 35, 700-713.	2.7	6
58	Open Visualization Environment (OVE): A web framework for scalable rendering of data visualizations. Future Generation Computer Systems, 2020, 112, 785-799.	4.9	0
59	ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning. Applied Sciences (Switzerland), 2020, 10, 3089.	1.3	8
60	A Modern Data-Mining Approach Based on Genetically Optimized Fuzzy Systems for Interpretable and Accurate Smart-Grid Stability Prediction. Energies, 2020, 13, 2559.	1.6	10
61	Employing a Multi-Input Deep Convolutional Neural Network to Derive Soil Clay Content from a Synergy of Multi-Temporal Optical and Radar Imagery Data. Remote Sensing, 2020, 12, 1389.	1.8	37
62	Monte Carlo science. Journal of Turbulence, 2020, 21, 544-566.	0.5	10
63	Automated Discovery of Local Rules for Desired Collective-Level Behavior Through Reinforcement Learning. Frontiers in Physics, 2020, 8, .	1.0	11
64	Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction. Journal of Imaging, 2020, 6, 37.	1.7	39
65	Applications of artificial intelligence for disaster management. Natural Hazards, 2020, 103, 2631-2689.	1.6	138
66	Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles. Biomolecules, 2020, 10, 963.	1.8	11
67	Explainable Deep Learning Models in Medical Image Analysis. Journal of Imaging, 2020, 6, 52.	1.7	314
68	Extracting Cause of Death From Verbal Autopsy With Deep Learning Interpretable Methods. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1315-1325.	3.9	9
69	Vision-based personalized Wireless Capsule Endoscopy for smart healthcare: Taxonomy, literature review, opportunities and challenges. Future Generation Computer Systems, 2020, 113, 266-280.	4.9	30
70	Safety integrity through self-adaptation for multi-sensor event detection: Methodology and case-study. Future Generation Computer Systems, 2020, 112, 965-981.	4.9	19
71	Random forest explainability using counterfactual sets. Information Fusion, 2020, 63, 196-207.	11.7	42
72	MNIST-NET10: A heterogeneous deep networks fusion based on the degree of certainty to reach 0.1% error rate. Ensembles overview and proposal. Information Fusion, 2020, 62, 73-80.	11.7	27
73	Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives. Information (Switzerland), 2020, 11, 167.	1.7	30

#	Article	IF	CITATIONS
74	Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering, 2021, 14, 4-15.	13.1	894
75	Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050. Applied Energy, 2021, 281, 116062.	5.1	26
76	Moral control and ownership in AI systems. AI and Society, 2021, 36, 289-303.	3.1	3
77	Responsible processing of crowdsourced tourism data. Journal of Sustainable Tourism, 2021, 29, 774-794.	5.7	12
78	Applications of artificial intelligence in battling against covid-19: A literature review. Chaos, Solitons and Fractals, 2021, 142, 110338.	2.5	131
79	Distributed linguistic representations in decision making: Taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence. Information Fusion, 2021, 65, 165-178.	11.7	138
80	Logic-based technologies for multi-agent systems: a systematic literature review. Autonomous Agents and Multi-Agent Systems, 2021, 35, 1.	1.3	47
81	The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human Computer Studies, 2021, 146, 102551.	3.7	375
82	How to Design Al-Driven Clinical Trials in Nuclear Medicine. Seminars in Nuclear Medicine, 2021, 51, 112-119.	2.5	17
83	Multi-objective Grammatical Evolution of Decision Trees for Mobile Marketing user conversion prediction. Expert Systems With Applications, 2021, 168, 114287.	4.4	22
84	Data-driven decision model based on dynamical classifier selection. Knowledge-Based Systems, 2021, 212, 106590.	4.0	4
85	Legibility as a Design Principle: Surfacing Values in Sensing Technologies. Science Technology and Human Values, 2021, 46, 1104-1135.	1.7	1
86	Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 2021, 129, 911-926.	5.8	164
87	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63, 34-60.	3.6	135
88	Smart Cities: A Data Analytics Perspective. Lecture Notes in Intelligent Transportation and Infrastructure, 2021, , .	0.3	7
89	The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. Journal of Biomedical Informatics, 2021, 113, 103655.	2.5	259
90	Application of LSTM approach for modelling stress–strain behaviour of soil. Applied Soft Computing Journal, 2021, 100, 106959.	4.1	86
91	Artificial intelligence in radiology: relevance of collaborative work between radiologists and engineers for building a multidisciplinary team. Clinical Radiology, 2021, 76, 317-324.	0.5	23

#	Article	IF	Citations
92	Supporting the shift to digital with student-centered learning analytics. Educational Technology Research and Development, 2021, 69, 357-361.	2.0	29
93	Significance, relevance and explainability in the machine learning age: an econometrics and financial data science perspective. European Journal of Finance, 2021, 27, 1-7.	1.7	21
94	Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges. Information Fusion, 2021, 67, 161-194.	11.7	21
95	A historical perspective of explainable Artificial Intelligence. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, 11, e1391.	4.6	116
96	Potentials and caveats of AI in hybrid imaging. Methods, 2021, 188, 4-19.	1.9	12
97	The Development of a Short Version of the SIMS Using Machine Learning to Detect Feigning in Forensic Assessment. Psychological Injury and Law, 2021, 14, 46-57.	1.0	10
98	A choices framework for the responsible use of AI. AI and Ethics, 2021, 1, 49-53.	4.6	17
99	Efficient and accurate structural fusion of Bayesian networks. Information Fusion, 2021, 66, 155-169.	11.7	12
100	Increasing the Understandability and Explainability of Machine Learning and Artificial Intelligence Solutions: A Design Thinking Approach. Advances in Intelligent Systems and Computing, 2021, , 37-42.	0.5	2
102	Thoughts on Research Imperatives in Data Fusion. , 2021, , .		0
103	Gender Bias in Al: Implications for Managerial Practices. Lecture Notes in Computer Science, 2021, , 259-270.	1.0	3
104	Stop Ordering Machine Learning Algorithms by Their Explainability! An Empirical Investigation of the Tradeoff Between Performance and Explainability. Lecture Notes in Computer Science, 2021, , 245-258.	1.0	7
105	Features as Keypoints and How Fuzzy Transforms Retrieve Them. Lecture Notes in Computer Science, 2021, , 14-27.	1.0	2
106	Towards Explainable Artificial Intelligence (XAI) in Supply Chain Management: A Typology and Research Agenda. IFIP Advances in Information and Communication Technology, 2021, , 32-38.	0.5	8
107	Diagnosis Support Model of Cardiomegaly Based on CNN Using ResNet and Explainable Feature Map. IEEE Access, 2021, 9, 55802-55813.	2.6	14
108	Beyond Deep Event Prediction: Deep Event Understanding Based on Explainable Artificial Intelligence. Studies in Computational Intelligence, 2021, , 91-117.	0.7	1
110	Analysis of Health Screening Records Using Interpretations of Predictive Models. Lecture Notes in Computer Science, 2021, , 146-151.	1.0	1
111	Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions. IEEE Access, 2021, 9, 110255-110286.	2.6	44

#	Article	IF	CITATIONS
112	Shallow2Deep: Restraining Neural Networks Opacity Through Neural Architecture Search. Lecture Notes in Computer Science, 2021, , 63-82.	1.0	2
113	What Does It Mean to Explain? A User-Centered Study on Al Explainability. Lecture Notes in Computer Science, 2021, , 107-121.	1.0	4
114	Towards Design Principles for User-Centric Explainable AI in Fraud Detection. Lecture Notes in Computer Science, 2021, , 21-40.	1.0	10
116	Digital Innovations and Smart Solutions for Society and Economy: Pros and Cons. Foundations of Management, 2021, 13, 103-116.	0.2	0
117	A Comprehensive Study on Face Recognition Biases Beyond Demographics. IEEE Transactions on Technology and Society, 2022, 3, 16-30.	2.4	45
118	Broad Learning Based Dynamic Fuzzy Inference System With Adaptive Structure and Interpretable Fuzzy Rules. IEEE Transactions on Fuzzy Systems, 2022, 30, 3270-3283.	6.5	19
119	Normalization Influence on ANN-Based Models Performance: A New Proposal for Features' Contribution Analysis. IEEE Access, 2021, 9, 125462-125477.	2.6	5
120	Deep Learning and Its Application to Function Approximation for MR in Medicine: An Overview. Magnetic Resonance in Medical Sciences, 2022, 21, 553-568.	1.1	2
121	Explanation with the Winter Value: Efficient Computation for Hierarchical Choquet Integrals. Lecture Notes in Computer Science, 2021, , 471-485.	1.0	0
122	Algorithmic Agency and Autonomy in Archaeological Practice. Open Archaeology, 2021, 7, 417-434.	0.3	16
123	Verification of Size Invariance in DNN Activations Using Concept Embeddings. IFIP Advances in Information and Communication Technology, 2021, , 374-386.	0.5	1
124	Biomarkers for Hypoxia, HPVness, and Proliferation from Imaging Perspective. , 2021, , 13-20.		0
125	Explainable Fuzzy Utility Mining on Sequences. IEEE Transactions on Fuzzy Systems, 2021, 29, 3620-3634.	6.5	16
127	One step further into the blackbox: a pilot study of how to build more confidence around an Al-based decision system of breast nodule assessment in 2D ultrasound. European Radiology, 2021, 31, 4991-5000.	2.3	21
128	Integration of Explainable AI and Blockchain for Secure Storage of Human Readable Justifications for Credit Risk Assessment. Communications in Computer and Information Science, 2021, , 55-72.	0.4	2
129	Herausforderungen und Potenziale von KI-gestützter visueller Inspektion in der Elektronikindustrie. , 2021, , 65-80.		1
130	Trustworthy AI Services in the Public Sector: What Are Citizens Saying About It?. Lecture Notes in Computer Science, 2021, , 99-115.	1.0	8
131	Assessment of Manifold Unfolding in Trained Deep Neural Network Classifiers. Lecture Notes in Computer Science, 2021, , 93-103.	1.0	Ο

#	Article	IF	CITATIONS
132	Machine Learning and Deep Learning Techniques for Colocated MIMO Radars: A Tutorial Overview. IEEE Access, 2021, 9, 33704-33755.	2.6	11
133	Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020). Scientometrics, 2021, 126, 1415-1451.	1.6	23
134	Deep Learning in Smart Grid Technology: A Review of Recent Advancements and Future Prospects. IEEE Access, 2021, 9, 54558-54578.	2.6	79
135	A Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable Artificial Intelligence. IEEE Access, 2021, 9, 11974-12001.	2.6	141
136	A Review on Explainability in Multimodal Deep Neural Nets. IEEE Access, 2021, 9, 59800-59821.	2.6	78
137	Ordered Weighted Averaging for Emotion-Driven Polarity Detection. Cognitive Computation, 2022, 14, 194-211.	3.6	11
138	Trustworthy AI. Lecture Notes in Computer Science, 2021, , 13-39.	1.0	32
139	Deep Learning for Road Traffic Forecasting: Does it Make a Difference?. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6164-6188.	4.7	28
140	Network Pruning for Remote Sensing Images Classification Based on Interpretable CNNs. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	10
141	Higher-Order Explanations of Graph Neural Networks via Relevant Walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7581-7596.	9.7	58
142	IMPACTS: a trust model for human-autonomy teaming. Human-Intelligent Systems Integration, 2021, 3, 79-97.	1.2	13
143	LEMONS: Listenable Explanations for Music recOmmeNder Systems. Lecture Notes in Computer Science, 2021, , 531-536.	1.0	3
144	Anomaly-Based Intrusion Detection by Machine Learning: A Case Study on Probing Attacks to an Institutional Network. IEEE Access, 2021, 9, 50078-50092.	2.6	25
145	Application of Blockchain as a Solution to the Real-World Issues in Health Care System. Intelligent Systems Reference Library, 2021, , 135-149.	1.0	2
146	Interpretable semisupervised classifier for predicting cancer stages. , 2021, , 241-259.		2
147	The Future of the Automated City: Social, Technical and Ethical Perspectives. , 2021, , 109-155.		0
148	Explaining Deep Learning-Based Traffic Classification Using a Genetic Algorithm. IEEE Access, 2021, 9, 4738-4751.	2.6	21
149	Explanation-Driven Characterization ofÂAndroid Ransomware. Lecture Notes in Computer Science, 2021, , 228-242.	1.0	3

#	Article		CITATIONS
150	Explainability of Al-predictions based on psychological profiling. Procedia Computer Science, 2021, 180, 1003-1012.	1.2	3
151	Expl(Ai)Ned: The Impact of Explainable Artificial Intelligence on Cognitive Processes. SSRN Electronic Journal, 0, , .	0.4	6
152	Das Internet of Production als Fundament der Datenverwertung in der Produktion. , 2021, , 275-295.		1
153	Towards Self-explainable Classifiers andÂRegressors in Neuroimaging withÂNormalizing Flows. Lecture Notes in Computer Science, 2021, , 23-33.	1.0	4
154	Enhancing Deep Neural Network Saliency Visualizations With Gradual Extrapolation. IEEE Access, 2021, 9, 95155-95161.	2.6	2
155	Cost-Effective Valuable Data Detection Based on the Reliability of Artificial Intelligence. IEEE Access, 2021, 9, 108959-108974.	2.6	8
156	Philosophical Specification of Empathetic Ethical Artificial Intelligence. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 292-300.	2.6	8
157	Building Energy Performance Certificate Labelling Classification Based onÂExplainable Artificial Intelligence. Communications in Computer and Information Science, 2021, , 181-196.	0.4	2
158	Responsible Machine Learning for Ethical Artificial Intelligence in Business and Industry. Advances in Business Information Systems and Analytics Book Series, 2021, , 639-653.	0.3	3
159	Artificial Intelligence in Higher Education and Learning. Advances in Educational Technologies and Instructional Design Book Series, 2021, , 62-72.	0.2	Ο
160	On Interpretability of Artificial Neural Networks: A Survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 741-760.	2.7	188
161	Explainable Boosting Machine for Predicting Alzheimer's Disease from MRI Hippocampal Subfields. Lecture Notes in Computer Science, 2021, , 341-350.	1.0	16
162	The Proposition of Balanced and Explainable Surrogate Method for Network Intrusion Detection in Streamed Real Difficult Data. Communications in Computer and Information Science, 2021, , 241-252.	0.4	0
163	IFC-BD: An Interpretable Fuzzy Classifier for Boosting Explainable Artificial Intelligence in Big Data. IEEE Transactions on Fuzzy Systems, 2022, 30, 830-840.	6.5	18
164	Algorithms as regulatory objects. Information, Communication and Society, 2022, 25, 1542-1558.	2.6	8
165	Explainable Artificial Intelligence (XAI) to Enhance Trust Management in Intrusion Detection Systems Using Decision Tree Model. Complexity, 2021, 2021, 1-11.	0.9	104
166	Semi-Automatic Reliable Explanations for Prediction in Graphs. , 2021, , .		1
167	Towards Incorporating Human Knowledge in Fuzzy Pattern Tree Evolution. Lecture Notes in Computer Science, 2021, , 66-81.	1.0	9

#	Article	IF	CITATIONS
168	Use of Visual Analytics (VA) in Explainable Artificial Intelligence (XAI): A Framework of Information Granules. Studies in Computational Intelligence, 2021, , 29-62.	0.7	0
169	Supplementing Machine Learning with Knowledge Models Towards Semantic Explainable AI. Advances in Intelligent Systems and Computing, 2021, , 3-11.	0.5	0
170	Al Explainability. A Bridge Between Machine Vision and Natural Language Processing. Lecture Notes in Computer Science, 2021, , 257-273.	1.0	3
171	Al2VIS4BigData: Qualitative Evaluation of an Al-Based Big Data Analysis and Visualization Reference Model. Lecture Notes in Computer Science, 2021, , 136-162.	1.0	1
172	Explanation-Driven Model Stacking. Lecture Notes in Computer Science, 2021, , 361-371.	1.0	0
173	Towards an XAI-Assisted Third-Party Evaluation of AI Systems: Illustration onÂDecision Trees. Lecture Notes in Computer Science, 2021, , 158-172.	1.0	Ο
174	Improving Explainability of Integrated Gradients with Guided Non-Linearity. , 2021, , .		0
175	Deep Learning and Explainable Artificial Intelligence Techniques Applied for Detecting Money Laundering–A Critical Review. IEEE Access, 2021, 9, 82300-82317.	2.6	45
176	Explainable Student Performance Prediction Models: A Systematic Review. IEEE Access, 2021, 9, 33132-33143.	2.6	36
177	A Systematic Mapping Study on Analysis of Code Repositories. Informatica, 2021, , 619-660.	1.5	5
178	Information Cartography in Association Rule Mining. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 660-676.	3.4	7
179	From a Workshop to a Framework for Human-Centered Artificial Intelligence. Lecture Notes in Computer Science, 2021, , 166-184.	1.0	5
180	Artificial Intelligence and Emerging Technologies in Travel. Management for Professionals, 2021, , 313-337.	0.3	1
181	NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms. Lecture Notes in Computer Science, 2021, , 381-390.	1.0	0
182	From Explainable to Reliable Artificial Intelligence. Lecture Notes in Computer Science, 2021, , 255-273.	1.0	4
183	Explainable Machine Learning Exploiting News and Domain-Specific Lexicon for Stock Market Forecasting. IEEE Access, 2021, 9, 30193-30205.	2.6	41
184	Trade-off Predictivity and Explainability for Machine-Learning Powered Predictive Toxicology: An in-Depth Investigation with Tox21 Data Sets. Chemical Research in Toxicology, 2021, 34, 541-549.	1.7	31
185	Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data. Lecture Notes in Computer Science, 2021, , 247-258.	1.0	3

#	Article	IF	CITATIONS
186	Towards Active Learning Based Smart Assistant for Manufacturing. IFIP Advances in Information and Communication Technology, 2021, , 295-302.	0.5	2
187	Maneuvering through the stormy seas of digital transformation: the impact of empowering leadership on the AI readiness of enterprises. Journal of Decision Systems, 2021, 30, 235-258.	2.2	37
188	Recent use of deep learning techniques in clinical applications based on gait: a survey. Journal of Computational Design and Engineering, 2021, 8, 1499-1532.	1.5	14
189	Designing deep learning studies in cancer diagnostics. Nature Reviews Cancer, 2021, 21, 199-211.	12.8	175
190	Explanation as a Process: User-Centric Construction of Multi-level andÂMulti-modal Explanations. Lecture Notes in Computer Science, 2021, , 80-94.	1.0	5
191	Shelf Auditing Based on Image Classification Using Semi-Supervised Deep Learning to Increase On-Shelf Availability in Grocery Stores. Sensors, 2021, 21, 327.	2.1	22
192	Explainable Unsupervised Machine Learning for Cyber-Physical Systems. IEEE Access, 2021, 9, 131824-131843.	2.6	24
193	Understanding Robust Target Prediction in Basic Oxygen Furnace. , 2021, , .		0
194	The Complexity and Variability Mapping for Prediction and Explainability of the Sleep Apnea Syndrome. IEEE Sensors Journal, 2021, 21, 14203-14212.	2.4	1
195	The accuracy versus interpretability trade-off in fraud detection model. Data & Policy, 2021, 3, .	1.0	7
196	Toward XAI & Human Synergies to Explain the History of Art: The Smart Photobooth Project. Lecture Notes in Computer Science, 2021, , 208-222.	1.0	1
197	A Checklist for Explainable AI in the Insurance Domain. Communications in Computer and Information Science, 2021, , 446-456.	0.4	2
198	Self-incremental learning vector quantization with human cognitive biases. Scientific Reports, 2021, 11, 3910.	1.6	4
199	From Data to Actions in Intelligent Transportation Systems: A Prescription of Functional Requirements for Model Actionability. Sensors, 2021, 21, 1121.	2.1	23
200	Mini Review: The Last Mile—Opportunities and Challenges for Machine Learning in Digital Toxicologic Pathology. Toxicologic Pathology, 2021, 49, 714-719.	0.9	6
201	Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda. Journal of Open Innovation: Technology, Market, and Complexity, 2021, 7, 71.	2.6	81
202	Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence. Communications Biology, 2021, 4, 170.	2.0	20
203	A survey on deep learning in medicine: Why, how and when?. Information Fusion, 2021, 66, 111-137.	11.7	188

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
204	Evaluating Explainability Methods Intended for Multiple Stakeholders. KI - Kunstliche Intelli $_{ m c}$	genz, 0, , 1.	2.2	4
205	Explainable Al Framework for Multivariate Hydrochemical Time Series. Machine Learning an Knowledge Extraction, 2021, 3, 170-204.	d	3.2	16
206	Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Revie 2021, 13, 552.	ew. Cancers,	1.7	21
207	Deep Fuzzy System Algorithms Based on Deep Learning and Input Sharing for Regression A International Journal of Fuzzy Systems, 2021, 23, 727-742.	pplication.	2.3	17
208	The Ouroboros Model, Proposal for Self-Organizing General Cognition Substantiated. AI, 20 89-105.)21, 2,	2.1	3
209	Data-driven artificial intelligence to automate researcher assessment. Scientometrics, 2021 3265-3281.	., 126,	1.6	0
210	Artificial Intelligence and Bank Soundness: Between the Devil and the Deep Blue Sea - Part	2. , 0, , .		1
211	On-the-fly simplification of genetic programming models. , 2021, , .			5
212	Mathematical optimization in classification and regression trees. Top, 2021, 29, 5-33.		1.1	55
213	DOMUS: a domestic ontology managed ubiquitous system. Journal of Ambient Intelligence Humanized Computing, 2022, 13, 3037-3052.	and	3.3	16
214	A branch & bound algorithm to determine optimal bivariate splits for oblique decision tree Applied Intelligence, 2021, 51, 7552-7572.	induction.	3.3	2
215	Applications of artificial intelligence in cardiovascular imaging. Nature Reviews Cardiology, 600-609.	2021, 18,	6.1	74
216	Using Machine Learning in Admissions. , 2021, , .			6
217	A survey of script learning. Frontiers of Information Technology and Electronic Engineering. 341-373.	, 2021, 22,	1.5	2
218	Deep learning in electron microscopy. Machine Learning: Science and Technology, 2021, 2,	, 011004.	2.4	50
219	An analysis of Monte Carlo simulations for forecasting software projects. , 2021, , .			0
220	Personalized Health Care and Public Health in the Digital Age. Frontiers in Digital Health, 20 595704.)21, 3,	1.5	16
221	Digital Mental Health Challenges and the Horizon Ahead for Solutions. JMIR Mental Health, e26811.	2021, 8,	1.7	46

#	Article	IF	CITATIONS
222	Mining the Stars: Learning Quality Ratings with User-facing Explanations for Vacation Rentals. , 2021, , .		2
223	From Learning to Relearning: A Framework for Diminishing Bias in Social Robot Navigation. Frontiers in Robotics and Al, 2021, 8, 650325.	2.0	20
224	Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. Multimedia Tools and Applications, 2021, 80, 19931-19946.	2.6	48
226	Interpretable Conditional Recurrent Neural Network for Weight Change Prediction: Algorithm Development and Validation Study. JMIR MHealth and UHealth, 2021, 9, e22183.	1.8	3
227	A big data state of mind: Epistemological challenges to accountability and transparency in data-driven regulation. Government Information Quarterly, 2021, 38, 101578.	4.0	15
228	Artificial intelligence and machine learning for medical imaging: A technology review. Physica Medica, 2021, 83, 242-256.	0.4	135
229	Requirements and reliability of AI in the medical context. Physica Medica, 2021, 83, 72-78.	0.4	30
230	Soft-sensor design for vacuum distillation bottom product penetration classification. Applied Soft Computing Journal, 2021, 102, 107072.	4.1	5
231	Artificial Intelligence in Hypertension. Circulation Research, 2021, 128, 1100-1118.	2.0	26
232	A Review of Recent Deep Learning Approaches in Human-Centered Machine Learning. Sensors, 2021, 21, 2514.	2.1	41
233	Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using Al. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3791-3804.	3.3	21
234	Inteligência Artificial: riscos, benefÃcios e uso responsável. Estudos Avancados, 2021, 35, 21-36.	0.2	5
235	Interactive imitation learning for spacecraft path-planning in binary asteroid systems. Advances in Space Research, 2021, 68, 1928-1951.	1.2	6
236	A Practical Tutorial for Decision Tree Induction. ACM Computing Surveys, 2022, 54, 1-38.	16.1	11
237	Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities, 2021, 4, 548-568.	5.5	120
238	Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology. Machine Learning and Knowledge Extraction, 2021, 3, 392-413.	3.2	76
239	A Combinatorial Approach to Explaining Image Classifiers. , 2021, , .		6
240	Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873.	1.3	35

		CITATION R	EPORT	
#	Article		IF	CITATIONS
241	Explaining Deep Learning-Based Driver Models. Applied Sciences (Switzerland), 2021,	11, 3321.	1.3	20
243	Squashing activation functions in benchmark tests: Towards a more eXplainable Artific using continuous-valued logic. Knowledge-Based Systems, 2021, 218, 106779.	tial Intelligence	4.0	11
244	FragNet, a Contrastive Learning-Based Transformer Model for Clustering, Interpreting, and Navigating Chemical Space. Molecules, 2021, 26, 2065.	Visualizing,	1.7	14
245	Visual, textual or hybrid: the effect of user expertise on different explanations. , 2021,			38
246	Artificial Intelligence Applications in Military Systems and Their Influence on Sense of S Citizens. Electronics (Switzerland), 2021, 10, 871.	Security of	1.8	46
247	Computational Intelligence in the hospitality industry: A systematic literature review as of challenges. Applied Soft Computing Journal, 2021, 102, 107082.	nd a prospect	4.1	23
248	Future artificial intelligence tools and perspectives in medicine. Current Opinion in Urc 371-377.	ology, 2021, 31,	0.9	6
249	Lightweight surrogate random forest support for model simplification and feature rele Intelligence, 2022, 52, 471-481.	vance. Applied	3.3	9
250	A solution to the dilemma`limiting similarity vs. limiting dissimilarity' by a method of tr artificial intelligence. Chaos, Solitons and Fractals, 2021, 146, 110814.	ansparent	2.5	3
251	Explainable Internet Traffic Classification. Applied Sciences (Switzerland), 2021, 11, 46	597.	1.3	5
252	A Review of Explainable Deep Learning Cancer Detection Models in Medical Imaging. A (Switzerland), 2021, 11, 4573.	pplied Sciences	1.3	53
253	Explainable Artificial Intelligence Model for Diagnosis of Atrial Fibrillation Using Holter Electrocardiogram Waveforms. International Heart Journal, 2021, 62, 534-539.		0.5	19
254	Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinic Support Systems: A Systematic Review. Applied Sciences (Switzerland), 2021, 11, 508		1.3	183
255	FAIXID: A Framework for Enhancing AI Explainability of Intrusion Detection Results Usi Cleaning Techniques. Journal of Network and Systems Management, 2021, 29, 1.	ng Data	3.3	28
256	Degradation stage classification via interpretable feature learning. Journal of Manufact Systems, 2022, 62, 972-983.	uring	7.6	15
257	Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: N Learning–Based Development and Validation Study. JMIR Medical Informatics, 2021		1.3	9
258	Visualizing Prediction Correctness of Eye Tracking Classifiers. , 2021, , .			0
259	Observing deep radiomics for the classification of glioma grades. Scientific Reports, 20	21, 11, 10942.	1.6	24

#	Article	IF	CITATIONS
260	Distant viewing and multimodality theory: Prospects and challenges. Multimodality & Society, 2021, 1, 134-152.	0.3	6
261	Operationalizing Human-Centered Perspectives in Explainable Al. , 2021, , .		23
262	Moral Decision Making in Human-Agent Teams: Human Control and the Role of Explanations. Frontiers in Robotics and AI, 2021, 8, 640647.	2.0	10
263	Expanding Explainability: Towards Social Transparency in Al systems. , 2021, , .		104
264	Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions. Knowledge-Based Systems, 2021, 220, 106916.	4.0	34
265	Adaptive Extreme Edge Computing for Wearable Devices. Frontiers in Neuroscience, 2021, 15, 611300.	1.4	67
266	"Know What You Know― Predicting Behavior for Learning-Enabled Systems When Facing Uncertainty. , 2021, , .		8
267	Detecting and explaining unfairness in consumer contracts through memory networks. Artificial Intelligence and Law, 2022, 30, 59-92.	3.0	7
268	Simple hemogram to support the decision-making of COVID-19 diagnosis using clusters analysis with self-organizing maps neural network. Soft Computing, 2023, 27, 3295-3306.	2.1	13
269	Trust, but Verify: Informed Consent, Al Technologies, and Public Health Emergencies. Future Internet, 2021, 13, 132.	2.4	8
270	Towards Explainable AI: Assessing the Usefulness and Impact of Added Explainability Features in Legal Document Summarization. , 2021, , .		12
271	Artificial intelligence techniques in finance and financial markets: A survey of the literature. Strategic Change, 2021, 30, 189-209.	2.5	50
272	Supervised Machine Learning Techniques: An Overview with Applications to Banking. International Statistical Review, 2021, 89, 573-604.	1.1	5
273	Effect of Having, but Not Consulting, a Computerized Diagnostic Aid. Medical Decision Making, 2022, 42, 0272989X2110111.	1.2	4
274	Explainable Deep Learning for Personalized Age Prediction With Brain Morphology. Frontiers in Neuroscience, 2021, 15, 674055.	1.4	38
275	Explaining a XX century horse behaviour. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3046-3047.	3.3	1
276	Evaluating shallow capsule networks on complex images. International Journal of Information Technology (Singapore), 2021, 13, 1047-1057.	1.8	1
277	Why Does Explainability Matter in News Analytic Systems? Proposing Explainable Analytic Journalism. Journalism Studies, 2021, 22, 1047-1065.	1.2	15

#	Article	IF	CITATIONS
278	Investigating ADR mechanisms with Explainable AI: a feasibility study with knowledge graph mining. BMC Medical Informatics and Decision Making, 2021, 21, 171.	1.5	6
279	Spare me the details: How the type of information about automated interviews influences applicant reactions. International Journal of Selection and Assessment, 2021, 29, 154-169.	1.7	17
280	Business Intelligence in Airline Passenger Satisfaction Study—A Fuzzy-Genetic Approach with Optimized Interpretability-Accuracy Trade-Off. Applied Sciences (Switzerland), 2021, 11, 5098.	1.3	4
281	Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly. , 2021, , .		17
282	Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective. Journal of Business Ethics, 2022, 179, 43-61.	3.7	53
283	Extracting Interpretable EEG Features from a Deep Learning Model to Assess the Quality of Human-Robot Co-manipulation. , 2021, , .		1
285	Towards robust Machine Learning models for grape ripeness assessment. , 2021, , .		0
286	A Predictive Analytics Infrastructure to Support a Trustworthy Early Warning System. Applied Sciences (Switzerland), 2021, 11, 5781.	1.3	8
287	Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges. Soft Computing, 2021, 25, 9731-9763.	2.1	49
288	Driftage: a multi-agent system framework for concept drift detection. GigaScience, 2021, 10, .	3.3	8
289	Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data. Water Resources Research, 2021, 57, e2020WR027948.	1.7	22
290	Ada-Sise: Adaptive Semantic Input Sampling for Efficient Explanation of Convolutional Neural Networks. , 2021, , .		9
291	Fuzzy Logic in Surveillance Big Video Data Analysis. ACM Computing Surveys, 2022, 54, 1-33.	16.1	20
292	A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: progress and prospects. Applied Intelligence, 2021, 51, 6497-6527.	3.3	75
293	Artificial intelligence and mass personalization of communication content—An ethical and literacy perspective. New Media and Society, 2022, 24, 1258-1277.	3.1	39
294	From Symbols to Embeddings: A Tale of Two Representations in Computational Social Science. Journal of Social Computing, 2021, 2, 103-156.	1.5	8
295	Deep Learning-Based Phenological Event Modeling for Classification of Crops. Remote Sensing, 2021, 13, 2477.	1.8	6
296	Employing Explainable AI to Optimize the Return Target Function of a Loan Portfolio. Frontiers in Artificial Intelligence, 2021, 4, 693022.	2.0	6

#	Article	IF	CITATIONS
297	Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends in Food Science and Technology, 2021, 112, 431-441.	7.8	79
298	Hybrid Explainable Smart House Control System. , 2021, , .		1
299	From Classical Machine Learning to Deep Neural Networks: A Simplified Scientometric Review. Applied Sciences (Switzerland), 2021, 11, 5541.	1.3	21
300	Concerns in the Blurred Divisions Between Medical and Consumer Neurotechnology. IEEE Systems Journal, 2021, 15, 3069-3080.	2.9	9
301	A Review of Big Data: Trends and Popular Issues During Pandemic COVID-19 in 2020. , 2021, , .		0
302	Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability. Machine Learning and Knowledge Extraction, 2021, 3, 525-541.	3.2	72
303	Semantic Data Mining in Ubiquitous Sensing: A Survey. Sensors, 2021, 21, 4322.	2.1	4
304	Balance Measurement Using Microsoft Kinect v2: Towards Remote Evaluation of Patient with the Functional Reach Test. Applied Sciences (Switzerland), 2021, 11, 6073.	1.3	8
305	Explainable AI for COVID-19 CT Classifiers: An Initial Comparison Study. , 2021, , .		55
306	Multilevel Clustering Explainer: An Explainable Approach to Electronic Health Records. , 2021, , .		0
307	The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics (Switzerland), 2021, 10, 1406.	1.8	24
308	Paradigm Shift: The Promise of Deep Learning in Molecular Systems Engineering and Design. Frontiers in Chemical Engineering, 2021, 3, .	1.3	5
309	Data-driven methods for present and future pandemics: Monitoring, modelling and managing. Annual Reviews in Control, 2021, 52, 448-464.	4.4	28
310	Artificial intelligence in hospitals: providing a status quo of ethical considerations in academia to guide future research. Al and Society, 2022, 37, 1361-1382.	3.1	15
311	Responsible AI for Digital Health: a Synthesis and a Research Agenda. Information Systems Frontiers, 2023, 25, 2139-2157.	4.1	52
312	Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI). Sensors, 2021, 21, 4489.	2.1	28
313	Fairness and Transparency in Recommendation: The Usersâ \in $^{\mathrm{M}}$ Perspective. , 2021, , .		33
314	Prediction of quality of life in people with ALS. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2021, 21, 5-17.	0.5	5

	CHANO	N KEPOKI	
#	Article	IF	CITATIONS
315	Going deep into schizophrenia with artificial intelligence. Schizophrenia Research, 2022, 245, 122-140.	1.1	39
316	Interpretable heartbeat classification using local model-agnostic explanations on ECGs. Computers in Biology and Medicine, 2021, 133, 104393.	3.9	41
317	Accelerating Al Adoption with Responsible Al Signals and Employee Engagement Mechanisms in Health Care. Information Systems Frontiers, 2023, 25, 2239-2256.	4.1	21
318	Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science, 2021, 193, 110360.	1.4	103
319	Bayesian networks for interpretable machine learning and optimization. Neurocomputing, 2021, 456, 648-665.	3.5	40
320	Perspective for the Use of Adoption Theories in Artificial Intelligence. , 2021, , .		2
321	Ethical Applications of Artificial Intelligence: Evidence From Health Research on Veterans. JMIR Medical Informatics, 2021, 9, e28921.	1.3	8
322	NNCompare. , 2021, , .		2
323	Ethical Guidelines and Principles in the Context of Artificial Intelligence. , 2021, , .		2
324	Assessing the Clinical Validity of Attention-based and SHAP Temporal Explanations for Adverse Drug Event Predictions. , 2021, , .		3
325	Can Clinical Symptoms and Laboratory Results Predict CT Abnormality? Initial Findings Using Novel Machine Learning Techniques in Children With COVID-19 Infections. Frontiers in Medicine, 2021, 8, 699984.	1.2	11
326	Rapid bibliometric analysis in deep learning domain. , 2021, , .		0
327	Visual interpretability in 3D brain tumor segmentation network. Computers in Biology and Medicine, 2021, 133, 104410.	3.9	31
328	Explainable artificial intelligence for digital forensics. Wiley Interdisciplinary Reviews Forensic Science, 2022, 4, .	1.2	15
329	Human-level Ordinal Maintainability Prediction Based on Static Code Metrics. , 2021, , .		3
330	Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review. Crystals, 2021, 11, 723.	1.0	17
331	Recent Advances in Blockchain and Artificial Intelligence Integration: Feasibility Analysis, Research Issues, Applications, Challenges, and Future Work. Security and Communication Networks, 2021, 2021, 1-15.	1.0	23
332	Ethics-Based Auditing of Automated Decision-Making Systems: Nature, Scope, and Limitations. Science and Engineering Ethics, 2021, 27, 44.	1.7	49

#	Article	IF	CITATIONS
333	Can Blockchain Strengthen the Energy Internet?. Network, 2021, 1, 95-115.	1.5	13
334	XAI Models for Quality of Experience Prediction in Wireless Networks. , 2021, , .		11
335	Study Progress of Noninvasive Imaging and Radiomics for Decoding the Phenotypes and Recurrence Risk of Bladder Cancer. Frontiers in Oncology, 2021, 11, 704039.	1.3	11
336	Applying Attention-Based Models for Detecting Cognitive Processes and Mental Health Conditions. Cognitive Computation, 2021, 13, 1154-1171.	3.6	2
337	Features and explainable methods for cytokines analysis of Dry Eye Disease in HIV infected patients. Healthcare Analytics, 2021, 1, 100001.	2.6	3
338	Interpret The Predictions Of Deep Networks Via Re-Label Distillation. , 2021, , .		0
339	Salience-CAM: Visual Explanations from Convolutional Neural Networks via Salience Score. , 2021, , .		3
340	What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 2021, 296, 103473.	3.9	183
341	Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI. Information Fusion, 2021, 71, 28-37.	11.7	210
342	Multi-task learning with Multi-view Weighted Fusion Attention for artery-specific calcification analysis. Information Fusion, 2021, 71, 64-76.	11.7	26
343	Achieving Operational Excellence Through Artificial Intelligence: Driving Forces and Barriers. Frontiers in Psychology, 2021, 12, 686624.	1.1	10
344	An Explainable Approach for Car Driver Identification. , 2021, , .		3
345	Actionable XAI for the Fuzzy Integral. , 2021, , .		1
346	Açıklanabilir Evrişimsel Sinir Ağları ile Beyin Tümörü Tespiti. El-Cezeri Journal of Science and Engineering, 0, , .	0.1	3
347	Towards Explainable Group Formation by Knowledge Map based Genetic Algorithm. , 2021, , .		5
349	Collaborative Exploration and Reinforcement Learning between Heterogeneously Skilled Agents in Environments with Sparse Rewards. , 2021, , .		5
350	Using machine learning approaches for multi-omics data analysis: A review. Biotechnology Advances, 2021, 49, 107739.	6.0	277
351	Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4316-4336.	4.7	170

#	Article	IF	CITATIONS
352	Smart Wearable and Collaborative Technologies for the Operator 4.0 in the Present and Post-COVID Digital Manufacturing Worlds. Smart and Sustainable Manufacturing Systems, 2021, 5, 148-166.	0.3	1
353	Ethical Artificial Intelligence in Chemical Research and Development: A Dual Advantage for Sustainability. Science and Engineering Ethics, 2021, 27, 45.	1.7	3
354	Deep ensemble learning-based approach to real-time power system state estimation. International Journal of Electrical Power and Energy Systems, 2021, 129, 106806.	3.3	22
355	Interpreting Node Embedding with Text-labeled Graphs. , 2021, , .		0
356	An approach to bridge the gap between ubiquitous embedded devices and JFML: A new module for Internet of Things. , 2021, , .		3
357	DOME: recommendations for supervised machine learning validation in biology. Nature Methods, 2021, 18, 1122-1127.	9.0	105
358	Meta-Fuzzy Items for Fuzzy Association Rules. , 2021, , .		2
359	Artificial intelligence in the fertility clinic: status, pitfalls and possibilities. Human Reproduction, 2021, 36, 2429-2442.	0.4	38
360	Managing the tension between opposing effects of explainability of artificial intelligence: a contingency theory perspective. Internet Research, 2022, 32, 425-453.	2.7	16
361	Machine learning analysis of TCGA cancer data. PeerJ Computer Science, 2021, 7, e584.	2.7	13
362	Improving Explainability of Major Risk Factors in Artificial Neural Networks for Auto Insurance Rate Regulation. Risks, 2021, 9, 126.	1.3	6
363	Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials. Npj Computational Materials, 2021, 7, .	3.5	55
364	Playing to distraction: towards a robust training of CNN classifiers through visual explanation techniques. Neural Computing and Applications, 2021, 33, 16937-16949.	3.2	6
365	Temperament estimation of toddlers from child–robot interaction with explainable artificial intelligence. Advanced Robotics, 2021, 35, 1068-1077.	1.1	3
366	Sequence-Based Explainable Hybrid Song Recommendation. Frontiers in Big Data, 2021, 4, 693494.	1.8	3
367	Using autoencoders to compress soil VNIR–SWIR spectra for more robust prediction of soil properties. Geoderma, 2021, 393, 114967.	2.3	14
368	Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future. Renewable and Sustainable Energy Reviews, 2021, 144, 111051.	8.2	47
369	The Role of Cybersecurity and HPC in the Explainability of Autonomous Robots Behavior. , 2021, , .		2

#	Article	IF	CITATIONS
370	Explainable artificial intelligence for education and training. Journal of Defense Modeling and Simulation, 2022, 19, 133-144.	1.2	27
372	THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK. International Journal of Strategic Property Management, 2021, 25, 396-412.	0.8	4
373	Ordinal regression with explainable distance metric learning based on ordered sequences. Machine Learning, 2021, 110, 2729-2762.	3.4	6
374	Human- and Machine-Generated Traffic Distinction by DNS Protocol Analysis. , 2021, , .		0
375	A Fuzzy Rule-based System using a Patch-based Approach for Semantic Segmentation in Floor Plans. , 2021, , .		5
376	Explainable Embodied Agents Through Social Cues. ACM Transactions on Human-Robot Interaction, 2021, 10, 1-24.	3.2	28
377	A social evaluation of the perceived goodness of explainability in machine learning. Journal of Business Analytics, 2022, 5, 29-50.	1.8	7
378	Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, 11, e1424.	4.6	198
379	A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. Swarm and Evolutionary Computation, 2021, 64, 100888.	4.5	154
380	IEEE P7001: A Proposed Standard on Transparency. Frontiers in Robotics and AI, 2021, 8, 665729.	2.0	38
381	A Framework for Analyzing Fairness, Accountability, Transparency and Ethics: A Use-case in Banking Services. , 2021, , .		5
382	Artificial intelligence for throughput bottleneck analysis – State-of-the-art and future directions. Journal of Manufacturing Systems, 2021, 60, 734-751.	7.6	22
383	A Marr's Threeâ€Level Analytical Framework for Neuromorphic Electronic Systems. Advanced Intelligent Systems, 2021, 3, 2100054.	3.3	3
384	Detection of counterfeit coins based on 3D height-map image analysis. Expert Systems With Applications, 2021, 174, 114801.	4.4	4
385	Explainable Predictions of Renal Cell Carcinoma with Interpretable Tree Ensembles from Contrast-enhanced CT Images. , 2021, , .		0
386	Using deep learning to value free-form text data for predictive maintenance. International Journal of Production Research, 2022, 60, 4548-4575.	4.9	27
387	When technology meets people: the interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 2021, 34, 1339-1370.	4.4	54
388	Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing, 2022, 470, 318-334.	3.5	13

#	Article	IF	CITATIONS
390	Design, Interpretability, and Explainability of Models in the Framework of Granular Computing and Federated Learning. , 2021, , .		0
391	Pairing conceptual modeling with machine learning. Data and Knowledge Engineering, 2021, 134, 101909.	2.1	17
392	How experts explain motion planner output: a preliminary user-study to inform the design of explainable planners. , 2021, , .		4
393	Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy, 2021, 23, 1047.	1.1	8
394	On the post-hoc explainability of deep echo state networks for time series forecasting, image and video classification. Neural Computing and Applications, 2022, 34, 10257-10277.	3.2	6
395	Convolutional Neural Networks for the evaluation of cancer in Barrett's esophagus: Explainable AI to lighten up the black-box. Computers in Biology and Medicine, 2021, 135, 104578.	3.9	24
396	Machine Learning and XAI approaches for Allergy Diagnosis. Biomedical Signal Processing and Control, 2021, 69, 102681.	3.5	23
397	Hibrit Açıklanabilir Yapay Zeka Tasarımı ve LIME Uygulaması. European Journal of Science and Technology, 0, , .	0.5	3
398	Artificial intelligence: Explainability, ethical issues and bias. , 2021, , 034-037.		3
399	Attention uncovers task-relevant semantics in emotional narrative understanding. Knowledge-Based Systems, 2021, 226, 107162.	4.0	6
400	Promoting students' learning achievement and selfâ€efficacy: A mobile chatbot approach for nursing training. British Journal of Educational Technology, 2022, 53, 171-188.	3.9	63
401	Technological Answerability and the Severance Problem: Staying Connected by Demanding Answers. Science and Engineering Ethics, 2021, 27, 59.	1.7	4
402	Deep Learning for Visual Analytics of the Spread of COVID-19 Infection in Crowded Urban Environments. Natural Hazards Review, 2021, 22, .	0.8	8
403	Enhancing data pipelines for forecasting student performance: integrating feature selection with cross-validation. International Journal of Educational Technology in Higher Education, 2021, 18, 44.	4.5	12
404	Human-Agent Trust Evaluation in a Digital Twin Context. , 2021, , .		1
405	Surrogate Object Detection Explainer (SODEx) with YOLOv4 and LIME. Machine Learning and Knowledge Extraction, 2021, 3, 662-671.	3.2	6
406	Incorporating Interpersonal Synchronization Features for Automatic Emotion Recognition from Visual and Audio Data during Communication. Sensors, 2021, 21, 5317.	2.1	6
407	Trustworthiness of Artificial Intelligence Models in Radiology and the Role of Explainability. Journal of the American College of Radiology, 2021, 18, 1160-1162.	0.9	15

#	Article	IF	CITATIONS
408	What Do You See?. , 2021, , .		28
409	Building verified neural networks with specifications for systems. , 2021, , .		0
410	Recommender Systems: An Explainable AI Perspective. , 2021, , .		9
411	Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective. Journal of Intelligent Manufacturing, 2023, 34, 415-428.	4.4	13
412	AI models and the future of genomic research and medicine: True sons of knowledge?. BioEssays, 2021, 43, 2100025.	1.2	2
413	Role of Risks in the Development of Responsible Artificial Intelligence in the Digital Healthcare Domain. Information Systems Frontiers, 2023, 25, 2257-2274.	4.1	27
414	Explanation of Machine-Learning Solutions in Air-Traffic Management. Aerospace, 2021, 8, 224.	1.1	23
415	Leveraging Clinical Decision Support and Integrated Medical-Dental Electronic Health Records to Implementing Precision in Oral Cancer Risk Assessment and Preventive Intervention. Journal of Personalized Medicine, 2021, 11, 832.	1.1	2
416	A Decentralized Explanatory System forÂIntelligent Cyber-Physical Systems. Lecture Notes in Networks and Systems, 2022, , 719-738.	0.5	1
417	Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers. Sensors, 2021, 21, 5657.	2.1	21
418	Artificial intelligence explainability: the technical and ethical dimensions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200363.	1.6	32
419	Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions. Neural Computing and Applications, 2021, , 1-31.	3.2	14
420	Artificial Intelligence and Business Value: a Literature Review. Information Systems Frontiers, 2022, 24, 1709-1734.	4.1	142
421	Al-enabled digital identity – inputs for stakeholders and policymakers. Journal of Science and Technology Policy Management, 2022, 13, 514-541.	1.7	11
422	An empirical investigation into intelligent cost analysis in purchasing. Supply Chain Management, 2022, 27, 785-808.	3.7	5
423	Assessment of Gradient Descent Trained Rule-Fact Network Expert System Multi-Path Training Technique Performance. Computers, 2021, 10, 103.	2.1	6
424	Enhancing the performance of a neural network with entity embeddings: an application to real estate valuation. Journal of Housing and the Built Environment, 2022, 37, 1057-1072.	0.9	1
425	iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients. Npj Digital Medicine, 2021, 4, 124.	5.7	10

#	Article	IF	CITATIONS
426	Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science & Sc	4.6	140
427	A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects. Information Fusion, 2021, 72, 1-21.	11.7	80
428	"That's (not) the output I expected!―On the role of end user expectations in creating explanations of Al systems. Artificial Intelligence, 2021, 298, 103507.	3.9	19
429	Toward personalized XAI: A case study in intelligent tutoring systems. Artificial Intelligence, 2021, 298, 103503.	3.9	39
430	Risk-return modelling in the p2p lending market: Trends, gaps, recommendations and future directions. Electronic Commerce Research and Applications, 2021, 49, 101079.	2.5	11
431	Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks. Sensors, 2021, 21, 5888.	2.1	21
432	Coarse ethics: how to ethically assess explainable artificial intelligence. Al and Ethics, 2022, 2, 449-461.	4.6	3
433	Last Advances on Automatic Carotid Artery Analysis in Ultrasound Images: Towards Deep Learning. Intelligent Systems Reference Library, 2022, , 215-247.	1.0	1
434	Non-technical losses detection in energy consumption focusing on energy recovery and explainability. Machine Learning, 2022, 111, 487-517.	3.4	7
435	Exploring Peoples' Perception of Autonomy and Reactance in Everyday Al Interactions. Frontiers in Psychology, 2021, 12, 713074.	1.1	8
436	An Ontology-Based Framework for a Telehealthcare System to Foster Healthy Nutrition and Active Lifestyle in Older Adults. Electronics (Switzerland), 2021, 10, 2129.	1.8	4
437	On the use of information fusion techniques to improve information quality: Taxonomy, opportunities and challenges. Information Fusion, 2022, 78, 102-137.	11.7	16
438	Diabetic risk prognosis with tree ensembles integrating feature attribution methods. Evolutionary Intelligence, 2024, 17, 419-428.	2.3	0
439	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
440	Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to Intensive care unit. Journal of Biomedical Informatics, 2021, 121, 103876.	2.5	22
441	Back to Basics: An Interpretable Multi-Class Grade Prediction Framework. Arabian Journal for Science and Engineering, 2022, 47, 2171-2186.	1.7	1
442	Abstraction, validation <scp>,</scp> and generalization for explainable artificial intelligence. Applied AI Letters, 2021, 2, e37.	1.4	3
443	Towards Designing Enthusiastic Al Agents. , 2021, , .		1

#	Article	IF	CITATIONS
444	Impact of techniques to reduce error in high error rule-based expert system gradient descent networks. Journal of Intelligent Information Systems, 2022, 58, 481-512.	2.8	1
445	A survey of visual analytics for Explainable Artificial Intelligence methods. Computers and Graphics, 2022, 102, 502-520.	1.4	77
446	An Iterative and Collaborative End-to-End Methodology Applied to Digital Mental Health. Frontiers in Psychiatry, 2021, 12, 574440.	1.3	0
447	Data-Driven Design-By-Analogy: State-of-the-Art and Future Directions. Journal of Mechanical Design, Transactions of the ASME, 2022, 144, .	1.7	33
448	Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet. PLoS ONE, 2021, 16, e0257426.	1.1	5
449	The Application of the Principles of Responsible AI on Social Media Marketing for Digital Health. Information Systems Frontiers, 2023, 25, 2275-2299.	4.1	19
450	Al under great uncertainty: implications and decision strategies for public policy. Al and Society, 2022, 37, 1703-1714.	3.1	11
451	Prediction of NO _x Emissions from Compression Ignition Engines Using Ensemble Learning-Based Models with Physical Interpretability. , 0, , .		4
452	PASTLE: Pivot-aided space transformation for local explanations. Pattern Recognition Letters, 2021, 149, 67-74.	2.6	7
453	A Mobile Tool that Helps Nonexperts Make Sense of Pretrained CNN by Interacting with Their Daily Surroundings. , 2021, , .		4
454	Ensembles of Convolutional Neural Network models for pediatric pneumonia diagnosis. Future Generation Computer Systems, 2021, 122, 220-233.	4.9	34
456	Performance and Explainability of Reservoir Computing Models for Industrial Prognosis. Advances in Intelligent Systems and Computing, 2022, , 24-36.	0.5	1
457	Systematizing Audit in Algorithmic Recruitment. Journal of Intelligence, 2021, 9, 46.	1.3	12
458	Ready, Steady, Go AI: A practical tutorial on fundamentals of artificial intelligence and its applications in phenomics image analysis. Patterns, 2021, 2, 100323.	3.1	12
459	Machine Learning with Explainable Artificial Intelligence Vision for Characterization of Solution Conductivity Using Optical Emission Spectroscopy of Plasma in Aqueous Solution. Plasma Processes and Polymers, 2021, 18, e2100096.	1.6	5
460	Understanding responsibility in Responsible Al. Dianoetic virtues and the hard problem of context. Ethics and Information Technology, 2021, 23, 803-814.	2.3	17
461	Explainable Sentiment Analysis: A Hierarchical Transformer-Based Extractive Summarization Approach. Electronics (Switzerland), 2021, 10, 2195.	1.8	9
462	CURIE: a cellular automaton for concept drift detection. Data Mining and Knowledge Discovery, 2021, 35, 2655-2678.	2.4	4

		CITATION REPORT		
#	Article		IF	CITATIONS
463	Approximating XGBoost with an interpretable decision tree. Information Sciences, 2021, 572, 5	22-542.	4.0	129
464	Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture. T Cognitive Science, 2022, 14, 756-779.	opics in	1.1	2
465	Glassboxing Deep Learning to Enhance Aircraft Detection from SAR Imagery. Remote Sensing, 2 3650.	2021, 13,	1.8	14
466	Assessment of Domestic Well-Being: From Perception to Measurement. IEEE Instrumentation a Measurement Magazine, 2021, 24, 58-67.	nd	1.2	18
467	Interpretable collaborative data analysis on distributed data. Expert Systems With Applications, 177, 114891.	2021,	4.4	13
468	EEG-based motor imagery classification using convolutional neural networks with local reparameterization trick. Expert Systems With Applications, 2022, 187, 115968.		4.4	18
469	The prospective of Artificial Intelligence in COVID-19 Pandemic. Health and Technology, 2021, 2 1311-1320.	.1,	2.1	16
471	A deep learning framework for lightning forecasting with multiâ€source spatiotemporal data. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4048-4062.		1.0	19
472	Boosting Intelligent Data Analysis in Smart Sensors by Integrating Knowledge and Machine Lea Sensors, 2021, 21, 6168.	ning.	2.1	6
473	Interpretable, Transparent, and Auditable Machine Learning: An Alternative to Factor Investing. Journal of Financial Data Science, 2021, 3, 84-100.	The	0.9	0
474	Perturbation-based methods for explaining deep neural networks: A survey. Pattern Recognitior Letters, 2021, 150, 228-234.	1	2.6	69
475	Towards a mathematical framework to inform neural network modelling via polynomial regressi Neural Networks, 2021, 142, 57-72.	on.	3.3	16
476	Sentiment analysis using novel and interpretable architectures of Hidden Markov Models. Knowledge-Based Systems, 2021, 229, 107332.		4.0	24
477	Communicating Inferred Goals With Passive Augmented Reality and Active Haptic Feedback. IEI Robotics and Automation Letters, 2021, 6, 8522-8529.	E	3.3	20
478	Explainable Recommendations and Calibrated Trust: Two Systematic User Errors. Computer, 20 28-37.	21, 54,	1.2	15
479	Artificial Intelligence in PET. PET Clinics, 2021, 16, 483-492.		1.5	4
480	Automated detection and explainability of pathological gait patterns using a one-class support machine trained on inertial measurement unit based gait data. Clinical Biomechanics, 2021, 89,	vector 105452.	0.5	11
481	Blockchain management and machine learning adaptation for IoT environment in 5G and beyor networks: A systematic review. Computer Communications, 2021, 178, 37-63.	d	3.1	30

#	Article	IF	CITATIONS
482	An interpretable Neural Fuzzy Hammerstein-Wiener network for stock price prediction. Information Sciences, 2021, 577, 324-335.	4.0	24
483	Human-centered XAI: Developing design patterns for explanations of clinical decision support systems. International Journal of Human Computer Studies, 2021, 154, 102684.	3.7	72
484	Toward Human–Al Interfaces to Support Explainability and Causability in Medical Al. Computer, 2021, 54, 78-86.	1.2	52
485	Usability, User Comprehension, and Perceptions of Explanations for Complex Decision Support Systems in Finance: A Robo-Advisory Use Case. Computer, 2021, 54, 38-48.	1.2	3
486	The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers. Computers in Human Behavior, 2021, 123, 106878.	5.1	89
487	A Brief History of Al: How to Prevent Another Winter (A Critical Review). PET Clinics, 2021, 16, 449-469.	1.5	40
488	Explainable extreme gradient boosting tree-based prediction of load-carrying capacity of FRP-RC columns. Engineering Structures, 2021, 245, 112836.	2.6	68
489	Prediction of hospital admission from the emergency department: Clinician involvement, intended use, and interpretability. International Journal of Medical Informatics, 2021, 155, 104585.	1.6	0
490	A framework for step-wise explaining how to solve constraint satisfaction problems. Artificial Intelligence, 2021, 300, 103550.	3.9	6
491	Learning interpretable multi-class models by means of hierarchical decomposition: Threshold Control for Nested Dichotomies. Neurocomputing, 2021, 463, 514-524.	3.5	0
492	Utilizing geo-referenced imagery for systematic social observation of neighborhood disorder. Computers, Environment and Urban Systems, 2021, 90, 101691.	3.3	4
493	Multi-source brain computing with systematic fusion for smart health. Information Fusion, 2021, 75, 150-167.	11.7	14
494	Explainable Deep Reinforcement Learning for UAV autonomous path planning. Aerospace Science and Technology, 2021, 118, 107052.	2.5	71
495	ADOPS: Aspect Discovery OPinion Summarisation Methodology based on deep learning and subgroup discovery for generating explainable opinion summaries. Knowledge-Based Systems, 2021, 231, 107455.	4.0	8
496	Notions of explainability and evaluation approaches for explainable artificial intelligence. Information Fusion, 2021, 76, 89-106.	11.7	174
497	Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Systems With Applications, 2021, 186, 115736.	4.4	104
498	2P-Kt: A logic-based ecosystem for symbolic Al. SoftwareX, 2021, 16, 100817.	1.2	9
499	Analysis of sentiment in tweets addressed to a single domain-specific Twitter account: Comparison of model performance and explainability of predictions. Expert Systems With Applications, 2021, 186, 115771.	4.4	20

#	Article	IF	CITATIONS
500	Supporting digital content marketing and messaging through topic modelling and decision trees. Expert Systems With Applications, 2021, 184, 115546.	4.4	16
501	Fuzzy Jaccard Index: A robust comparison of ordered lists. Applied Soft Computing Journal, 2021, 113, 107849.	4.1	7
502	A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. ACM Transactions on Interactive Intelligent Systems, 2021, 11, 1-45.	2.6	165
503	PBC4occ: A novel contrast pattern-based classifier for one-class classification. Future Generation Computer Systems, 2021, 125, 71-90.	4.9	8
504	Data-centric process systems engineering: A push towards PSE 4.0. Computers and Chemical Engineering, 2021, 155, 107529.	2.0	14
505	Local and global explanations of agent behavior: Integrating strategy summaries with saliency maps. Artificial Intelligence, 2021, 301, 103571.	3.9	23
506	Automation as an equal team player for humans? – A view into the field and implications for research and practice. Applied Ergonomics, 2022, 98, 103552.	1.7	11
507	Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information Fusion, 2022, 77, 29-52.	11.7	280
508	A Survey on Explainability in Artificial Intelligence. Advances in Wireless Technologies and Telecommunication Book Series, 2022, , 55-75.	0.3	1
509	Some critical and ethical perspectives on the empirical turn of Al interpretability. Technological Forecasting and Social Change, 2022, 174, 121209.	6.2	17
510	Adversarial XAI Methods in Cybersecurity. IEEE Transactions on Information Forensics and Security, 2021, 16, 4924-4938.	4.5	32
511	Towards a terminology for a fully contextualized XAI. Procedia Computer Science, 2021, 192, 241-250.	1.2	8
512	Weighted Defeasible Knowledge Bases and a Multipreference Semantics for a Deep Neural Network Model. Lecture Notes in Computer Science, 2021, , 225-242.	1.0	7
513	A Hierarchical Approach to Interpretability of TS Rule-Based Models. IEEE Transactions on Fuzzy Systems, 2022, 30, 2861-2869.	6.5	4
514	AI2VIS4BigData: A Reference Model for AI-Based Big Data Analysis and Visualization. Lecture Notes in Computer Science, 2021, , 1-18.	1.0	3
515	Explainable and Ethical AI: A Perspective on Argumentation and Logic Programming. Lecture Notes in Computer Science, 2021, , 19-36.	1.0	3
516	Edge Intelligence in 6G Systems. Computer Communications and Networks, 2021, , 233-249.	0.8	4
517	Making SHAP Rap: Bridging Local and Global Insights Through Interaction and Narratives. Lecture Notes in Computer Science, 2021, , 641-651.	1.0	4

#	Article	IF	CITATIONS
518	Human-Centered Artificial Intelligence for Designing Accessible Cultural Heritage. Applied Sciences (Switzerland), 2021, 11, 870.	1.3	42
519	MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biology, 2021, 22, 24.	3.8	8
520	The Methods and Approaches ofÂExplainable Artificial Intelligence. Lecture Notes in Computer Science, 2021, , 3-17.	1.0	6
521	Scalable, Axiomatic Explanations of Deep Alzheimer's Diagnosis from Heterogeneous Data. Lecture Notes in Computer Science, 2021, , 434-444.	1.0	3
522	Explainable Student Agency Analytics. IEEE Access, 2021, 9, 137444-137459.	2.6	11
523	M2Lens: Visualizing and Explaining Multimodal Models for Sentiment Analysis. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 802-812.	2.9	28
525	Positing a Sense of Agency-Aware Persuasive Al: Its Theoretical and Computational Frameworks. Lecture Notes in Computer Science, 2021, , 3-18.	1.0	1
526	Finding Cood Proofs for Description Logic Entailments using Recursive Quality Measures. Lecture Notes in Computer Science, 2021, , 291-308.	1.0	7
527	Reclaiming the Smart City: Toward a New Right to the City. , 2021, , 1419-1436.		0
528	Towards Open and Expandable Cognitive AI Architectures for Large-Scale Multi-Agent Human-Robot Collaborative Learning. IEEE Access, 2021, 9, 73890-73909.	2.6	9
529	A Review of Explainable Artificial Intelligence. IFIP Advances in Information and Communication Technology, 2021, , 574-584.	0.5	1
530	Research and development for increased application of data science in sustainability analysis. , 2021, , 283-292.		0
531	Only Can Al Understand Me?. Advances in Data Mining and Database Management Book Series, 2021, , 46-66.	0.4	3
532	HCD3A: An HCD Model to Design Data-Driven Apps. Lecture Notes in Computer Science, 2021, , 285-297.	1.0	1
533	Expectation: Personalized Explainable Artificial Intelligence for Decentralized Agents with Heterogeneous Knowledge. Lecture Notes in Computer Science, 2021, , 331-343.	1.0	5
535	Explaining CNN and RNN Using Selective Layer-Wise Relevance Propagation. IEEE Access, 2021, 9, 18670-18681.	2.6	17
536	A Novel Tumor Progression Prediction Method for Multimode Ablation Treatment. IEEE Transactions on Biomedical Engineering, 2022, 69, 1386-1397.	2.5	2
537	Reclaiming the Smart City: Toward a New Right to the City. , 2020, , 1-18.		6

#	Article	IF	CITATIONS
538	Knowledge-to-Information Translation Training (KITT): An Adaptive Approach to Explainable Artificial Intelligence. Lecture Notes in Computer Science, 2020, , 187-204.	1.0	8
539	Scenario-Based Requirements Elicitation for User-Centric Explainable Al. Lecture Notes in Computer Science, 2020, , 321-341.	1.0	20
540	Learning a Formula of Interpretability to Learn Interpretable Formulas. Lecture Notes in Computer Science, 2020, , 79-93.	1.0	12
541	An Overview of the Machine Learning Applied in Smart Cities. Lecture Notes in Intelligent Transportation and Infrastructure, 2021, , 91-111.	0.3	8
542	Explanation Ontology: A Model of Explanations for User-Centered AI. Lecture Notes in Computer Science, 2020, , 228-243.	1.0	29
543	What is the Optimal Attribution Method for Explainable Ophthalmic Disease Classification?. Lecture Notes in Computer Science, 2020, , 21-31.	1.0	9
544	A Taxonomy of Explainable Bayesian Networks. Communications in Computer and Information Science, 2020, , 220-235.	0.4	8
545	An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges. Neurocomputing, 2020, 404, 93-107.	3.5	38
546	Machine learning suggests sleep as a core factor in chronic pain. Pain, 2021, 162, 109-123.	2.0	20
547	Thalamic neuroinflammation as a reproducible and discriminating signature for chronic low back pain. Pain, 2021, 162, 1241-1249.	2.0	24
548	Deep Echo State Networks for Short-Term Traffic Forecasting: Performance Comparison and Statistical Assessment. , 2020, , .		9
549	Questioning the AI: Informing Design Practices for Explainable AI User Experiences. , 2020, , .		291
550	How do visual explanations foster end users' appropriate trust in machine learning?. , 2020, , .		72
551	eXplainable AI (XAI). , 2020, , .		6
552	Explainable NILM Networks. , 2020, , .		10
553	Explainable AI and Multi-Modal Causability in Medicine. I-com, 2021, 19, 171-179.	0.9	42
554	On the Role of Explainable Machine Learning for Secure Smart Vehicles. , 2020, , .		6
555	Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Frontiers in Artificial Intelligence, 2020, 3, 564878.	2.0	7

\sim			n .	
C	ITAT	ION	REF	PORT

#	Article	IF	CITATIONS
556	A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic Interpretability. Algorithms, 2020, 13, 17.	1.2	72
557	Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy, 2021, 23, 18.	1.1	934
558	Individualised Responsible Artificial Intelligence for Home-Based Rehabilitation. Sensors, 2021, 21, 2.	2.1	23
559	Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review. Plant Phenomics, 2020, 2020, 4152816.	2.5	187
560	A Preliminary Look at Heuristic Analysis for Assessing Artificial Intelligence Explainability. WSEAS Transactions on Computer Research, 2020, 8, 61-72.	0.3	3
561	E-SFD: Explainable Sensor Fault Detection in the ICS Anomaly Detection System. IEEE Access, 2021, 9, 140470-140486.	2.6	18
562	A New Plugin to Include FuzzyPred in KNIME. Studies in Computational Intelligence, 2021, , 405-423.	0.7	0
563	Machine Learning for Assessment of Cardiometabolic Risk Factors Predictive Potential and Prediction of Obstructive Coronary Arteries Lesions. Lecture Notes in Computer Science, 2021, , 102-116.	1.0	0
564	Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems. Lecture Notes in Computer Science, 2021, , 385-400.	1.0	5
565	Predictive Medicine for Salivary Gland Tumours Identification Through Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4869-4879.	3.9	8
566	Philosophical consideration of social risks of intellectual automation of social management. The Digital Scholar Philosopher S Lab, 2021, 4, 125-144.	0.1	2
567	A Look at Artificial Intelligence on the Perspective of Application in the Modern Education. Studies in Computational Intelligence, 2021, , 171-189.	0.7	0
568	Explainable Artificial Intelligence (XAI) Supporting Public Administration Processes – On the Potential of XAI in Tax Audit Processes. Lecture Notes in Information Systems and Organisation, 2021, , 413-428.	0.4	4
569	Deep Learning and Zero-Day Traffic Classification: Lessons Learned From a Commercial-Grade Dataset. IEEE Transactions on Network and Service Management, 2021, 18, 4103-4118.	3.2	27
570	Toward Neural-Network-Guided Program Synthesis and Verification. Lecture Notes in Computer Science, 2021, , 236-260.	1.0	3
571	Improving Micro-Extended Belief Rule-Based System Using Activation Factor for Classification Problems. Lecture Notes in Computer Science, 2021, , 79-86.	1.0	0
572	End-to-end grasping policies for human-in-the-loop robots via deep reinforcement learning*. , 2021, , .		1
573	Towards Explainable Semantic Segmentation for Autonomous Driving Systems by Multi-Scale Variational Attention. , 2021, , .		7

#	Article	IF	CITATIONS
574	An automated feature selection and classification pipeline to improve explainability of clinical prediction models. , 2021, , .		5
575	Detection and Geovisualization of Abnormal Vessel Behavior from Video. , 2021, , .		3
576	Stream-based explainable recommendations via blockchain profiling. Integrated Computer-Aided Engineering, 2021, , 1-17.	2.5	6
577	AIDOaRt: AI-augmented Automation for DevOps, a Model-based Framework for Continuous Development in Cyber-Physical Systems. , 2021, , .		5
578	Explainable Artificial Intelligence to Advance Structural Health Monitoring. Structural Integrity, 2022, , 331-346.	0.8	6
579	Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem. Health and Technology, 2021, 11, 1331-1345.	2.1	10
580	Digital Mental Health Amid COVID-19. Encyclopedia, 2021, 1, 1047-1057.	2.4	10
581	Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochemical Journal, 2021, 478, 3685-3721.	1.7	8
582	Can I believe what I see? Data visualization and trust in the humanities. Interdisciplinary Science Reviews, 2021, 46, 522-546.	1.0	12
583	Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. European Heart Journal Digital Health, 2021, 2, 676-690.	0.7	10
584	Explainability via Interactivity? Supporting Nonexperts' Sensemaking of pre-trained CNN by Interacting with Their Daily Surroundings. , 2021, , .		0
585	Interpretable machine learning for genomics. Human Genetics, 2022, 141, 1499-1513.	1.8	21
586	MOSafely: Building an Open-Source HCAI Community to Make the Internet a Safer Place for Youth. , 2021, , .		2
587	Intelligent autonomous agents and trust in virtual reality. Computers in Human Behavior Reports, 2021, 4, 100146.	2.3	10
588	Development and validation of a neural network for NAFLD diagnosis. Scientific Reports, 2021, 11, 20240.	1.6	15
589	A Taxonomy of Food Supply Chain Problems from a Computational Intelligence Perspective. Sensors, 2021, 21, 6910.	2.1	15
590	Ordinal Regression with Explainable Distance Metric Learning Based on Ordered Sequences: Extended Abstract. , 2021, , .		2
591	Interpretable Prediction of Diabetes from Tabular Health Screening Records Using an Attentional Neural Network. , 2021, , .		5

#	Article	IF	CITATIONS
592	Rule extraction in unsupervised anomaly detection for model explainability: Application to OneClass SVM. Expert Systems With Applications, 2022, 189, 116100.	4.4	20
593	Enhancing human-machine teaming for medical prognosis through neural ordinary differential equations (NODEs). Human-Intelligent Systems Integration, 2021, 3, 263-275.	1.2	2
594	Revealing drivers and risks for power grid frequency stability with explainable AI. Patterns, 2021, 2, 100365.	3.1	32
595	Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology. American Journal of Neuroradiology, 2022, 43, 792-801.	1.2	10
596	Doctor's Dilemma: Evaluating an Explainable Subtractive Spatial Lightweight Convolutional Neural Network for Brain Tumor Diagnosis. ACM Transactions on Multimedia Computing, Communications and Applications, 2021, 17, 1-26.	3.0	5
597	A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP. Nuclear Engineering and Technology, 2022, 54, 1271-1287.	1.1	14
598	Big Data and the Threat to Moral Responsibility in Healthcare. , 2022, , 11-25.		2
599	The rise of artificial intelligence – understanding the AI identity threat at the workplace. Electronic Markets, 2022, 32, 73-99.	4.4	36
600	Tracking strategy changes using machine learning classifiers. Behavior Research Methods, 2021, , 1.	2.3	0
601	A Human-Centered Systematic Literature Review of the Computational Approaches for Online Sexual Risk Detection. Proceedings of the ACM on Human-Computer Interaction, 2021, 5, 1-38.	2.5	27
602	<scp>XAITK</scp> : The explainable AI toolkit. Applied AI Letters, 2021, 2, e40.	1.4	9
603	Fusing CNNs and statistical indicators to improve image classification. Information Fusion, 2022, 79, 174-187.	11.7	25
604	Event-triggered constrained control using explainable global dual heuristic programming for nonlinear discrete-time systems. Neurocomputing, 2022, 468, 452-463.	3.5	5
605	A study of real-world micrograph data quality and machine learning model robustness. Npj Computational Materials, 2021, 7, .	3.5	9
606	Enabling Technologies of Data-Driven Engineering Design. , 2022, , 173-197.		1
607	An accurate fuzzy rule-based classification systems for heart disease diagnosis. Scientific African, 2021, 14, e01019.	0.7	9
608	Metrology for the digital age. Measurement: Sensors, 2021, 18, 100232.	1.3	8
609	The Argmax Constraint. Lecture Notes in Computer Science, 2020, , 323-337.	1.0	0

# 614	ARTICLE Cases for Explainable Software Systems: Characteristics and Examples. , 2021, , .	IF	CITATIONS
615	Holistic Explainability Requirements for End-to-End Machine Learning in IoT Cloud Systems. , 2021, , .		3
616	Towards Perspicuity Requirements. , 2021, , .		3
617	Explainability Auditing for Intelligent Systems: A Rationale for Multi-Disciplinary Perspectives. , 2021, , .		8
618	Using Decision Trees and Random Forest Algorithms to Predict and Determine Factors Contributing to First-Year University Students' Learning Performance. Algorithms, 2021, 14, 318.	1.2	14
619	Automatic analysis of cognitive presence in online discussions: An approach using deep learning and explainable artificial intelligence. Computers and Education Artificial Intelligence, 2021, 2, 100037.	6.9	6
620	Ethics, Transparency, Fairness and the Responsibility of Artificial Intelligence. Advances in Intelligent Systems and Computing, 2022, , 109-120.	0.5	1
621	Editorial: Explainable Artificial Intelligence (XAI) in Systems Neuroscience. Frontiers in Systems Neuroscience, 2021, 15, 766980.	1.2	9
622	ChatrEx: Designing Explainable Chatbot Interfaces for Enhancing Usefulness, Transparency, and Trust. , 2021, , .		7
623	Explaining a Deep Reinforcement Learning Docking Agent Using Linear Model Trees with User Adapted Visualization. Journal of Marine Science and Engineering, 2021, 9, 1178.	1.2	11
624	Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension. Electronics (Switzerland), 2021, 10, 2660.	1.8	3
625	Interpretable machine learning applied to onâ€farm biosecurity and porcine reproductive and respiratory syndrome virus. Transboundary and Emerging Diseases, 2022, 69, .	1.3	7
626	Artificial Intelligence in Cardiovascular Imaging: "Unexplainable―Legal and Ethical Challenges?. Canadian Journal of Cardiology, 2022, 38, 225-233.	0.8	14
627	The duality of algorithmic management: Toward a research agenda on HRM algorithms, autonomy and value creation. Human Resource Management Review, 2023, 33, 100876.	3.3	29
628	Need for Interpretable Student Performance Prediction. , 2020, , .		12
629	An Empirical Evaluation of AI Deep Explainable Tools. , 2020, , .		18
630	Big Data Analytics + Virtual Clinical Semantic Network (vCSN): An Approach to Addressing the Increasing Clinical Nuances and Organ Involvement of COVID-19. ASAIO Journal, 2021, 67, 18-24.	0.9	1
631	Development of an Explainable Prediction Model of Heart Failure Survival by Using Ensemble Trees. , 2020, , .		19

#	Article	IF	Citations
632	Towards Interpretable Routing Policy: A Two Stage Multi-Objective Genetic Programming Approach with Feature Selection for Uncertain Capacitated Arc Routing Problem. , 2020, , .		4
633	Towards Responsible AI for Financial Transactions. , 2020, , .		13
634	Interpreting and Evaluating Black Box Models in a Customizable Way. , 2020, , .		0
635	Privacy Engineering Methodologies: A survey. , 2020, , .		4
636	Explainability and Fairness in Machine Learning: Improve Fair End-to-end Lending for Kiva. , 2020, , .		3
637	Early Stuck Pipe Sign Detection with Depth-Domain 3D Convolutional Neural Network Using Actual Drilling Data. SPE Journal, 2021, 26, 551-562.	1.7	19
638	Application and Perspectives of Convolutional Neural Networks in Digital Intelligence. Advances in Intelligent Systems and Computing, 2021, , 33-58.	0.5	0
639	Understanding, Idealization, and Explainable AI. SSRN Electronic Journal, O, , .	0.4	1
640	XHAC. Advances in Web Technologies and Engineering Book Series, 2022, , 146-164.	0.4	2
641	Artificial Intelligence in HRM. Advances in Logistics, Operations, and Management Science Book Series, 2022, , 1-18.	0.3	3
642	A systematic review of personal thermal comfort models. Building and Environment, 2022, 207, 108502.	3.0	67
643	Explainability in supply chain operational risk management: A systematic literature review. Knowledge-Based Systems, 2022, 235, 107587.	4.0	27
644	Hybrid interpretable predictive machine learning model for air pollution prediction. Neurocomputing, 2022, 468, 123-136.	3.5	37
645	Identification of human errors and influencing factors: A machine learning approach. Safety Science, 2022, 146, 105528.	2.6	17
646	EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The MonuMAI cultural heritage use case. Information Fusion, 2022, 79, 58-83.	11.7	38
647	A Projected Stochastic Gradient Algorithm for Estimating Shapley Value Applied in Attribute Importance. Lecture Notes in Computer Science, 2020, , 97-115.	1.0	3
648	Systems Engineering for Artificial Intelligence-based Systems: A Review in Time. , 2021, , 93-113.		1
650	Visualization of Numerical Association Rules by Hill Slopes. Lecture Notes in Computer Science, 2020, , 101-111.	1.0	1

#	Article	IF	CITATIONS
651	Interpretable Machine Learning with Bitonic Generalized Additive Models and Automatic Feature Construction. Lecture Notes in Computer Science, 2020, , 386-402.	1.0	0
652	Versatile Internet of Things for Agriculture: An eXplainable AI Approach. IFIP Advances in Information and Communication Technology, 2020, , 180-191.	0.5	21
654	Towards the Modeling of the Hot Rolling Industrial Process. Preliminary Results. Lecture Notes in Computer Science, 2020, , 385-396.	1.0	1
655	On Disentangling Spoof Trace for Generic Face Anti-spoofing. Lecture Notes in Computer Science, 2020, , 406-422.	1.0	55
656	Reconsidering the Risk Society: Its Parameters and Repercussions Evaluated by a Statistical Model with Aspects of Different Social Sciences. Lecture Notes in Computer Science, 2020, , 394-409.	1.0	1
657	XNAP: Making LSTM-Based Next Activity Predictions Explainable by Using LRP. Lecture Notes in Business Information Processing, 2020, , 129-141.	0.8	7
658	Interpretable Visual Reasoning via Probabilistic Formulation Under Natural Supervision. Lecture Notes in Computer Science, 2020, , 553-570.	1.0	8
660	Quantifying Explainers of Graph Neural Networks in Computational Pathology. , 2021, , .		36
661	When Conscientious Employees Meet Intelligent Machines: An Integrative ApproachÂInspired by Complementarity TheoryÂand Role Theory. Academy of Management Journal, 2022, 65, 1019-1054.	4.3	32
662	Earth Observation Data-Driven Cropland Soil Monitoring: A Review. Remote Sensing, 2021, 13, 4439.	1.8	28
663	Artificial Intelligence of Things-assisted two-stream neural network for anomaly detection in surveillance Big Video Data. Future Generation Computer Systems, 2022, 129, 286-297.	4.9	67
664	Comparison and Explanation of Forecasting Algorithms for Energy Time Series. Mathematics, 2021, 9, 2794.	1.1	7
665	A predictive and user-centric approach to Machine Learning in data streaming scenarios. Neurocomputing, 2022, 484, 238-249.	3.5	5
666	Potential of deep representative learning features to interpret the sequence information in proteomics. Proteomics, 2022, 22, e2100232.	1.3	26
667	Artificial intelligence in research and development for sustainability: the centrality of explicability and research data management. Al and Ethics, 2022, 2, 29-33.	4.6	7
668	Human-Centered Explainable Artificial Intelligence for Marine Autonomous Surface Vehicles. Journal of Marine Science and Engineering, 2021, 9, 1227.	1.2	9
669	Biomedical Ontologies to Guide Al Development in Radiology. Journal of Digital Imaging, 2021, 34, 1331-1341.	1.6	5
670	The Impact of Explanations on Layperson Trust in Artificial Intelligence–Driven Symptom Checker Apps: Experimental Study. Journal of Medical Internet Research, 2021, 23, e29386.	2.1	17

#	Article	IF	CITATIONS
671	Explainability in threat assessment with evidential networks and sensitivity spaces. , 2020, , .		2
672	Respecting Human Autonomy through Human-Centered Al. , 2020, , .		7
674	Al safety: state of the field through quantitative lens. , 2020, , .		14
675	An ethical intuitionist account of transparency of algorithms and its gradations. Business Research, 2020, 13, 849-874.	4.0	3
677	SEDL: A Symmetric Encryption Method Based on Deep Learning. , 2020, , .		0
678	Finding the Path Toward Design ofÂSynergistic Human-Centric ComplexÂSystems. Lecture Notes in Computer Science, 2021, , 73-89.	1.0	0
679	On a Sparse Shortcut Topology of Artificial Neural Networks. IEEE Transactions on Artificial Intelligence, 2022, 3, 595-608.	3.4	6
680	Combining Sub-symbolic and Symbolic Methods for Explainability. Lecture Notes in Computer Science, 2021, , 172-187.	1.0	1
681	How to Explain It to Facility Managers? A Qualitative, Industrial User Research Study for Explainability. Lecture Notes in Computer Science, 2021, , 401-422.	1.0	1
682	A Systematic Review of Human–Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques. IEEE Access, 2021, 9, 153316-153348.	2.6	66
683	Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network. Journal of Biomechanics, 2022, 130, 110878.	0.9	4
684	Revealing the structure of prediction models through feature interaction detection. Knowledge-Based Systems, 2022, 236, 107737.	4.0	3
685	Adopting microservice architecture: A decision support model based on genetically evolved multi-layer FCM. Applied Soft Computing Journal, 2022, 114, 108066.	4.1	2
686	PCTBagging: From inner ensembles to ensembles. A trade-off between discriminating capacity and interpretability. Information Sciences, 2022, 583, 219-238.	4.0	4
687	Explainable artificial intelligence in forensics: Realistic explanations for number of contributor predictions of DNA profiles. Forensic Science International: Genetics, 2022, 56, 102632.	1.6	10
688	Deep-learning-based latent space encoding for spectral unmixing of geological materials. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 307-320.	4.9	11
689	Identifying user geolocation with Hierarchical Graph Neural Networks and explainable fusion. Information Fusion, 2022, 81, 1-13.	11.7	17
691	Inside the black box: using Explainable AI to improve Evidence-Based Policies. , 2021, , .		1

ARTICLE IF CITATIONS # Exploring Explainability: A Definition, a Model, and a Knowledge Catalogue., 2021, , . 692 40 Deep Explanatory Polytomous Item-Response Model for Predicting Idiosyncratic Affective Ratings., 2021,,. The Role of Transparency and Explainability in Automated Systems. Proceedings of the Human Factors 694 0.2 4 and Ergonomics Society, 2021, 65, 27-31. Interpretable Machine Learning: A brief survey from the predictive maintenance perspective., 2021,,. A generic and decentralized approach to XAI for autonomic systems: application to the smart home., 696 1 2021,,. MoDALAS: Model-Driven Assurance for Learning-Enabled Autonomous Systems., 2021, , . Bi-Rads-Net: An Explainable Multitask Learning Approach for Cancer Diagnosis in Breast Ultrasound 698 7 Images., 2021, 2021, . Automatic Diagnosis of Intellectual and Developmental Disorder Using Machine Learning Based on 699 Resting-State EEG Recordings., 2021,,. 700 XAI Handbook: Towards a Unified Framework for Explainable AI., 2021, , . 15 Explainability for experts: A design framework for making algorithms supporting expert decisions 1.2 more explainable. Journal of Responsible Technology, 2021, 7-8, 100017 Detection of risk factors of PCOS patients with Local Interpretable Model-agnostic Explanations (LIME) Method that an explainable artificial intelligence model. The Journal of Cognitive Systems, 2021, 702 2 0.6 6, 59-63. In the Land of the Blind, the One-Eyed Man Is King: Knowledge Brokerage in the Age of Learning 3.0 29 Algorithms. Organization Science, 2022, 33, 59-82. CLEVR-XAI: A benchmark dataset for the ground truth evaluation of neural network explanations. 705 11.7 50 Information Fusion, 2022, 81, 14-40. Explaining the impact of source behaviour in evidential reasoning. Information Fusion, 2022, 81, 41-58. 11.7 Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and 708 11.7 86 applications. Information Fusion, 2022, 81, 59-83. Explainable artificial intelligence: a comprehensive review. Artificial Intelligence Review, 2022, 55, 128 3503-3568. Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI). 710 11.7 18 Information Fusion, 2022, 81, 91-102. Introducing a multi-stakeholder perspective on opacity, transparency and strategies to reduce opacity 3.3 in algorithm-based human resource management. Human Resource Management Review, 2023, 33, 100881.

#	Article	IF	CITATIONS
712	Mitigating Patient and Consumer Safety Risks When Using Conversational Assistants for Medical Information: Exploratory Mixed Methods Experiment. Journal of Medical Internet Research, 2021, 23, e30704.	2.1	5
713	Help Me Learn! Architecture and Strategies to Combine Recommendations and Active Learning in Manufacturing. Information (Switzerland), 2021, 12, 473.	1.7	3
714	Adaptive Fuzzy Neural Agent for Human and Machine Co-learning. International Journal of Fuzzy Systems, 2022, 24, 778-798.	2.3	2
715	Transparent Al. , 2021, , .		4
716	A Multi-Component Framework for the Analysis and Design of Explainable Artificial Intelligence. Machine Learning and Knowledge Extraction, 2021, 3, 900-921.	3.2	17
717	Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine, 2022, 247, 1-75.	1.1	22
718	Infrared (IR) quality assessment of robotized resistance spot welding based on machine learning. International Journal of Advanced Manufacturing Technology, 2022, 119, 1785-1806.	1.5	16
719	Interpretable Models for the Potentially Harmful Content in Video Games Based on Game Rating Predictions. Applied Artificial Intelligence, 2022, 36, .	2.0	2
720	Advances in XAI: Explanation Interfaces in Healthcare. Intelligent Systems Reference Library, 2022, , 357-369.	1.0	4
721	Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods. Hydrology and Earth System Sciences, 2021, 25, 5839-5858.	1.9	17
722	Machine learning for suicidal ideation identification: A systematic literature review. Computers in Human Behavior, 2022, 128, 107095.	5.1	13
723	Anomaly explanation: A review. Data and Knowledge Engineering, 2022, 137, 101946.	2.1	19
724	A Rule Extraction Technique Applied to Ensembles of Neural Networks, Random Forests, and Gradient-Boosted Trees. Algorithms, 2021, 14, 339.	1.2	9
725	An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets. Applied Sciences (Switzerland), 2021, 11, 10801.	1.3	5
726	Nonlinear Hyperparameter Optimization of a Neural Network in Image Processing for Micromachines. Micromachines, 2021, 12, 1504.	1.4	7
727	Prediction of Mining Conditions in Geotechnically Complex Sites. Mining, 2021, 1, 279-296.	1.1	4
728	Big data analysis and artificial intelligence in epilepsy – common data model analysis and machine learning-based seizure detection and forecasting. Clinical and Experimental Pediatrics, 2022, 65, 272-282.	0.9	3
729	Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Explaining Biases in Machine Learning. Computers, 2021, 10, 154.	2.1	5

#	Article	IF	CITATIONS
730	Virtual Teaching Assistants: Technologies, Applications and Challenges. , 2022, , 255-277.		0
731	Privacy-Preserving Mechanisms with Explainability in Assistive Al Technologies. Learning and Analytics in Intelligent Systems, 2022, , 287-309.	0.5	2
732	A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning. , 2021, , .		2
733	Overview of Explainable Artificial Intelligence for Prognostic and Health Management of Industrial Assets Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Sensors, 2021, 21, 8020.	2.1	29
734	Explore Spatioâ€Temporal Learning of Large Sample Hydrology Using Graph Neural Networks. Water Resources Research, 2021, 57, e2021WR030394.	1.7	27
735	Explainable framework for Glaucoma diagnosis by image processing and convolutional neural network synergy: Analysis with doctor evaluation. Future Generation Computer Systems, 2022, 129, 152-169.	4.9	26
736	A Survey on Event Extraction for Natural Language Understanding: Riding the Biomedical Literature Wave. IEEE Access, 2021, 9, 160721-160757.	2.6	17
737	Probabilistic Rule Induction for Transparent CBR Under Uncertainty. Lecture Notes in Computer Science, 2021, , 117-130.	1.0	1
739	Making Things Explainable vs Explaining: Requirements and Challenges Under the GDPR. Lecture Notes in Computer Science, 2021, , 169-182.	1.0	4
740	Gaia-AgStream: An Explainable AI Platform for Mining Complex Data Streams in Agriculture. Communications in Computer and Information Science, 2021, , 71-83.	0.4	3
741	Interpreting Classification Models Using Feature Importance Based on Marginal Local Effects. Lecture Notes in Computer Science, 2021, , 484-497.	1.0	1
742	Recent Advances in Trustworthy Explainable Artificial Intelligence: Status, Challenges, and Perspectives. IEEE Transactions on Artificial Intelligence, 2022, 3, 852-866.	3.4	44
743	Artificial Intelligence in Railway Transport: Taxonomy, Regulations, and Applications. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 14011-14024.	4.7	27
744	"We Know What You Were Doing― Advances in Analytics for Learning and Teaching, 2021, , 323-347.	0.5	3
745	Explainable Artificial Intelligence in Healthcare: Opportunities, Gaps and Challenges and a Novel Way to Look at the Problem Space. Lecture Notes in Computer Science, 2021, , 333-342.	1.0	3
746	TRUST XAI: Model-Agnostic Explanations for AI With a Case Study on IIoT Security. IEEE Internet of Things Journal, 2023, 10, 2967-2978.	5.5	22
747	Decomposing Relief Maps to Detect Counterfeit Coins Using a Hybrid Deep Learning Method. SSRN Electronic Journal, 0, , .	0.4	0
748	Multi-Task Fusion for Improving Mammography Screening Data Classification. IEEE Transactions on Medical Imaging, 2022, 41, 937-950.	5.4	6

#	Article	IF	CITATIONS
749	XAI: Challenges and Future. , 2021, , 303-310.		0
750	A call for more explainable AI in law enforcement. SSRN Electronic Journal, O, , .	0.4	1
752	Introduction to Interpretability and Explainability. , 2021, , 1-26.		2
753	Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in Biology and Medicine, 2022, 140, 105111.	3.9	131
754	Knowledge representation for explainable artificial intelligence. Complex & Intelligent Systems, 2022, 8, 1579-1601.	4.0	4
755	Sustainable artificial intelligence: AÂcorporate culture perspective. NachhaltigkeitsManagementForum Sustainability Management Forum, 2021, 29, 217-230.	1.3	4
757	Efficient Prediction of Human Motion for Real-Time Robotics Applications With Physics-Inspired Neural Networks. IEEE Access, 2022, 10, 144-157.	2.6	7
758	Constraint Enforcement on Decision Trees: A Survey. ACM Computing Surveys, 2022, 54, 1-36.	16.1	8
759	Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges. Computer Science Review, 2022, 43, 100452.	10.2	62
760	Explainable long-term building energy consumption prediction using QLattice. Applied Energy, 2022, 308, 118300.	5.1	38
761	Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty. Applied Energy, 2022, 307, 118240.	5.1	12
762	Extendable and explainable deep learning for pan-cancer radiogenomics research. Current Opinion in Chemical Biology, 2022, 66, 102111.	2.8	11
763	SurvNAM: The machine learning survival model explanation. Neural Networks, 2022, 147, 81-102.	3.3	7
764	The role of empathy for artificial intelligence accountability. Journal of Responsible Technology, 2022, 9, 100021.	1.2	12
765	A multi-perspective approach to support collaborative cost management in supplier-buyer dyads. International Journal of Production Economics, 2022, 245, 108380.	5.1	12
766	An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information. Knowledge-Based Systems, 2022, 239, 107970.	4.0	34
767	Burst Imaging for Light-Constrained Structure-From-Motion. IEEE Robotics and Automation Letters, 2022, 7, 1040-1047.	3.3	4
768	Generalized Input Preshaping Vibration Control Approach for Multi-Link Flexible Manipulators using Machine Intelligence, Mechatronics, 2022, 82, 102735	2.0	12

#	Article	IF	CITATIONS
769	Explanation-Aware Experience Replay in Rule-Dense Environments. IEEE Robotics and Automation Letters, 2022, 7, 898-905.	3.3	5
770	A fusion spatial attention approach for few-shot learning. Information Fusion, 2022, 81, 187-202.	11.7	12
771	Vessel-GAN: Angiographic reconstructions from myocardial CT perfusion with explainable generative adversarial networks. Future Generation Computer Systems, 2022, 130, 128-139.	4.9	14
772	A novel model usability evaluation framework (MUsE) for explainable artificial intelligence. Information Fusion, 2022, 81, 143-153.	11.7	20
773	Reflectance spectroscopy for assessing heavy metal pollution indices in mangrove sediments using XGBoost method and physicochemical properties. Catena, 2022, 211, 105967.	2.2	16
774	TEMPORAL REPRESENTATION OF CAUSALITY IN THE CONSTRUCTION OF EXPLANATIONS IN INTELLIGENT SYSTEMS. Advanced Information Systems, 2020, 4, 113-117.	0.1	1
775	Micro-entries: Encouraging Deeper Evaluation of Mental Models Over Time for Interactive Data Systems. , 2020, , .		4
776	Artificial Intelligence (AI)-Centric Management of Resources in Modern Distributed Computing Systems. , 2020, , .		7
777	InstanceFlow: Visualizing the Evolution of Classifier Confusion at the Instance Level. , 2020, , .		7
778	Feature Learning from Image Markers for Object Delineation. , 2020, , .		4
779	Principles of Explainable Artificial Intelligence. , 2021, , 9-31.		10
781	Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2523-2537.	4.7	45
782	Algorithmic and Human Collusion. SSRN Electronic Journal, 0, , .	0.4	3
785	A Framework for Robo-advisor Based on Knowledge Fusion. , 2021, , .		0
786	Approximating a deep reinforcement learning docking agent using linear model trees. , 2021, , .		2
787	Robotic Lever Manipulation using Hindsight Experience Replay and Shapley Additive Explanations. , 2021, , .		6
788	Random Decision Forest approach for Mitigating SQL Injection Attacks. , 2021, , .		5
789	A Case Study of Interpretable Counterfactual Explanations for the Task of Predicting Student Academic Performance. , 2021, , .		1

#	ARTICLE	IF	CITATIONS
790	Association Rules over Time. Springer Tracts in Nature-inspired Computing, 2022, , 1-16.	1.2	2
791	Digital Interventions to Reduce Distress Among Health Care Providers at the Frontline: Protocol for a Feasibility Trial. JMIR Research Protocols, 2022, 11, e32240.	0.5	8
792	Using SPARQL to express Causality in Explainable Cyber-Physical Systems. , 2021, , .		0
793	Towards Highly Automated Machine-Learning-Empowered Monitoring of Motor Test Stands. , 2021, , .		3
794	A Survey on Explainable Artificial Intelligence Techniques and Challenges. , 2021, , .		15
795	Exploring deterministic frequency deviations with explainable AI. , 2021, , .		5
796	Explainable Artificial Intelligence in Cybersecurity: A Brief Review. , 2021, , .		7
797	A call for more explainable AI in law enforcement. , 2021, , .		2
798	Certification Approach for Physics Informed Machine Learning and its Application in Landing Gear Life Assessment. , 2021, , .		1
799	SVEA: A Small-scale Benchmark for Validating the Usability of Post-hoc Explainable Al Solutions in Image and Signal Recognition. , 2021, , .		3
800	An Explainable Artificial Intelligence (xAI) Framework for Improving Trust in Automated ATM Tools. , 2021, , .		5
801	Algorithmic pragmatism: First steps. , 2021, , .		0
802	eXplainable and Individualizable for Physiotherapeutic Decision Support for the Elderly. , 2021, , .		0
803	The Role of Explanations in Human-Machine Learning. , 2021, , .		0
804	XAI Feature Detector for Ultrasound Feature Matching. , 2021, 2021, 2928-2931.		3
805	New explainability method for BERT-based model in fake news detection. Scientific Reports, 2021, 11, 23705.	1.6	41
806	Knowledge Enhanced Graph Neural Networks for Explainable Recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1-1.	4.0	9
807	Teaching open science analytics in the age of financial technology. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
808	Data fusion technologies for MaaS. , 2022, , 113-142.		0
809	Feature Importance Analysis for Postural Deformity Detection System Using Explainable Predictive Modeling Technique. Applied Sciences (Switzerland), 2022, 12, 925.	1.3	1
810	Diffused responsibility: attributions of responsibility in the use of Al-driven clinical decision support systems. Al and Ethics, 2022, 2, 747-761.	4.6	32
812	Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities. Communications in Computer and Information Science, 2022, , 105-119.	0.4	6
813	A conditional, a fuzzy and a probabilistic interpretation of self-organizing maps. Journal of Logic and Computation, 0, , .	0.5	7
814	Machine Learning Verification and Safety for Unmanned Aircraft - A Literature Study. , 2022, , .		8
815	From AI ethics principles to data science practice: a reflection and a gap analysis based on recent frameworks and practical experience. AI and Ethics, 2022, 2, 697-711.	4.6	21
816	A survey on extremism analysis using natural language processing: definitions, literature review, trends and challenges. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 9869-9905.	3.3	8
817	Multiobjective Evolution of the Explainable Fuzzy Rough Neural Network With Gene Expression Programming. IEEE Transactions on Fuzzy Systems, 2022, 30, 4190-4200.	6.5	51
818	An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records. , 2022, 1, e0000004.		13
819	A Data Analytics Organisation's Perspective onÂTrust andÂAI Adoption. Communications in Computer and Information Science, 2022, , 47-60.	0.4	2
820	Face Image Quality Assessment: A Literature Survey. ACM Computing Surveys, 2022, 54, 1-49.	16.1	36
821	Epistemological Challenges. Tourism on the Verge, 2022, , 17-34.	1.2	5
822	Fairness, explainability and in-between: understanding the impact of different explanation methods on non-expert users' perceptions of fairness toward an algorithmic system. Ethics and Information Technology, 2022, 24, 1.	2.3	14
823	Challenges for machine learning in RNA-protein interaction prediction. Statistical Applications in Genetics and Molecular Biology, 2022, 21, .	0.2	2
824	The Potential Impact of Adjunct Digital Tools and Technology to Help Distressed and Suicidal Men: An Integrative Review. Frontiers in Psychology, 2021, 12, 796371.	1.1	7
825	The adoption of deep learning interpretability techniques on diabetic retinopathy analysis: a review. Medical and Biological Engineering and Computing, 2022, 60, 633-642.	1.6	14
826	Support of individual educational trajectories based on the concept of explainable artificial intelligence. Obrazovanie I Nauka, 2022, 24, 163-190.	0.3	3

#	Article	IF	Citations
827	Explainable image classification with evidence counterfactual. Pattern Analysis and Applications, 2022, 25, 315-335.	3.1	26
828	Operationalizing the Ethics of Connected and Automated Vehicles. International Journal of Technoethics, 2022, 13, 1-20.	0.6	8
829	AI Implementation Science for Social Issues: Pitfalls and Tips. Journal of Epidemiology, 2022, 32, 155-162.	1.1	2
830	Image features of a splashing drop on a solid surface extracted using a feedforward neural network. Physics of Fluids, 2022, 34, .	1.6	11
831	Interpretability of Machine Learning Models. Tourism on the Verge, 2022, , 275-303.	1.2	1
832	Explainable AI forÂFinancial Forecasting. Lecture Notes in Computer Science, 2022, , 51-69.	1.0	5
833	Neural Network-Based Electric Vehicle Range Prediction for Smart Charging Optimization. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2022, 144, .	0.9	8
834	Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments. Water Resources Research, 2022, 58, .	1.7	54
835	To Engage or Not to Engage with AI for Critical Judgments: How Professionals Deal with Opacity When Using AI for Medical Diagnosis. Organization Science, 2022, 33, 126-148.	3.0	85
836	Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. Npj Digital Medicine, 2022, 5, 2.	5.7	147
837	Neuro-Symbolic Architecture for Experiential Learning in Discrete and Functional Environments. Lecture Notes in Computer Science, 2022, , 106-115.	1.0	4
838	An Introduction to Musical Interactions. Multimodal Technologies and Interaction, 2022, 6, 4.	1.7	1
839	Explainable AI for Fighting COVID-19 Pandemic: Opportunities, Challenges, and Future Prospects. , 2022, , 315-332.		8
840	Qualitative Investigation in Explainable Artificial Intelligence: Further Insight from Social Science. Applied Al Letters, 0, , .	1.4	3
841	A sociotechnical perspective for the future of Al: narratives, inequalities, and human control. Ethics and Information Technology, 2022, 24, 1.	2.3	28
842	A survey on effects of adding explanations to recommender systems. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	9
843	The Use of Artificial Intelligence in the Field of Electronic Commerce. Lecture Notes in Networks and Systems, 2022, , 203-216.	0.5	1
844	Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics, 2022, 12, 237.	1.3	100

#	Article	IF	CITATIONS
845	Computational Models for Clinical Applications in Personalized Medicine—Guidelines and Recommendations for Data Integration and Model Validation. Journal of Personalized Medicine, 2022, 12, 166.	1.1	24
846	A Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management: Current Trends and Development with Future Research Trajectory. Applied Sciences (Switzerland), 2022, 12, 1295.	1.3	40
847	Embedded ethics: a proposal for integrating ethics into the development of medical AI. BMC Medical Ethics, 2022, 23, 6.	1.0	49
848	A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks. Applied Sciences (Switzerland), 2022, 12, 1353.	1.3	91
849	Machine learning in postgenomic biology and personalized medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12, .	4.6	3
850	Embedding artificial intelligence in society: looking beyond the EU AI master plan using the culture cycle. AI and Society, 2023, 38, 1465-1484.	3.1	5
851	A Geometric Model-Based Approach to Hand Gesture Recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 6151-6161.	5.9	13
852	From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where. IEEE Transactions on Industrial Informatics, 2022, 18, 5031-5042.	7.2	189
853	Interpretation of Structure–Activity Relationships in Real-World Drug Design Data Sets Using Explainable Artificial Intelligence. Journal of Chemical Information and Modeling, 2022, 62, 447-462.	2.5	20
854	The winter, the summer and the summer dream of artificial intelligence in law. Artificial Intelligence and Law, 2022, 30, 147-161.	3.0	8
855	Collective eXplainable Al: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning With Shapley Values. IEEE Computational Intelligence Magazine, 2022, 17, 59-71.	3.4	19
856	Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Science of the Total Environment, 2022, 822, 153486.	3.9	42
857	Randomization-based machine learning in renewable energy prediction problems: Critical literature review, new results and perspectives. Applied Soft Computing Journal, 2022, 118, 108526.	4.1	29
859	Rule extraction with guarantees from regression models. Pattern Recognition, 2022, 126, 108554.	5.1	7
860	A Finite Element based Deep Learning solver for parametric PDEs. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114562.	3.4	13
861	R.Graph: A new risk-based causal reasoning and its application to COVID-19 risk analysis. Chemical Engineering Research and Design, 2022, 159, 585-604.	2.7	2
862	ExAID: A multimodal explanation framework for computer-aided diagnosis of skin lesions. Computer Methods and Programs in Biomedicine, 2022, 215, 106620.	2.6	34
863	Interpretability in the medical field: A systematic mapping and review study. Applied Soft Computing Journal, 2022, 117, 108391.	4.1	19

#	Article	IF	CITATIONS
864	Data-Driven Process System Engineering–Contributions to its consolidation following the path laid down by George Stephanopoulos. Computers and Chemical Engineering, 2022, 159, 107675.	2.0	2
865	XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification. Knowledge-Based Systems, 2022, 240, 108053.	4.0	20
866	Assessing the perception of overall indoor environmental quality: Model validation and interpretation. Energy and Buildings, 2022, 259, 111870.	3.1	11
867	Cost-forced collective potentiality maximization by complementary potentiality minimization for interpreting multi-layered neural networks. Neurocomputing, 2022, 480, 234-256.	3.5	0
868	Dissecting traffic fingerprinting CNNs with filter activations. Computer Networks, 2022, 206, 108770.	3.2	2
869	Evolved explainable classifications for lymph node metastases. Neural Networks, 2022, 148, 1-12.	3.3	4
870	High strength aluminum alloys design via explainable artificial intelligence. Journal of Alloys and Compounds, 2022, 903, 163828.	2.8	16
871	Mining high average-utility sequential rules to identify high-utility gene expression sequences in longitudinal human studies. Expert Systems With Applications, 2022, 193, 116411.	4.4	8
872	Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions. Information Fusion, 2022, 82, 99-122.	11.7	62
874	Re-focusing explainability in medicine. Digital Health, 2022, 8, 205520762210744.	0.9	20
875	Developing technological synergies between deep-sea and space research. Elementa, 2022, 10, .	1.1	8
876	FreeSia: A Cyber-physical System for Cognitive Assessment through Frequency-domain Indoor Locomotion Analysis. ACM Transactions on Cyber-Physical Systems, 2022, 6, 1-31.	1.9	3
877	Explainable health prediction from facial features with transfer learning. Journal of Intelligent and Fuzzy Systems, 2022, 42, 2491-2503.	0.8	3
878	Thinking responsibly about responsible AI and â€~the dark side' of AI. European Journal of Information Systems, 2022, 31, 257-268.	5.5	70
879	Interpretable Short-Term Electrical Load Forecasting Scheme Using Cubist. Computational Intelligence and Neuroscience, 2022, 2022, 1-20.	1.1	14
880	A Literature Review and Research Agenda on Explainable Artificial Intelligence (XAI). International Journal of Applied Engineering and Management Letters, 0, , 43-59.	0.0	5
881	TorchEsegeta: Framework for Interpretability and Explainability of Image-Based Deep Learning Models. Applied Sciences (Switzerland), 2022, 12, 1834.	1.3	7
882	Toward accountable human-centered AI: rationale and promising directions. Journal of Information Communication and Ethics in Society, 2022, 20, 329-342.	1.0	9

#	Article	IF	CITATIONS
883	Challenges and Opportunities in Integration of Human and Autonomous systems. Incose International Symposium, 2022, 32, 48-49.	0.2	0
884	SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Social Science and Medicine, 2022, 296, 114782.	1.8	52
885	Effect of risk, expectancy, and trust on clinicians' intent to use an artificial intelligence system – Blood Utilization Calculator. Applied Ergonomics, 2022, 101, 103708.	1.7	25
886	Blind spots in Al ethics. Al and Ethics, 2022, 2, 851-867.	4.6	39
887	Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1551-1558.	1.5	183
888	Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation. Applied Sciences (Switzerland), 2022, 12, 136.	1.3	10
889	Evaluating the Learning Procedure of CNNs through a Sequence of Prognostic Tests Utilising Information Theoretical Measures. Entropy, 2022, 24, 67.	1.1	2
890	Open Data to Support CANCER Science—A Bioinformatics Perspective on Glioma Research. Onco, 2021, 1, 219-229.	0.2	1
893	How toÂChoose anÂExplainability Method? Towards aÂMethodical Implementation ofÂXAI inÂPractice. Communications in Computer and Information Science, 2021, , 521-533.	0.4	5
895	The Next Frontier: AI We Can Really Trust. Communications in Computer and Information Science, 2021, , 427-440.	0.4	51
897	Improving the Interpretability of GradCAMs in Deep Classification Networks. Procedia Computer Science, 2022, 200, 620-628.	1.2	5
898	Predicting Events in MOBA Games: Prediction, Attribution, and Evaluation. IEEE Transactions on Games, 2023, 15, 193-201.	1.2	3
901	Explainable Digital Currency Candlestick Pattern AI Learner. , 2022, , .		1
902	ErklÃæbare KI in der medizinischen Diagnose – Erfolge und Herausforderungen. , 2022, , 727-754.		0
903	Interpretable Memristive LSTM Network Design for Probabilistic Residential Load Forecasting. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 2297-2310.	3.5	21
905	An EfficientNet-Based Weighted Ensemble Model for Industrial Machine Malfunction Detection Using Acoustic Signals. IEEE Access, 2022, 10, 34625-34636.	2.6	8
907	Teaching Machines to Read, Answer and Explain. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 1483-1492.	4.0	3
908	Deep holography. Light Advanced Manufacturing, 2022, 3, 1.	2.2	17

ARTICLE IF CITATIONS # Towards Personalized Federated Learning. IEEE Transactions on Neural Networks and Learning 909 7.2 196 Systems, 2023, 34, 9587-9603. A novel explainable COVID-19 diagnosis method by integration of feature selection with random forest. Informatics in Medicine Unlocked, 2022, 30, 100941. 911 X-MIR: EXplainable Medical Image Retrieval., 2022, , . 16 Causal Artificial Intelligence for High-Stakes Decisions: The Design and Development of a Causal Machine Learning Model. IEEE Access, 2022, 10, 24327-24339. A Classification of ÂArtificial Intelligence Systems for ÂMathematics Education. Mathematics Education 913 0.2 9 in the Digital Era, 2022, , 89-106. A Review of Machine Learning-Based Photovoltaic Output Power Forecasting: Nordic Context. IEEE 914 2.6 Access, 2022, 10, 26404-26425. Quo Vadis, Explainability? – A Research Roadmap forÂExplainability Engineering. Lecture Notes in 916 1.0 5 Computer Science, 2022, , 26-32. Artificial Intelligence for Medical Decisions., 2022, , 159-179. 918 Dataset Level Explanation of Heat Demand Forecasting Ann with Shap. SSRN Electronic Journal, 0, , . 0.4 0 Combining machine-learned regression models with Bayesian inference to interpret remote sensing data., 2022, , 193-207. A Review on Human–Machine Trust Evaluation: Human-Centric and Machine-Centric Perspectives. IEEE 920 17 2.5 Transactions on Human-Machine Systems, 2022, 52, 952-962. Artificial intelligence in the reduction and management of land pollution., 2022, , 319-333. Toward Knowledge Extraction in Classification of Volcano-Seismic Events: Visualizing Hidden States in Recurrent Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and 923 2.3 2 Remote Sensing, 2022, 15, 2311-2325. Situated Visual Alarm Displays Support Machine Fitness Assessment for Nonexplainable Automation. IEEE Transactions on Human-Machine Systems, 2022, 52, 984-993. 924 2.5 Applications and Business Impact of Artificial Intelligence in the Industrial Production of Food and 925 0.3 0 Beverages. Management and Industrial Engineering, 2022, , 103-126. Robust Botnet DGA Detection: Blending XAI and OSINT for Cyber Threat Intelligence Sharing. IEEE Access, 2022, 10, 34613-34624. HMCKRAutoEncoder: An Interpretable Deep Learning Framework for Time Series Analysis. IEEE 927 3.23 Transactions on Emerging Topics in Computing, 2022, 10, 99-111. Large Forests and Where to "Partially―Fit Them. , 2022, , .

#	Article	IF	CITATIONS
929	Surrogate Model-Based Explainability Methods for Point Cloud NNs. , 2022, , .		6
931	An integrated data framework for policy guidance during the coronavirus pandemic: Towards real-time decision support for economic policymakers. PLoS ONE, 2022, 17, e0263898.	1.1	3
932	To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems. , 2022, 1, e0000016.		49
933	Interpreting AI for Networking: Where We Are and Where We Are Going. IEEE Communications Magazine, 2022, 60, 25-31.	4.9	9
934	An Overview of Medical Electronic Hardware Security and Emerging Solutions. Electronics (Switzerland), 2022, 11, 610.	1.8	1
935	Provenance documentation to enable explainable and trustworthy AI: A literature review. Data Intelligence, 2023, 5, 139-162.	0.8	10
936	Abnormality Detection and Failure Prediction Using Explainable Bayesian Deep Learning: Methodology and Case Study with Industrial Data. Mathematics, 2022, 10, 554.	1.1	20
937	Explainable Machine Learning Reveals Capabilities, Redundancy, and Limitations of a Geospatial Air Quality Benchmark Dataset. Machine Learning and Knowledge Extraction, 2022, 4, 150-171.	3.2	8
938	Human-Computer Interaction in Digital Mental Health. Informatics, 2022, 9, 14.	2.4	20
939	What Should I Notice? Using Algorithmic Information Theory to Evaluate the Memorability of Events in Smart Homes. Entropy, 2022, 24, 346.	1.1	1
940	A novel approach for the detection of anomalous energy consumption patterns in industrial cyberâ€physical systems. Expert Systems, 2024, 41, .	2.9	4
941	Defining organizational AI governance. AI and Ethics, 2022, 2, 603-609.	4.6	41
942	Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features. Forecasting, 2022, 4, 262-274.	1.6	10
943	Week-Wise Student Performance Early Prediction in Virtual Learning Environment Using a Deep Explainable Artificial Intelligence. Applied Sciences (Switzerland), 2022, 12, 1885.	1.3	9
944	Human in the Loop Fuzzy Pattern Tree Evolution. SN Computer Science, 2022, 3, 1.	2.3	3
945	Interpretation Support System for Classification Patterns Using HMM in Deep Learning with Texts. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2022, 34, 501-510.	0.0	0
946	Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography. Scientific Reports, 2022, 12, 2456.	1.6	22
947	Metrics, Explainability and the European AI Act Proposal. J, 2022, 5, 126-138.	0.6	11

ARTICLE IF CITATIONS # Shared Privacy Concerns of the Visually Impaired and Sighted Bystanders with Camera-Based Assistive 948 1.9 6 Technologies. ACM Transactions on Accessible Computing, 2022, 15, 1-33. An Explainable Computer Vision in Histopathology: Techniques for Interpreting Black Box Model. , 949 2022,,. 950 Conceptual challenges for interpretable machine learning. SynthÃ[^]se, 2022, 200, 1. 0.6 23 Multilingual multi-aspect explainability analyses on machine reading comprehension models. IScience, 1.9 2022, 25, 104176. INN: An Interpretable Neural Network for AI Incubation in Manufacturing. ACM Transactions on 952 2.9 5 Intelligent Systems and Technology, 2022, 13, 1-23. Interpreting Face Inference Models Using Hierarchical Network Dissection. International Journal of Computer Vision, 0, , 1. 10.9 A Clinical Decision Support System for the Prediction of Quality of Life in ALS. Journal of 954 1.1 6 Personalized Medicine, 2022, 12, 435. Automatic extraction of land cover statistics from satellite imagery by deep learning1. Statistical 0.2 Journal of the IAOS, 2022, 38, 183-199. Collaborative Artificial Intelligence Needs Stronger Assurances Driven by Risks. Computer, 2022, 55, 956 1.2 3 52-63. Uncertainty-aware Prediction Validator in Deep Learning Models for Cyber-physical System Data. ACM 4.8 Transactions on Software Engineering and Methodology, 2022, 31, 1-31. Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in 958 4.6 23 non-discrimination law. Al and Ethics, 2022, 2, 815-826. Reinforcement Learning Your Way: Agent Characterization through Policy Regularization. AI, 2022, 3, 2.1 250-259. 3Es for Al: Economics, Explanation, Epistemology. Frontiers in Artificial Intelligence, 2022, 5, 833238. 960 2.0 2 GraphGONet: a self-explaining neural network encapsulating the Gene Ontology graph for phenotype 1.8 14 prediction on gene expression. Bioinformatics, 2022, 38, 2504-2511. 963 DeXAR., 2022, 6, 1-30. 11 Making sense of the blackâ€boxes: Toward interpretable text classification using deep learning models. 964 Journal of the Association for Information Science and Technology, 2023, 74, 685-700. <i>Here's What l've Learned:</i> Asking Questions that Reveal Reward Learning. ACM Transactions on 965 3.2 5 Human-Robot Interaction, 2022, 11, 1-28. Entscheidungsunterstļtzung im Produktionsmanagement. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117, 98-103.

#	Article	IF	CITATIONS
967	Review of Multi-Criteria Decision-Making Methods in Finance Using Explainable Artificial Intelligence. Frontiers in Artificial Intelligence, 2022, 5, 827584.	2.0	11
968	An opinion piece on the dos and don'ts of artificial intelligence in civil engineering and charting a path from data-driven analysis to causal knowledge discovery. Civil Engineering and Environmental Systems, 2022, 39, 1-11.	0.4	4
969	Geometric-based nail segmentation for clinical measurements. Multimedia Tools and Applications, 0, , 1.	2.6	0
970	On Explainable AI and Abductive Inference. Philosophies, 2022, 7, 35.	0.4	4
971	Web Intelligence meets Brain Informatics: Towards the future of artificial intelligence in the connected world. World Wide Web, 2022, 25, 1223-1241.	2.7	8
972	Half a decade of graph convolutional networks. Nature Machine Intelligence, 2022, 4, 192-193.	8.3	9
973	Design Principles for User Interfaces in Al-Based Decision Support Systems: The Case of Explainable Hate Speech Detection. Information Systems Frontiers, 0, , 1.	4.1	12
974	A quality framework for statistical algorithms. Statistical Journal of the IAOS, 2022, 38, 291-308.	0.2	7
976	Representation Learning for EEG-Based Biometrics Using Hilbert–Huang Transform. Computers, 2022, 11, 47.	2.1	7
977	AQX: Explaining Air Quality Forecast for Verifying Domain Knowledge using Feature Importance Visualization. , 2022, , .		3
978	Glass-box model representation of seismic failure mode prediction for conventional reinforced concrete shear walls. Neural Computing and Applications, 2022, 34, 13029-13041.	3.2	6
979	Justificatory explanations in machine learning: for increased transparency through documenting how key concepts drive and underpin design and engineering decisions. Al and Society, 2024, 39, 279-293.	3.1	2
980	FMEA-AI: AI fairness impact assessment using failure mode and effects analysis. AI and Ethics, 2022, 2, 837-850.	4.6	10
981	Al-powered narrative building for facilitating public participation and engagement. Discover Artificial Intelligence, 2022, 2, 1.	2.1	5
982	Sources of Risk of Al Systems. International Journal of Environmental Research and Public Health, 2022, 19, 3641.	1.2	10
983	The non-linear nature of the cost of comprehensibility. Journal of Big Data, 2022, 9, .	6.9	6
984	Learning of physically significant features from earth observation data: an illustration for crop classification and irrigation scheme detection. Neural Computing and Applications, 2022, 34, 10929-10948.	3.2	1
985	Translating promise into practice: a review of machine learning in suicide research and prevention. Lancet Psychiatry,the, 2022, 9, 243-252.	3.7	26

#	Article	IF	CITATIONS
986	Characterization of uncertainties and model generalizability for convolutional neural network predictions of uranium ore concentrate morphology. Chemometrics and Intelligent Laboratory Systems, 2022, 225, 104556.	1.8	8
987	Research and application of machine learning for additive manufacturing. Additive Manufacturing, 2022, 52, 102691.	1.7	53
988	Machine learning approach for spatial modeling of ridesourcing demand. Journal of Transport Geography, 2022, 100, 103310.	2.3	14
989	Incorporating FAT and privacy aware AI modeling approaches into business decision making frameworks. Decision Support Systems, 2022, 155, 113715.	3.5	12
990	Evaluating the feasibility of interpretable machine learning for globular cluster detection. Astronomy and Astrophysics, 0, , .	2.1	1
991	Do deep learning models make a difference in the identification of antimicrobial peptides?. Briefings in Bioinformatics, 2022, 23, .	3.2	17
992	Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Science of the Total Environment, 2022, 832, 155070.	3.9	54
993	Machineâ€learning algorithms predict soil seed bank persistence from easily available traits. Applied Vegetation Science, 2022, 25, .	0.9	6
994	Explainable artificial intelligence for building energy performance certificate labelling classification. Journal of Cleaner Production, 2022, 355, 131626.	4.6	27
995	Analysing deep reinforcement learning agents trained with domain randomisation. Neurocomputing, 2022, 493, 143-165.	3.5	7
996	Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology. Radiation Oncology, 2022, 17, 65.	1.2	20
997	Shapley variable importance cloud for interpretable machine learning. Patterns, 2022, 3, 100452.	3.1	29
998	GANterfactual—Counterfactual Explanations for Medical Non-experts Using Generative Adversarial Learning. Frontiers in Artificial Intelligence, 2022, 5, 825565.	2.0	17
999	Evaluation of fuzzy membership functions for linguistic rule-based classifier focused on explainability, interpretability and reliability. Expert Systems With Applications, 2022, 199, 117116.	4.4	13
1000	DeepBBBP: High Accuracy Bloodâ€brainâ€barrier Permeability Prediction with a Mixed Deep Learning Model. Molecular Informatics, 2022, 41, .	1.4	8
1001	Developing interactive computer-aided detection tools to support translational clinical research. , 2022, , .		0
1002	Revealing influences on carsharing users' trip distance in small urban areas. Transportation Research, Part D: Transport and Environment, 2022, 105, 103252.	3.2	6
1003	Fate of Al for Smart City Services in India. International Journal of Electronic Government Research, 2022, 18, 1-21.	0.5	2

#	Article	IF	CITATIONS
1004	A Computer Science Perspective on Digital Transformation in Production. ACM Transactions on Internet of Things, 2022, 3, 1-32.	3.4	68
1005	COVID-19 image classification using deep learning: Advances, challenges and opportunities. Computers in Biology and Medicine, 2022, 144, 105350.	3.9	65
1006	Relation between prognostics predictor evaluation metrics and local interpretability SHAP values. Artificial Intelligence, 2022, 306, 103667.	3.9	49
1007	Fuzzy relational representation, modeling and interpretation of temporal data. Knowledge-Based Systems, 2022, 244, 108548.	4.0	2
1008	Analysis methods of coronary artery intravascular images: A review. Neurocomputing, 2022, 489, 27-39.	3.5	3
1009	What Can Knowledge Bring to Machine Learning?—A Survey of Low-shot Learning for Structured Data. ACM Transactions on Intelligent Systems and Technology, 2022, 13, 1-45.	2.9	5
1010	End-to-end prediction of uniaxial compression profiles of apples during in vitro digestion using time-series micro-computed tomography and deep learning. Journal of Food Engineering, 2022, 325, 111014.	2.7	3
1011	Towards a data collection methodology for Responsible Artificial Intelligence in health: A prospective and qualitative study in pregnancy. Information Fusion, 2022, 83-84, 53-78.	11.7	13
1012	It's Complicated: The Relationship between User Trust, Model Accuracy and Explanations in AI. ACM Transactions on Computer-Human Interaction, 2022, 29, 1-33.	4.6	24
1013	A new nearest neighbor-based framework for diabetes detection. Expert Systems With Applications, 2022, 199, 116857.	4.4	11
1014	Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance. Future Generation Computer Systems, 2022, 133, 68-83.	4.9	12
1015	Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification. Chemical Engineering Journal, 2022, 442, 136147.	6.6	61
1016	The explainability paradox: Challenges for xAI in digital pathology. Future Generation Computer Systems, 2022, 133, 281-296.	4.9	42
1017	Deep Learning model and Classification Explainability of Renewable energy-driven Membrane Desalination System using Evaporative Cooler. AEJ - Alexandria Engineering Journal, 2022, 61, 10007-10024.	3.4	15
1018	Visualizations of Fusion of Electro Optical (EO) and Passive Radio-Frequency (PRF) Data. , 2021, , .		3
1019	Blockchain-based Intelligent Monitored Security System for Detection of Replication Attack in the Wireless Healthcare Network. European Journal of Education and Pedagogy, 2021, 6, 160-170.	0.2	Ο
1020	Relations Between Explainability, Evaluation and Trust in Al-Based Information Fusion Systems. , 2021, , .		2
1021	Co-Training an Observer and an Evading Target. , 2021, , .		1

#	Article	IF	CITATIONS
1022	Interactive Explainable Case-Based Reasoning for Behavior Modelling in Videogames. , 2021, , .		0
1023	Improved Explainability through Uncertainty Estimation in Automatic Target Recognition of SAR Images. , 2021, , .		1
1024	Prediction Performance and Explainability of COVID-19 Classification Models. , 2021, , .		0
1025	Quality Monitoring and Assessment of Deployed Deep Learning Models for Network AlOps. IEEE Network, 2021, 35, 84-90.	4.9	4
1026	Handling Traceability in Graph Fusion for a Trustworthy Framework. , 2021, , .		0
1027	Evaluating Trust in an Uncertain and Multisource Environment. , 2021, , .		1
1028	Stratification of carotid atheromatous plaque using interpretable deep learning methods on B-mode ultrasound images. , 2021, 2021, 3902-3905.		2
1029	DisCERN: Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods. , 2021, , .		3
1030	Dynamic Explanation of Bayesian Networks with Abductive Bayes Factor Qualitative Propagation and Entropy-Based Qualitative Explanation. , 2021, , .		0
1031	Social learning in swarm robotics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200309.	1.8	17
1032	GNES: Learning to Explain Graph Neural Networks. , 2021, , .		13
1033	Cyber-Physical LPG Debutanizer Distillation Columns: Machine-Learning-Based Soft Sensors for Product Quality Monitoring. Applied Sciences (Switzerland), 2021, 11, 11790.	1.3	3
1034	Evaluating Attribution Methods in Machine Learning Interpretability. , 2021, , .		5
1035	Using Game Engines to Design Digital Workshops for AI Legibility. , 0, , .		0
1036	Openness and privacy in born-digital archives: reflecting the role of AI development. AI and Society, 2022, 37, 991-999.	3.1	4
1037	Convergence of Data Science and Blockchain. , 2021, , .		0
1038	Uncovering and Correcting Shortcut Learning in Machine Learning Models for Skin Cancer Diagnosis. Diagnostics, 2022, 12, 40.	1.3	27
1039	A computational framework for modeling complex sensor network data using graph signal processing and graph neural networks in structural health monitoring. Applied Network Science, 2021, 6, .	0.8	10

#	Article	IF	CITATIONS
1040	Evaluation of Selected Artificial Intelligence Technologies for Innovative Business Intelligence Applications. Lecture Notes in Networks and Systems, 2022, , 111-126.	0.5	2
1041	Phishing Detection Using URL-based XAI Techniques. , 2021, , .		9
1042	Does Dataset Complexity Matters for Model Explainers?. , 2021, , .		4
1043	Explainable AI for Psychological Profiling from Behavioral Data: An Application to Big Five Personality Predictions from Financial Transaction Records. Information (Switzerland), 2021, 12, 518.	1.7	9
1044	A Human-in-the-Loop Approach based on Explainability to Improve NTL Detection. , 2021, , .		3
1045	The Ethical Landscape of Data and Artificial Intelligence: Citizen Perspectives. , 2021, , .		3
1046	A Bibliometric Analysis and Benchmark of Machine Learning and AutoML in Crash Severity Prediction: The Case Study of Three Colombian Cities. Sensors, 2021, 21, 8401.	2.1	10
1047	Interpretable Representation Learning for Personality Detection. , 2021, , .		2
1048	HIERARCHICAL REPRESENTATION OF CAUSAL RELATIONSHIPS TO DETAIL EXPLANATIONS IN INTELLIGENT SYSTEMS. Advanced Information Systems, 2021, 5, 103-108.	0.1	2
1049	Data Farming Output Analysis Using Explainable AI. , 2021, , .		3
1050	mSHAP: SHAP Values for Two-Part Models. Risks, 2022, 10, 3.	1.3	7
1051	A mental models approach for defining explainable artificial intelligence. BMC Medical Informatics and Decision Making, 2021, 21, 344.	1.5	10
1052	A Review of Methods for Explaining and Interpreting Decisions of Intelligent Cancer Diagnosis Systems. Scientific and Technical Information Processing, 2021, 48, 398-405.	0.3	5
1053	Using deep neural networks to explore chemical space. Expert Opinion on Drug Discovery, 2022, 17, 297-304.	2.5	10
1054	Learning Interpretation with Explainable Knowledge Distillation. , 2021, , .		4
1055	Towards a More Reliable Interpretation of Machine Learning Outputs for Safety-Critical Systems Using Feature Importance Fusion. Applied Sciences (Switzerland), 2021, 11, 11854.	1.3	15
1056	Decision Support by Interpretable Machine Learning in Acoustic Emission Based Cutting Tool Wear Prediction. , 2021, , .		5
1058	Explainable Artificial Intelligence (XAI) in Biomedicine: Making AI Decisions Trustworthy for Physicians and Patients. BioMedInformatics, 2022, 2, 1-17.	1.0	42

#	Article	IF	CITATIONS
1059	Digitalization of Institutions of Corporate Law: Current Trends and Future Prospects. Laws, 2021, 10, 93.	0.5	2
1060	Addressing Stability in Classifier Explanations. , 2021, , .		0
1061	Influencing laughter with Al-mediated communication. Interaction Studies, 2021, 22, 416-463.	0.4	3
1062	Implementation of Hardware-Based Expert Systems and Comparison of Their Performance to Software-Based Expert Systems. Machines, 2021, 9, 361.	1.2	2
1063	Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation. BMC Medical Informatics and Decision Making, 2021, 21, 341.	1.5	8
1064	Proxy Model Explanations for Time Series RNNs. , 2021, , .		0
1065	Vector Symbolic Architectures for Context-Free Grammars. Cognitive Computation, 2022, 14, 733-748.	3.6	5
1066	Humanzentrierte Künstliche Intelligenz: Erkläendes interaktives maschinelles Lernen für Effizienzsteigerung von Parametrieraufgaben. , 2022, , 80-92.		1
1067	Artificial intelligence in safety-critical systems: a systematic review. Industrial Management and Data Systems, 2022, 122, 442-470.	2.2	8
1068	A co-evolutionary approach to interpretable reinforcement learning in environments with continuous action spaces. , 2021, , .		10
1069	A Machine Learning - Explainable AI approach to tropospheric dynamics analysis using Water Vapor Meteosat images. , 2021, , .		2
1070	A Review of Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future Directions. Symmetry, 2021, 13, 2439.	1.1	33
1071	The Impact of Artificial Intelligence Technologies on International Relations. Vestnik MGIMO-Universiteta, 0, , .	0.1	2
1072	Forecasting currency covariances using machine learning tree-based algorithms with low and high prices. PrzeglÄd Statystyczny, 2021, 68, 1-15.	0.1	2
1073	Integrating Image Quality Enhancement Methods and Deep Learning Techniques for Remote Sensing Scene Classification. Applied Sciences (Switzerland), 2021, 11, 11659.	1.3	5
1075	Trustworthy Artificial Intelligence: A Review. ACM Computing Surveys, 2023, 55, 1-38.	16.1	113
1078	Understanding required to consider AI applications to the field of ophthalmology. Taiwan Journal of Ophthalmology, 2022, .	0.3	4
1079	Quantifying variability in predictions of student performance: Examining the impact of bootstrap resampling in data pipelines. Computers and Education Artificial Intelligence, 2022, 3, 100067.	6.9	6

#	Article	IF	CITATIONS
1080	The Past, Present, and Prospective Future of XAI: A Comprehensive Review. Studies in Computational Intelligence, 2022, , 1-29.	0.7	8
1081	Explainable Artificial Intelligence in Sustainable Smart Healthcare. Studies in Computational Intelligence, 2022, , 265-280.	0.7	4
1082	CLEVR-X: A Visual Reasoning Dataset forÂNatural Language Explanations. Lecture Notes in Computer Science, 2022, , 69-88.	1.0	3
1083	Varieties ofÂAI Explanations Under theÂLaw. FromÂtheÂGDPR toÂtheÂAIA, andÂBeyond. Lecture Notes in Computer Science, 2022, , 343-373.	1.0	9
1084	Development of an Interpretable Maritime Accident Prediction System Using Machine Learning Techniques. IEEE Access, 2022, 10, 41313-41329.	2.6	3
1085	Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 2023, 33, 100899.	3.3	98
1086	An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors. Pharmaceutics, 2022, 14, 832.	2.0	15
1087	Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets. Financial Innovation, 2022, 8, .	3.6	11
1088	Multi-attention multiple instance learning. Neural Computing and Applications, 2022, 34, 14029-14051.	3.2	5
1089	Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey. Sensors, 2022, 22, 3031.	2.1	35
1090	Machine Learning for Healthcare Wearable Devices: The Big Picture. Journal of Healthcare Engineering, 2022, 2022, 1-25.	1.1	79
1091	ExpMRC: explainability evaluation for machine reading comprehension. Heliyon, 2022, 8, e09290.	1.4	4
1092	Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health. Applied Sciences (Switzerland), 2022, 12, 3890.	1.3	6
1093	Trust in AI and Its Role in the Acceptance of AI Technologies. International Journal of Human-Computer Interaction, 2023, 39, 1727-1739.	3.3	49
1094	Who needs explanation and when? Juggling explainable AI and user epistemic uncertainty. International Journal of Human Computer Studies, 2022, 165, 102839.	3.7	14
1095	Bias, Fairness and Accountability with Artificial Intelligence and Machine Learning Algorithms. International Statistical Review, 2022, 90, 468-480.	1.1	12
1096	Interpretable AI Explores Effective Components of CAD/CAM Resin Composites. Journal of Dental Research, 2022, 101, 1363-1371.	2.5	10
1097	The Impact of Artificial Intelligence on the Mental Health of Manufacturing Workers: The Mediating Role of Overtime Work and the Work Environment. Frontiers in Public Health, 2022, 10, 862407.	1.3	9

#	Article	IF	CITATIONS
1098	How to certify machine learning based safety-critical systems? A systematic literature review. Automated Software Engineering, 2022, 29, 1.	2.2	16
1099	Metrics for Robot Proficiency Self-assessment and Communication of Proficiency in Human-robot Teams. ACM Transactions on Human-Robot Interaction, 2022, 11, 1-38.	3.2	7
1100	Time-Frequency Representations of Brain Oscillations: Which One Is Better?. Frontiers in Neuroinformatics, 2022, 16, 871904.	1.3	6
1101	Scrutinizing XAI using linear ground-truth data with suppressor variables. Machine Learning, 2022, 111, 1903-1923.	3.4	5
1102	Explainable Artificial Intelligence for Prediction of Complete Surgical Cytoreduction in Advanced-Stage Epithelial Ovarian Cancer. Journal of Personalized Medicine, 2022, 12, 607.	1.1	19
1104	XFlag: Explainable Fake News Detection Model on Social Media. International Journal of Human-Computer Interaction, 2022, 38, 1808-1827.	3.3	10
1105	A Statistical Perspective on Advancement in Blockchain Technology. International Journal of Scientific Research in Computer Science Engineering and Information Technology, 2022, , 205-213.	0.2	1
1106	An Assessment of the Barriers Impacting Responsible Artificial Intelligence. Information Systems Frontiers, 2023, 25, 1147-1160.	4.1	10
1107	Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency. Physics in Medicine and Biology, 2022, 67, 11TR01.	1.6	21
1108	When stakes are high: Balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates. Expert Systems With Applications, 2022, 202, 117230.	4.4	7
1109	Inline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images. Computers and Electronics in Agriculture, 2022, 197, 106962.	3.7	13
1110	Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities. Renewable and Sustainable Energy Reviews, 2022, 162, 112401.	8.2	48
1111	Towards learning trustworthily, automatically, and with guarantees on graphs: An overview. Neurocomputing, 2022, 493, 217-243.	3.5	11
1128	Explaining Deep Graph Networks via Input Perturbation. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10334-10345.	7.2	2
1129	Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease. European Heart Journal, 2022, 43, 2921-2930.	1.0	50
1130	Landing AI on Networks: An equipment vendor viewpoint on Autonomous Driving Networks. IEEE Transactions on Network and Service Management, 2022, , 1-1.	3.2	2
1131	Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern Classification. IEEE Transactions on Cybernetics, 2023, 53, 6083-6094.	6.2	3
1133	Explainable Artificial Intelligence in Genomic Sequence for Healthcare Systems Prediction. Studies in Computational Intelligence, 2022, , 417-437.	0.7	4

#	Article	IF	CITATIONS
1134	Revealing Influence of Meteorological Conditions on Air Quality Prediction Using Explainable Deep Learning. IEEE Access, 2022, 10, 50755-50773.	2.6	8
1135	Fuzzy C-Means Clustering Based Deep Patch Learning With Improved Interpretability for Classification Problems. IEEE Access, 2022, 10, 49873-49891.	2.6	2
1137	The Role of Explainability in Assuring Safety of Machine Learning in Healthcare. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 1746-1760.	3.2	17
1138	Using Kernel SHAP XAI Method to Optimize the Network Anomaly Detection Model. , 2022, , .		5
1139	Making It Simple? Training Deep Learning Models Toward Simplicity. , 2022, , .		2
1140	XAI Approach to Improved and Informed Detection of Burnt Scar. , 2022, , .		0
1141	Hyperspectral Monitoring Driven by Machine Learning Methods for Grassland Above-Ground Biomass. Remote Sensing, 2022, 14, 2086.	1.8	7
1142	xai-primer.com â \in " A Visual Ideation Space of Interactive Explainers. , 2022, , .		Ο
1143	Exploring the Effects of Interactive Dialogue in Improving User Control for Explainable Online Symptom Checkers. , 2022, , .		5
1144	Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method. Computational Intelligence and Neuroscience, 2022, 2022, 1-14.	1.1	26
1145	A classification and review of tools for developing and interacting with machine learning systems. , 2022, , .		3
1146	Trust in Human-Al Interaction: Scoping Out Models, Measures, and Methods. , 2022, , .		8
1147	Towards Relatable Explainable AI with the Perceptual Process. , 2022, , .		17
1148	Lessons on interpretable machine learning from particle physics. Nature Reviews Physics, 2022, 4, 284-286.	11.9	15
1149	Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. International Journal of Molecular Sciences, 2022, 23, 4645.	1.8	45
1150	Beyond Woodward–Fieser Rules: Design Principles of Property-Oriented Chromophores Based on Explainable Deep Learning Optical Spectroscopy. Journal of Chemical Information and Modeling, 2022, 62, 2933-2942.	2.5	0
1151	Materials Data toward Machine Learning: Advances and Challenges. Journal of Physical Chemistry Letters, 2022, 13, 3965-3977.	2.1	12
1152	How to Support Users in Understanding Intelligent Systems? An Analysis and Conceptual Framework of User Questions Considering User Mindsets, Involvement, and Knowledge Outcomes. ACM Transactions on Interactive Intelligent Systems, 2022, 12, 1-27.	2.6	1

#	Article	IF	CITATIONS
1153	A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water (Switzerland), 2022, 14, 1384.	1.2	63
1154	Defect Detection and Cause Analysis on Display Electrostatic Chuck FAB Process Using Deep Learning Algorithms. Journal of Korean Institute of Industrial Engineers, 2022, 48, 151-162.	0.1	1
1155	Enriching Artificial Intelligence Explanations with Knowledge Fragments. Future Internet, 2022, 14, 134.	2.4	4
1156	Enhancing Adjoint Optimization-Based Photonic Inverse Design with Explainable Machine Learning. ACS Photonics, 2022, 9, 1577-1585.	3.2	11
1157	Human-Centered Explainable AI (HCXAI): Beyond Opening the Black-Box of AI. , 2022, , .		19
1158	Multiple Instance Learning through Explanation by Using a Histopathology Example. , 2022, , .		1
1159	Chapter 8: Conclusion – strategies and policy decisions in the new digital-era governance. , 2022, , 237-281.		0
1160	Counterfactual explanations and how to find them: literature review and benchmarking. Data Mining and Knowledge Discovery, 0, , 1.	2.4	58
1161	ModelOps for enhanced decision-making and governance in emergency control rooms. Environment Systems and Decisions, 0, , 1.	1.9	2
1162	Leveraging Dignity Theory to Understand Bullying, Cyberbullying, and Children's Rights. International Journal of Bullying Prevention, 0, , .	1.3	2
1163	EXP-Crowd: A Gamified Crowdsourcing Framework for Explainability. Frontiers in Artificial Intelligence, 2022, 5, 826499.	2.0	4
1164	A study of UX practitioners roles in designing real-world, enterprise ML systems. , 2022, , .		11
1165	Optimization of the <i>TeraTox</i> Assay for Preclinical Teratogenicity Assessment. Toxicological Sciences, 2022, 188, 17-33.	1.4	10
1166	Explainable spatiotemporal reasoning for geospatial intelligence applications. Transactions in GIS, 2022, 26, 2455-2479.	1.0	2
1167	Demystifying the Black Box: The Importance of Interpretability of Predictive Models in Neurocritical Care. Neurocritical Care, 2022, 37, 185-191.	1.2	8
1168	An occupant-centered approach to improve both his comfort and the energy efficiency of the building. Knowledge-Based Systems, 2022, 249, 108970.	4.0	10
1169	An Overview of the FIRST ICASSP Special Session on Computer Audition for Healthcare. , 2022, , .		1
1170	Theory-guided experimental design in battery materials research. Science Advances, 2022, 8, eabm2422.	4.7	52

#	Article	IF	CITATIONS
1172	Explainable Model Fusion for Customer Journey Mapping. Frontiers in Artificial Intelligence, 2022, 5, .	2.0	1
1173	Two-stage deep learning model for Alzheimer's disease detection and prediction of the mild cognitive impairment time. Neural Computing and Applications, 2022, 34, 14487-14509.	3.2	25
1174	Applications of machine learning methods in port operations – A systematic literature review. Transportation Research, Part E: Logistics and Transportation Review, 2022, 161, 102722.	3.7	27
1175	Opportunities for machine learning to accelerate halide-perovskite commercialization and scale-up. Matter, 2022, 5, 1353-1366.	5.0	8
1176	Construction of an Assisted Model Based on Natural Language Processing for Automatic Early Diagnosis of Autoimmune Encephalitis. Neurology and Therapy, 2022, , 1.	1.4	0
1177	Multiple attentional path aggregation network for marine object detection. Applied Intelligence, 2023, 53, 2434-2451.	3.3	24
1178	Human-centered explainability for life sciences, healthcare, and medical informatics. Patterns, 2022, 3, 100493.	3.1	9
1179	How to explain Al systems to end users: a systematic literature review and research agenda. Internet Research, 2022, 32, 1-31.	2.7	31
1180	Explaining Deep Learning Models for Spoofing and Deepfake Detection with Shapley Additive Explanations. , 2022, , .		7
1181	Predicting exclusive breastfeeding in maternity wards using machine learning techniques. Computer Methods and Programs in Biomedicine, 2022, 221, 106837.	2.6	6
1182	A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data. Medical Image Analysis, 2022, 79, 102471.	7.0	20
1183	Next generation DES simulation: A research agenda for human centric manufacturing systems. Journal of Industrial Information Integration, 2022, 28, 100354.	4.3	10
1184	Latest trends of security and privacy in recommender systems: A comprehensive review and future perspectives. Computers and Security, 2022, 118, 102746.	4.0	35
1185	Coalitional Bayesian autoencoders: Towards explainable unsupervised deep learning with applications to condition monitoring under covariate shift. Applied Soft Computing Journal, 2022, 123, 108912.	4.1	2
1186	The effect of machine learning explanations on user trust for automated diagnosis of COVID-19. Computers in Biology and Medicine, 2022, 146, 105587.	3.9	16
1187	Artificial Intelligence for Electricity Supply Chain automation. Renewable and Sustainable Energy Reviews, 2022, 163, 112459.	8.2	21
1188	A multi-layer spiking neural network-based approach to bearing fault diagnosis. Reliability Engineering and System Safety, 2022, 225, 108561.	5.1	41
1189	A survey on AI and decision support systems in psychiatry – Uncovering a dilemma. Expert Systems With Applications, 2022, 202, 117464.	4.4	11

#	Article	IF	CITATIONS
1190	Multiobjective Evolution Enhanced Collaborative Health Monitoring and Prognostics: A Case Study of Bearing Life Test With Three-Axis Acceleration Signals. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	3
1192	An Improved Explainable Point Cloud Classifier (XPCC). IEEE Transactions on Artificial Intelligence, 2023, 4, 71-80.	3.4	1
1193	Evaluating Explainable Artificial Intelligence for X-ray Image Analysis. Applied Sciences (Switzerland), 2022, 12, 4459.	1.3	4
1194	study of the progress, challenges, and opportunities in artificial intelligence of things (AloT). International Journal of Health Sciences, 0, , .	0.0	1
1195	Explainable Artificial Intelligence in education. Computers and Education Artificial Intelligence, 2022, 3, 100074.	6.9	78
1196	Vibration analysis process based on spectrogram using gradient class activation map with selection process of CNN model and feature layer. Displays, 2022, 73, 102233.	2.0	9
1197	Artificial Intelligence Systems and problems of the concept of author. Reflections on a recent book. , 2022, 13, 13-44.		1
1198	A case-based reasoning system to recommend solutions for source water protection: knowledge acquisition and modelling. Knowledge Management Research and Practice, 0, , 1-15.	2.7	0
1199	How Can We Develop Explainable Systems? Insights from a Literature Review and an Interview Study. , 2022, , .		4
1200	An Ever-Expanding Humanities Knowledge Graph: The Sphaera Corpus at the Intersection of Humanities, Data Management, and Machine Learning. Datenbank-Spektrum, 2022, 22, 153-162.	1.2	3
1201	Responsible cognitive digital clones as decision-makers: a design science research study. European Journal of Information Systems, 2023, 32, 879-901.	5.5	4
1202	Basic Issues and Challenges on Explainable Artificial Intelligence (XAI) in Healthcare Systems. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 248-271.	0.3	1
1203	A Survey of Explainable Artificial Intelligence in Bio-signals Analysis. Recent Advances in Computer Science and Communications, 2022, 15, .	0.5	0
1204	Intelligent Learning Management Systems. Advances in Higher Education and Professional Development Book Series, 2022, , 206-232.	0.1	3
1205	COVID-19 and Digital Economy: The Journey towards a Digital Transformation in New Normal: How to Prepare for the Future. Contributions To Economic Analysis, 2022, 296, 95-104.	0.1	2
1206	SyntEO: Synthetic dataset generation for earth observation and deep learning – Demonstrated for offshore wind farm detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 189, 163-184.	4.9	8
1207	Spoof Trace Disentanglement for Generic Face Anti-Spoofing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, PP, 1-1.	9.7	2
1208	When Is Mass Prophylaxis Cost-Effective for Epidemic Control? A Comparison of Decision Approaches. Medical Decision Making, 2022, 42, 1052-1063.	1.2	1

#	Article	IF	CITATIONS
1209	A novel integrative computational framework for breast cancer radiogenomic biomarker discovery. Computational and Structural Biotechnology Journal, 2022, 20, 2484-2494.	1.9	3
1210	Human Posture Classification Using Interpretable 3-D Fuzzy Body Voxel Features and Hierarchical Fuzzy Classifiers. IEEE Transactions on Fuzzy Systems, 2022, 30, 5405-5418.	6.5	6
1211	Towards Explainability ofÂTree-Based Ensemble Models. AÂCritical Overview. Lecture Notes in Networks and Systems, 2022, , 287-296.	0.5	2
1212	On Equivalence of Anomaly Detection Algorithms. ACM Transactions on Knowledge Discovery From Data, 2023, 17, 1-26.	2.5	1
1213	Recent Trends in Al-Based Intelligent Sensing. Electronics (Switzerland), 2022, 11, 1661.	1.8	8
1214	Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Foods, 2022, 11, 1500.	1.9	29
1215	Theoryâ€Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Waterâ€Gas Shift Reaction. ChemCatChem, 2022, 14, .	1.8	4
1216	Clinical time-to-event prediction enhanced by incorporating compatible related outcomes. , 2022, 1, e0000038.		2
1217	Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	2.4	12
1218	Explainable machine learning with pairwise interactions for the classification of Parkinson's disease and SWEDD from clinical and imaging features. Brain Imaging and Behavior, 2022, 16, 2188-2198.	1.1	12
1219	Minun. , 2022, , .		3
1220	Deep Learning for Downscaling Remote Sensing Images: Fusion and super-resolution. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 202-255.	4.9	12
1221	Robust Explainable Prescriptive Analytics. SSRN Electronic Journal, 0, , .	0.4	0
1223	Factual and Counterfactual Explanations in Fuzzy Classification Trees. IEEE Transactions on Fuzzy Systems, 2022, 30, 5484-5495.	6.5	6
1224	Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutions. IEEE Access, 2022, 10, 58375-58418.	2.6	7
1225	A Meta Survey ofÂQuality Evaluation Criteria inÂExplanation Methods. Lecture Notes in Business Information Processing, 2022, , 55-63.	0.8	7
1226	Accountable, Responsible, Transparent Artificial Intelligence in Ambient Intelligence Systems for Healthcare. , 2022, , 87-111.		4
1227	Machine Learning Advances in Microbiology: A Review of Methods and Applications. Frontiers in Microbiology, 2022, 13, .	1.5	6

#	Article	IF	Citations
1228	Integrating Transparency, Trust, and Acceptance: The Intelligent Systems Technology Acceptance Model (ISTAM). International Journal of Human-Computer Interaction, 2022, 38, 1828-1845.	3.3	21
1229	Decision Weights for Experimental Asset Prices Based on Visual Salience. Review of Financial Studies, 2022, 35, 5094-5126.	3.7	11
1230	Utilization of Speculative Design for Designing Human-Al Interactions. Archives of Design Research, 2022, 35, 57-71.	0.1	0
1231	Understanding Spending Behavior: Recurrent Neural Network Explanation and Interpretation. , 2022, ,		2
1232	Meaningful human control: actionable properties for AI system development. AI and Ethics, 2023, 3, 241-255.	4.6	14
1233	Supporting Clinical COVID-19 Diagnosis with Routine Blood Tests Using Tree-Based Entropy Structured Self-Organizing Maps. Applied Sciences (Switzerland), 2022, 12, 5137.	1.3	4
1234	Interpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data set. Genetic Programming and Evolvable Machines, 2022, 23, 309-349.	1.5	4
1235	Incorporating <scp>AI</scp> and learning analytics to build trustworthy peer assessment systems. British Journal of Educational Technology, 2022, 53, 844-875.	3.9	19
1236	Coupling algebraic topology theory, formal methods and safety requirements toward a new coverage metric for artificial intelligence models. Neural Computing and Applications, 2022, 34, 17129-17144.	3.2	2
1237	Interpretable machine learning for real estate market analysis. Real Estate Economics, 2023, 51, 1178-1208.	1.0	8
1238	Trust in AI and Implications for AEC Research: A Literature Analysis. , 2022, , .		1
1239	On humans, algorithms and data. Qualitative Research in Accounting and Management, 2022, 19, 241-254.	1.0	3
1240	An Approach for Selecting the Most Explanatory Features for Facial Expression Recognition. Applied Sciences (Switzerland), 2022, 12, 5637.	1.3	0
1241	An experiential account of a large-scale interdisciplinary data analysis of public engagement. Al and Society, 2023, 38, 581-593.	3.1	1
1242	Explainable AI for Security of Human-Interactive Robots. International Journal of Human-Computer Interaction, 2022, 38, 1789-1807.	3.3	4
1243	A review of ultrasonic sensing and machine learning methods to monitor industrial processes. Ultrasonics, 2022, 124, 106776.	2.1	18
1244	To trust or not to trust? An assessment of trust in Al-based systems: Concerns, ethics and contexts. Technological Forecasting and Social Change, 2022, 181, 121763.	6.2	25
1245	Automatic floor plan analysis and recognition. Automation in Construction, 2022, 140, 104348.	4.8	16

	Сітатіо	n Report	
#	ARTICLE Locally Interpretable One-Class Anomaly Detection for Credit Card Fraud Detection. , 2021, , .	IF	Citations
1240	Locally interpretable One-Class Anomaly Detection for Credit Card Tradu Detection., 2021, , .		9
1247	An Accurate and Interpretable Lifetime Prediction Method for Batteries using Extreme Gradient Boosting Tree and TreeExplainer. , 2021, , .		2
1248	Understanding the multiclass classification of lymphomas from simple descriptors. , 2021, , .		1
1250	From Politics to Ethics: Transformations in EU Policies on Digital Technology. SSRN Electronic Journal, 0, , .	0.4	Ο
1252	On theÂUse ofÂExplainable Artificial Intelligence forÂtheÂDifferential Diagnosis ofÂPigmented Skin Lesions. Lecture Notes in Computer Science, 2022, , 319-329.	1.0	1
1253	A Self-Interpretable Soft Sensor Based on Deep Learning and Multiple Attention Mechanism: From Data Selection to Sensor Modeling. IEEE Transactions on Industrial Informatics, 2023, 19, 6859-6871.	7.2	10
1254	Object Detection in Driving Datasets Using a High-Performance Computing Platform: A Benchmark Study. IEEE Access, 2022, 10, 61666-61677.	2.6	1
1255	Cross-Cutting Support ofÂMaking andÂExplaining Decisions inÂIntelligent Tutoring Systems Using Cognitive Maps ofÂKnowledge Diagnosis. Lecture Notes in Computer Science, 2022, , 51-64.	1.0	4
1256	A Review of Interpretable Deep Learning for Neurological Disease Classification. , 2022, , .		3
1257	Towards improving explainability, resilience and performance of cybersecurity analysis of 5G/IoT networks (work-in-progress paper). , 2022, , .		2
1258	A Combinatorial Approach to Fairness Testing of Machine Learning Models. , 2022, , .		8
1259	Mind the gap between research and practice in operations management. IISE Transactions, 2023, 55, 32-42.	1.6	4
1260	An Artificial Intelligence Technique for Covid-19 Detection with eXplainability using Lungs X-Ray Images. , 2022, , .		4
1261	Towards Interpretable Anomaly Detection: Unsupervised Deep Neural Network Approach using Feedback Loop. , 2022, , .		4
1262	Secure Transaction Approach in Health Care Using BlockChain. , 2022, , .		1
1263	An Explainable and Evolving Car Driver Identification System based on Decision Trees. , 2022, , .		2
1264	A Review of How Whistleblowing is Studied in Software Engineering, and the Implications for Research and Practice. , 2022, , .		1
1265	DAISY: An Implementation of Five Core Principles for Transparent and Accountable Conversational AI. International Journal of Human-Computer Interaction, 2023, 39, 1856-1873.	3.3	5

#	Article		IF	CITATIONS
1266	Explainability in music recommender systems. Al Magazine, 2022, 43, 190-208.		1.4	19
1267	Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability. International Journal of Information Management, 2023, 69, 102538		10.5	31
1268	Making AI Explainable in the Global South: A Systematic Review. , 2022, , .			10
1269	Counterfactual Shapley Additive Explanations. , 2022, , .			11
1270	Augmented Score-CAM: High resolution visual interpretations for deep neural networks. Knowledge-Based Systems, 2022, 252, 109287.		4.0	10
1271	COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization Computed Tomography Scans. Diagnostics, 2022, 12, 1482.	'n	1.3	23
1272	Artificial Intelligence (AI) Student Assistants in the Classroom: Designing Chatbots to Support Student Success. Information Systems Frontiers, 2023, 25, 161-182.		4.1	66
1273	Patent Data for Engineering Design: A Critical Review and Future Directions. Journal of Computing and Information Science in Engineering, 2022, 22, .		1.7	7
1274	Artificial intelligence in the public sector. Voprosy Ã [°] konomiki, 2022, , 91-109.		0.4	1
1275	Review on Interpretable Machine Learning in Smart Grid. Energies, 2022, 15, 4427.		1.6	30
1276	Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism. Occupational Therapy International, 2022, 2022, 1-11.	2	0.3	2
1277	Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion, 2022, 86-87, 44-75.		11.7	50
1278	Explainable Machine Learning for Longitudinal Multi-Omic Microbiome. Mathematics, 2022, 10, 1994	ŀ.	1.1	3
1279	Deep patch learning algorithms with high interpretability for regression problems. International Journal of Intelligent Systems, 0, , .		3.3	2
1280	Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI). Sustainability, 2022, 14, 7375.		1.6	17
1281	Responsible AI in automated credit scoring systems. AI and Ethics, 2023, 3, 485-495.		4.6	4
1282	"There Is Not Enough Informationâ€: On the Effects of Explanations on Perceptions of Informatio Fairness and Trustworthiness in Automated Decision-Making. , 2022, , .	nal		4
1283	Uncertaintyâ€aware convolutional neural network for explainable artificial intelligenceâ€assisted disaster damage assessment. Structural Control and Health Monitoring, 2022, 29, .		1.9	9

# 1284	ARTICLE Design and Implementation of an Explainable Bidirectional LSTM Model Based on Transition System Approach for Cooperative Al-Workers. Applied Sciences (Switzerland), 2022, 12, 6390.	IF 1.3	CITATIONS
1285	Explainable AI (XAI) Applied in Machine Learning for Pain Modeling: A Review. Technologies, 2022, 10, 74.	3.0	9
1286	Validity Arguments for Alâ€Based Automated Scores: Essay Scoring as an Illustration. Journal of Educational Measurement, 2022, 59, 288-313.	0.7	3
1287	Designing for Confidence: The Impact of Visualizing Artificial Intelligence Decisions. Frontiers in Neuroscience, 0, 16, .	1.4	7
1288	XAI in the Context of Predictive Process Monitoring: An Empirical Analysis Framework. Algorithms, 2022, 15, 199.	1.2	4
1289	Extracting physical characteristics of higher-order chromatin structures from 3D image data. Computational and Structural Biotechnology Journal, 2022, 20, 3387-3398.	1.9	1
1290	From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies. Mobile Information Systems, 2022, 2022, 1-20.	0.4	29
1291	Can Interpretable Reinforcement Learning Manage Prosperity Your Way?. Al, 2022, 3, 526-537.	2.1	3
1292	What Is Meaningful Human-Computer Interaction? Understanding Freedom, Responsibility, and Noos in HCI Based on Viktor Frankl's Existential Philosophy. , 2022, , .		1
1293	A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods. , 2022, , .		64
1294	The Conflict Between Explainable and Accountable Decision-Making Algorithms. , 2022, , .		5
1295	Accountability challenges of AI in smart grid services. , 2022, , .		1
1296	Explainable deep drug–target representations for binding affinity prediction. BMC Bioinformatics, 2022, 23, .	1.2	4
1297	Interactive Model Cards: A Human-Centered Approach to Model Documentation. , 2022, , .		21
1298	Something's Fishy About It: How Opinion Congeniality and Explainability Affect Motivated Attribution to Artificial Intelligence Versus Human Comment Moderators. Cyberpsychology, Behavior, and Social Networking, 2022, 25, 496-503.	2.1	4
1299	Cognitive architectures for artificial intelligence ethics. Al and Society, 2023, 38, 501-519.	3.1	3
1300	Features of a Splashing Drop on a Solid Surface and the Temporal Evolution extracted through Image-Sequence Classification using an Interpretable Feedforward Neural Network. , 2022, , .		0
1301	The Use of Responsible Artificial Intelligence Techniques in the Context of Loan Approval Processes. International Journal of Human-Computer Interaction, 2023, 39, 1543-1562.	3.3	10

		CITATION REPORT		
#	Article		IF	CITATIONS
1302	Explainable machine learning for precise fatigue crack tip detection. Scientific Reports,	2022, 12, .	1.6	14
1303	SCARI: Separate and conquer algorithm for action rules and recommendations induction Sciences, 2022, 607, 849-868.	on. Information	4.0	6
1304	A supervised case-based reasoning approach for explainable thyroid nodule diagnosis. Knowledge-Based Systems, 2022, 251, 109200.		4.0	5
1305	Design of fuzzy rule-based models with fuzzy relational factorization. Expert Systems N Applications, 2022, 206, 117904.	With	4.4	6
1307	Combining Causal Machine Learning and Theory Driven Specification for Interpretable Resource Allocation. SSRN Electronic Journal, 0, , .	and Justifiable	0.4	0
1308	A Morphological Image Preprocessing Method Based on the Geometrical Shape of Lesi the Lesion Recognition Performance of Convolutional Neural Networks. IEEE Access, 20 70919-70936.		2.6	1
1311	Designing a pragmatic explanation for the XAI system based on the user's context and knowledge. , 2022, , 117-125.	background		1
1313	Selection ofÂKeypoints inÂ2D Images Using F-Transform. Communications in Compute Science, 2022, , 418-430.	er and Information	0.4	1
1314	An Explainable Deep Learning Framework for Resilient Intrusion Detection in IoT-Enable Transportation Networks. IEEE Transactions on Intelligent Transportation Systems, 202		4.7	22
1315	Mini-review: Recent advances in post-translational modification site prediction based o learning. Computational and Structural Biotechnology Journal, 2022, 20, 3522-3532.	n deep	1.9	13
1316	The edge-cloud continuum in wearable sensing for respiratory analysis. , 2022, , 241-2	71.		0
1317	Are AI models explainable, interpretable, and understandable?. , 2022, , 3-16.			1
1320	Explanation using examples. , 2022, , 33-49.			0
1321	Explanation of ensemble models. , 2022, , 51-72.			1
1322	Visual Interpretation of CNN Prediction Through Layerwise Sequential Selection of Disc Neurons. IEEE Access, 2022, 10, 81988-82002.	cernible	2.6	2
1323	Cyber situational awareness issues and challenges. , 2022, , 235-265.			1
1324	Extracting Surrogate Decision Trees from Black-Box Models to Explain the Temporal Im Clinical Features in Predicting Kidney Graft Survival. Lecture Notes in Computer Scienc		1.0	1
1325	Logic Constraints toÂFeature Importance. Lecture Notes in Computer Science, 2022, ,	389-402.	1.0	1

ARTICLE IF CITATIONS # Artificial Intelligence and Surgery: Ethical Dilemmas and Open Issues. Journal of the American College 1326 0.2 21 of Surgeons, 2022, 235, 268-275. Machine Learning post-hoc interpretability: a systematic mapping study., 2022, , . 1328 A Simple Framework for XAI Comparisons with a Case Study., 2022,,. 0 A Survey on Human Cancer Categorization Based on Deep Learning. Frontiers in Artificial Intelligence, 2.0 0, 5, . The Role of Artificial Intelligence (AI) in Creating Smart Energy Infrastructure for the Next 1330 Generation and Protection Climate Change. Smart Innovation, Systems and Technologies, 2023, , 0.5 6 457-464. On the Need for Collaborative Intelligence in Cybersecurity. Electronics (Switzerland), 2022, 11, 2067. 1.8 Prediction of Next App in OS., 2022, , . 1332 1 Effects of Adversarial Training on the Safety of Classification Models. Symmetry, 2022, 14, 1338. 1.1 1333 When Self-Humanization Leads to Algorithm Aversion. Business and Information Systems Engineering, 1334 4.0 3 2022, 64, 275-292. Machine learning approaches using blood biomarkers in non-alcoholic fatty liver diseases. Artificial 0.2 Intelligence in Gastroenterology, 2022, 3, 80-87 A survey on the interpretability of deep learning in medical diagnosis. Multimedia Systems, 2022, 28, 1337 3.030 2335-2355. Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. Cancers, 1338 2022, 14, <u>3215</u>. Predictable Effects of Visual Salience in Experimental Decisions and Games. Quarterly Journal of 1339 3.8 16 Economics, 2022, 137, 1849-1900. Quality Models for Artificial Intelligence Systems: Characteristic-Based Approach, Development and 1340 2.1 Application. Sensors, 2022, 22, 4865. Towards FAIR Explainable AI: a standardized ontology for mapping XAI solutions to use cases, 1341 1 explanations, and AI systems., 2022,,. Explainability of Methods for Critical Information Extraction From Clinical Documents: A survey of 1342 representative works. IEEE Signal Processing Magazine, 2022, 39, 96-106. Transparent but Accurate Evolutionary Regression Combining New Linguistic Fuzzy Grammar and a 1343 2.34 Novel Interpretable Linear Extension. International Journal of Fuzzy Systems, 2022, 24, 3082-3103. XFDDC: eXplainable Fault Detection Diagnosis and Correction framework for chemical process 1344 systems. Chemical Engineering Research and Design, 2022, 165, 463-474.

ARTICLE IF CITATIONS Identifying the influence of surface texture waveforms on colors of polished surfaces using an 1345 1 1.6 explainable AI approach. IISE Transactions, 2023, 55, 731-745. Creating a User Model to Support User-specific Explanations of AI Systems., 2022, , . 1346 Getting over High-Dimensionality: How Multidimensional Projection Methods Can Assist Data Science. 1347 3 1.3 Applied Sciences (Switzerland), 2022, 12, 6799. Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity 1348 of Explanations., 2022, , . Toward Explainable Artificial Intelligence for Regression Models: A methodological perspective. IEEE 1349 4.6 30 Signal Processing Magazine, 2022, 39, 40-58. Designing and Managing Human-Al Interactions. Information Systems Frontiers, 2022, 24, 691-697. 4.1 A Survey on Explainable Fake News Detection. IEICE Transactions on Information and Systems, 2022, 1351 0.4 11 E105.D, 1249-1257. Explainable Artificial Intelligence (XAI): Connecting Artificial Decision-Making and Human Trust in 10 Autonomous Vehicles. Lecture Notes in Networks and Systems, 2023, , 123-136. Automatic False Alarm Detection Based on XAI and Reliability Analysis. Applied Sciences (Switzerland), 1353 2 1.3 2022, 12, 6761. An ASP Approach for Reasoning on Neural Networks under a Finitely Many-Valued Semantics for 1354 1.1 Weighted Conditional Knowledge Bases. Theory and Practice of Logic Programming, 2022, 22, 589-605. A Neural-Symbolic Approach for Explanation Generation Based on Sub-concept Detection: An 1355 2.2 1 Application of Metric Learning for Low-Time-Budget Labeling. KI - Kunstliche Intelligenz, 0, , . Robust Explainability: A tutorial on gradient-based attribution methods for deep neural networks. 4.6 IEEE Signal Processing Magazine, 2022, 39, 73-84. Trustworthy AI: A Computational Perspective. ACM Transactions on Intelligent Systems and 1357 2.9 26 Technology, 2023, 14, 1-59. A Pipeline for the Implementation and Visualization of Explainable Machine Learning for Medical 2.1 Imaging Using Radiomics Features. Sensors, 2022, 22, 5205. Local ranking explanation for genetic programming evolved routing policies for uncertain 1359 1 capacitated Arc routing problems., 2022,,. Explainable digital forensics AI: Towards mitigating distrust in AI-based digital forensics analysis 1.2 using interpretable models. Forensic Science International: Digital Investigation, 2022, 42, 301403. Decision Tree Algorithm for Visual Art Design in a Psychotherapy System for College Students. 1361 0.3 2 Occupational Therapy International, 2022, 2022, 1-10. Enhancing Fairness Perception – Towards Human-Centred AI and Personalized Explanations Understanding the Factors Influencing Laypeople's Fairness Perceptions of Algorithmic Decisions. 3.3 International Journal of Human-Computer Interaction, 2023, 39, 1455-1482

#	Article	IF	CITATIONS
1363	Training neural networks for solving 1-D optimal piecewise linear approximation. Neurocomputing, 2022, , .	3.5	0
1364	Agnostic Explanation of Model Change based on Feature Importance. KI - Kunstliche Intelligenz, 2022, 36, 211-224.	2.2	5
1365	Mining the determinants of review helpfulness: a novel approach using intelligent feature engineering and explainable AI. Data Technologies and Applications, 2022, ahead-of-print, 1-23.	0.9	0
1367	Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Switzerland), 2022, 10, 1269.	1.0	41
1368	Improving Trustworthiness of AI Solutions: A Qualitative Approach to Support Ethically-Grounded AI Design. International Journal of Human-Computer Interaction, 2023, 39, 1405-1422.	3.3	8
1369	On Distributed Cognition While Designing an Al System for Adapted Learning. Frontiers in Artificial Intelligence, 0, 5, .	2.0	1
1370	Machine learning for spatial analyses in urban areas: a scoping review. Sustainable Cities and Society, 2022, 85, 104050.	5.1	33
1371	A novel explainable neural network for Alzheimer's disease diagnosis. Pattern Recognition, 2022, 131, 108876.	5.1	12
1372	Supervised contrastive learning-guided prototypes on axle-box accelerations for railway crossing inspections. Expert Systems With Applications, 2022, 207, 117946.	4.4	3
1373	Introducing explainability in sequence-to-sequence learning for short-term load forecasting. Electric Power Systems Research, 2022, 212, 108366.	2.1	11
1374	Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges. Mathematics, 2022, 10, 2552.	1.1	48
1375	Interpretable AI for policy-making in pandemics. , 2022, , .		4
1376	Spatiotemporal Changes and Driver Analysis of Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands. Remote Sensing, 2022, 14, 3563.	1.8	2
1377	An explainable visualisation of the evolutionary search process. , 2022, , .		1
1378	Incentive techniques for the Internet of Things: A survey. Journal of Network and Computer Applications, 2022, 206, 103464.	5.8	34
1379	Operationalising ethics in artificial intelligence for healthcare: a framework for AI developers. AI and Ethics, 2023, 3, 223-240.	4.6	15
1380	Fairness via Explanation Quality. , 2022, , .		11
1381	Automating the design and development of gradient descent trained expert system networks. Knowledge-Based Systems, 2022, 254, 109465.	4.0	2

		CITATION REPORT	
#	ARTICLE Explainable and secure artificial intelligence: taxonomy, cases of study, learned lessons, challenges	IF	CITATIONS
1382	and future directions. Enterprise Information Systems, 2023, 17, .	3.3	3
1383	Separating rule discovery and global solution composition in a learning classifier system. , 2022, , .		5
1384	Deep learning in fNIRS: a review. Neurophotonics, 2022, 9, .	1.7	28
1385	Keeping Al Legal. , 2022, , 383-394.		0
1386	Ad-hoc explanation for time series classification. Knowledge-Based Systems, 2022, 252, 109366.	4.0	1
1387	Learning to run a power network with trust. Electric Power Systems Research, 2022, 212, 108487.	2.1	5
1388	Secondary control activation analysed and predicted with explainable AI. Electric Power Systems Research, 2022, 212, 108489.	2.1	5
1389	Introduction to Explainable AI and Intelligent Transportation. , 2022, , 1-25.		2
1390	Trustworthy Machine Learning Approaches for Cyberattack Detection: A Review. Lecture Notes in Computer Science, 2022, , 265-278.	1.0	2
1391	Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to Reinforce an Alzheimer's Disease Diagnosis Model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1	15. 9.7	3
1392	On the Intersection of Explainable and Reliable AI for Physical Fatigue Prediction. IEEE Access, 2022 76243-76260.	2, 10, 2.6	2
1393	Test and Evaluation of Reinforcement Learning via Robustness Testing and Explainable AI for High-Speed Aerospace Vehicles. , 2022, , .		5
1394	Explaining Machine Learning Predictions: A Case Study. , 2022, , .		0
1395	Tower Bridge Net (TB-Net): Bidirectional Knowledge Graph Aware Embedding Propagation for Explainable Recommender Systems. , 2022, , .		1
1396	Explainability in Cyber Security using Complex Network Analysis: A Brief Methodological Overview. 2022, , .	,	1
1397	Machop. , 2022, , .		5
1398	This Looks Like That There: Interpretable Neural Networks for Image Tasks When Location Matters. 2022, 1, .	,	2
1399	Increasing User Trust in Optimisation through Feedback and Interaction. ACM Transactions on Computer-Human Interaction, 2022, 29, 1-34.	4.6	2

#	Article	IF	CITATIONS
1400	The intersection of evolutionary computation and explainable AI. , 2022, , .		14
1401	An evolutionary machine learning algorithm for cardiovascular disease risk prediction. PLoS ONE, 2022, 17, e0271723.	1.1	9
1402	Global Spatial Suitability Mapping of Wind and Solar Systems Using an Explainable AI-Based Approach. ISPRS International Journal of Geo-Information, 2022, 11, 422.	1.4	8
1403	Taxonomy of Machine Learning Safety: A Survey and Primer. ACM Computing Surveys, 2023, 55, 1-38.	16.1	11
1404	Interpretable machine learning approach to analyze the effects of landscape and meteorological factors on mosquito occurrences in Seoul, South Korea. Environmental Science and Pollution Research, O, , .	2.7	0
1405	Comparing Interpretable AI Approaches for the Clinical Environment: an Application to COVID-19. , 2022, , .		3
1406	Residual one-dimensional convolutional neural network for neuromuscular disorder classification from needle electromyography signals with explainability. Computer Methods and Programs in Biomedicine, 2022, 226, 107079.	2.6	3
1407	Explaining Aha! moments in artificial agents through IKE-XAI: Implicit Knowledge Extraction for eXplainable AI. Neural Networks, 2022, , .	3.3	5
1408	Planning and Scheduling in Digital Health with Answer Set Programming. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 364, 228-235.	0.8	0
1409	Numerical Grad-Cam Based Explainable Convolutional Neural Network for Brain Tumor Diagnosis. Mobile Networks and Applications, 0, , .	2.2	11
1410	High throughput saliency-based quantification of grape powdery mildew at the microscopic level for disease resistance breeding. Horticulture Research, 2022, 9, .	2.9	3
1411	Exploring the Relationship Between Ethics and Trust in Human–Artificial Intelligence Teaming: A Mixed Methods Approach. Journal of Cognitive Engineering and Decision Making, 2022, 16, 252-281.	0.9	11
1412	Prediction and Interpretation of Water Quality Recovery after a Disturbance in a Water Treatment System Using Artificial Intelligence. Water (Switzerland), 2022, 14, 2423.	1.2	4
1413	Dataset level explanation of heat demand forecasting ANN with SHAP. Energy, 2022, 261, 125075.	4.5	17
1414	Why do people resist algorithms? From the perspective of short video usage motivations. Frontiers in Psychology, 0, 13, .	1.1	2
1415	Application of Artificial Intelligence in Shared Decision Making: Scoping Review. JMIR Medical Informatics, 2022, 10, e36199.	1.3	22
1416	A knowledge-driven approach for designing data analytics platforms. Requirements Engineering, 0, , .	2.1	0
1417	Deep Neural Network-Based Novel Mathematical Model for 3D Brain Tumor Segmentation. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.1	15

#	Article	IF	CITATIONS
1418	Reciprocal perspective as a super learner improves drug-target interaction prediction (MUSDTI). Scientific Reports, 2022, 12, .	1.6	2
1419	Effects of deposition precursors of hydrogenated amorphous carbon films on the plasma etching resistance based on mass spectrometer measurements and machine learning analysis. Vacuum, 2022, 205, 111351.	1.6	4
1420	When to choose ranked area integrals versus integrated gradient for explainable artificial intelligence – a comparison of algorithms. Benchmarking, 2022, ahead-of-print, .	2.9	4
1421	Trustworthy AI: From Principles to Practices. ACM Computing Surveys, 2023, 55, 1-46.	16.1	49
1422	Towards explainable interactive multiobjective optimization: R-XIMO. Autonomous Agents and Multi-Agent Systems, 2022, 36, .	1.3	4
1423	Assessment and Optimization of Explainable Machine Learning Models Applied to Transcriptomic Data. Genomics, Proteomics and Bioinformatics, 2022, 20, 899-911.	3.0	7
1424	The importance of humanizing AI: using a behavioral lens to bridge the gaps between humans and machines. Discover Artificial Intelligence, 2022, 2, .	2.1	5
1425	Federated Learning of Explainable Al Models in 6G Systems: Towards Secure and Automated Vehicle Networking. Information (Switzerland), 2022, 13, 395.	1.7	21
1426	Understanding complex predictive models with ghost variables. Test, 2023, 32, 107-145.	0.7	1
1427	A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research. Information Fusion, 2023, 89, 228-253.	11.7	24
1428	Transparent human – (non-) transparent technology? The Janus-faced call for transparency in Al-based health care technologies. Frontiers in Genetics, 0, 13, .	1.1	2
1429	Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications. Electronics (Switzerland), 2022, 11, 2634.	1.8	27
1430	Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review, 2023, 56, 3005-3054.	9.7	72
1431	A walk in the black-box: 3D visualization of large neural networks in virtual reality. Neural Computing and Applications, 2022, 34, 21237-21252.	3.2	6
1432	Thirty years of artificial intelligence and law: the third decade. Artificial Intelligence and Law, 2022, 30, 561-591.	3.0	15
1433	RuleCOSI+: Rule extraction for interpreting classification tree ensembles. Information Fusion, 2023, 89, 355-381.	11.7	10
1434	Social Media Hate Speech Detection Using Explainable Artificial Intelligence (XAI). Algorithms, 2022, 15, 291.	1.2	14
1435	Predicting Patient Demographics From Chest Radiographs With Deep Learning. Journal of the American College of Radiology, 2022, 19, 1151-1161.	0.9	12

#	Article	IF	CITATIONS
1436	RES: A Robust Framework for Guiding Visual Explanation. , 2022, , .		7
1437	pureGAM: Learning an Inherently Pure Additive Model. , 2022, , .		0
1438	Ten quick tips for biomarker discovery and validation analyses using machine learning. PLoS Computational Biology, 2022, 18, e1010357.	1.5	9
1439	What's on Your Mind, NICO?. KI - Kunstliche Intelligenz, 0, , .	2.2	2
1440	An artificial intelligence-based noninvasive solution to estimate pulmonary artery pressure. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
1441	Explainability of Predictive Process Monitoring Results: Can You See My Data Issues?. Applied Sciences (Switzerland), 2022, 12, 8192.	1.3	2
1442	Exploiting auto-encoders and segmentation methods for middle-level explanations of image classification systems. Knowledge-Based Systems, 2022, 255, 109725.	4.0	4
1443	Fuzzy Pattern Tree Evolution Using Grammatical Evolution. SN Computer Science, 2022, 3, .	2.3	4
1444	Decoding working memory-related information from repeated psychophysiological EEG experiments using convolutional and contrastive neural networks. Journal of Neural Engineering, 2022, 19, 046053.	1.8	4
1445	Exploring Root Causes of CNN-Based Image Classifier Failures Using 3-Nearest Neighbors. SN Computer Science, 2022, 3, .	2.3	1
1446	Attention-like feature explanation for tabular data. International Journal of Data Science and Analytics, 0, , .	2.4	2
1447	VAPER: A deep learning model for explainable probabilistic regression. Journal of Computational Science, 2022, 63, 101824.	1.5	1
1448	Improvement of Patient Classification Using Feature Selection Applied to Bidirectional Axial Transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2663-2671.	1.7	8
1449	Visualizing deep networks using segmentation recognition and interpretation algorithm. Information Sciences, 2022, 609, 1381-1396.	4.0	4
1450	The regulatory gap in digital health and alternative pathways to bridge it. Health Policy and Technology, 2022, 11, 100663.	1.3	12
1452	Explainable deep convolutional neural networks for insect pest recognition. Journal of Cleaner Production, 2022, 371, 133638.	4.6	9
1453	Interpretable machine learning models for predicting and explaining vehicle fuel consumption anomalies. Engineering Applications of Artificial Intelligence, 2022, 115, 105222.	4.3	8
1454	Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model. Engineering Structures, 2022, 269, 114768.	2.6	12

#	Article	IF	CITATIONS
1455	An interpretable CNN-based CAD system for skin lesion diagnosis. Artificial Intelligence in Medicine, 2022, 132, 102370.	3.8	3
1456	An interpretable unsupervised Bayesian network model for fault detection and diagnosis. Control Engineering Practice, 2022, 127, 105304.	3.2	10
1457	Federated learning review: Fundamentals, enabling technologies, and future applications. Information Processing and Management, 2022, 59, 103061.	5.4	123
1458	Explainable Bayesian networks applied to transport vulnerability. Expert Systems With Applications, 2022, 209, 118348.	4.4	6
1459	Review of AI-based methods for chatter detection in machining based on bibliometric analysis. International Journal of Advanced Manufacturing Technology, 2022, 122, 2161-2186.	1.5	9
1460	Machine learning techniques for CT imaging diagnosis of novel coronavirus pneumonia: a review. Neural Computing and Applications, 2024, 36, 181-199.	3.2	4
1461	Towards counterfactual and contrastive explainability and transparency of DCNN image classifiers. Knowledge-Based Systems, 2022, 257, 109901.	4.0	3
1462	An explainable attention-based bidirectional GRU model for pedagogical classification of MOOCs. Interactive Technology and Smart Education, 2022, 19, 396.	3.8	0
1463	Pragmatic Al-augmentation in mental healthcare: Key technologies, potential benefits, and real-world challenges and solutions for frontline clinicians. Frontiers in Psychiatry, 0, 13, .	1.3	6
1464	Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction. Biomedicines, 2022, 10, 2157.	1.4	3
1465	Explainable AI (XAI): Core Ideas, Techniques, and Solutions. ACM Computing Surveys, 2023, 55, 1-33.	16.1	76
1466	A Survey and Perspective on Artificial Intelligence for Security-Aware Electronic Design Automation. ACM Transactions on Design Automation of Electronic Systems, 2023, 28, 1-57.	1.9	3
1467	Feature importance in machine learning models: A fuzzy information fusion approach. Neurocomputing, 2022, 511, 163-174.	3.5	17
1468	XAI for learning: Narrowing down the digital divide between "new―and "old―experts. , 2022, , .		2
1469	Towards explainable AI for hyperspectral image classification in Edge Computing environments. Computers and Electrical Engineering, 2022, 103, 108381.	3.0	10
1470	AIDOaRt: Al-augmented Automation for DevOps, a model-based framework for continuous development in Cyber–Physical Systems. Microprocessors and Microsystems, 2022, 94, 104672.	1.8	8
1471	Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Computers in Biology and Medicine, 2022, 149, 106043.	3.9	55
1472	Estimation of jellyfish abundance in the south-eastern Spanish coastline by using an explainable artificial intelligence model based on fuzzy logic. Estuarine, Coastal and Shelf Science, 2022, 277, 108062.	0.9	2

#	Article	IF	CITATIONS
1473	Automating the decision making process of Todd's age estimation method from the pubic symphysis with explainable machine learning. Information Sciences, 2022, 612, 514-535.	4.0	6
1474	The arcanum of artificial intelligence in enterprise applications: Toward a unified framework. Journal of Engineering and Technology Management - JET-M, 2022, 66, 101716.	1.4	6
1475	A fuzzy content-based group recommender system with dynamic selection of the aggregation functions. International Journal of Approximate Reasoning, 2022, 150, 273-296.	1.9	9
1476	Cancer omic data based explainable AI drug recommendation inference: A traceability perspective for explainability. Biomedical Signal Processing and Control, 2023, 79, 104144.	3.5	12
1477	Machine learning and child and adolescent mental health services: challenges and opportunities. , 2023, , 81-108.		0
1478	F-CBR: An Architecture for Federated Case-Based Reasoning. IEEE Access, 2022, 10, 75458-75471.	2.6	4
1479	Pervasive AI for IoT Applications: A Survey on Resource-Efficient Distributed Artificial Intelligence. IEEE Communications Surveys and Tutorials, 2022, 24, 2366-2418.	24.8	29
1480	Learn to Forget: Machine Unlearning via Neuron Masking. IEEE Transactions on Dependable and Secure Computing, 2023, 20, 3194-3207.	3.7	7
1481	Notions ofÂFairness inÂAutomated Decision Making: An Interdisciplinary Approach toÂOpen Issues. Lecture Notes in Computer Science, 2022, , 3-17.	1.0	0
1482	How Close Is Too Close? TheÂRole ofÂFeature Attributions inÂDiscovering Counterfactual Explanations. Lecture Notes in Computer Science, 2022, , 33-47.	1.0	0
1483	Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research. IEEE Access, 2022, 10, 93104-93139.	2.6	54
1484	Towards Al-Enabled Assistant Design Through Grassroots Modeling: Insights fromÂaÂPractical Use Case inÂtheÂIndustrial Sector. Lecture Notes in Business Information Processing, 2022, , 96-110.	0.8	0
1485	Deep Learning Approaches for Bone Marrow Edema Detection and Interpretation in Dual-Energy CT. SSRN Electronic Journal, 0, , .	0.4	1
1486	Trustworthy and EXplainable AI for Biometrics. SpringerBriefs in Applied Sciences and Technology, 2022, , 29-46.	0.2	0
1487	Explainable AI for Time Series Classification: A Review, Taxonomy and Research Directions. IEEE Access, 2022, 10, 100700-100724.	2.6	22
1488	Representation andÂlnterpretability ofÂlE Integral Neural Networks. Lecture Notes in Computer Science, 2022, , 168-180.	1.0	0
1489	eXplainable and Reliable Against Adversarial Machine Learning in Data Analytics. IEEE Access, 2022, 10, 83949-83970.	2.6	8
1490	Organization Routines in Next Generation Manufacturing. Contributions To Management Science, 2022, , 75-94.	0.4	0

#	Article	IF	CITATIONS
1491	An Analysis of Corporate Sustainability Behaviour Through the Lens of Empirical Fitness Landscapes. SSRN Electronic Journal, 0, , .	0.4	0
1492	Reducing EUV coating thickness errors by a factor of two using statistical inference and machine learning. , 2022, , .		0
1493	A Fine-Grained Study ofÂInterpretability ofÂConvolutional Neural Networks forÂText Classification. Lecture Notes in Computer Science, 2022, , 261-273.	1.0	0
1494	A Survey on Trust Models in Heterogeneous Networks. IEEE Communications Surveys and Tutorials, 2022, 24, 2127-2162.	24.8	14
1495	Requirements for Tax XAI Under Constitutional Principles and Human Rights. Lecture Notes in Computer Science, 2022, , 221-238.	1.0	0
1496	Explainable machine learning of the breast cancer staging for designing smart biomarker sensors. Sensors International, 2022, 3, 100202.	4.9	9
1497	The Economic and Social Consequences of Digital Platforms: A Systematic and Interdisciplinary Literature Review. Progress in IS, 2022, , 147-178.	0.5	0
1498	What Firms Must Know Before Adopting AI: The Ethics of AI Transparency. SSRN Electronic Journal, 0, ,	0.4	1
1499	AI and Ethical Issues. SpringerBriefs in Applied Sciences and Technology, 2022, , 1-20.	0.2	0
1500	Stay Focused - Enhancing Model Interpretability Through Guided Feature Training. Lecture Notes in Computer Science, 2022, , 121-129.	1.0	0
1501	Vision-Based Semantic Segmentation in Scene Understanding for Autonomous Driving: Recent Achievements, Challenges, and Outlooks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 22694-22715.	4.7	18
1502	Explainable Artificial Intelligence in CyberSecurity: A Survey. IEEE Access, 2022, 10, 93575-93600.	2.6	42
1503	An Overview of Artificial Intelligence Ethics. IEEE Transactions on Artificial Intelligence, 2023, 4, 799-819.	3.4	25
1504	Intrusion Detection in Internet of Things With MQTT Protocol—An Accurate and Interpretable Genetic-Fuzzy Rule-Based Solution. IEEE Internet of Things Journal, 2022, 9, 24843-24855.	5.5	6
1505	The Compatibility of AI in Criminal System with the ECHR and ECtHR Jurisprudence. Lecture Notes in Computer Science, 2022, , 108-118.	1.0	0
1506	Evaluating theÂInterpretability ofÂThreshold Operators. Lecture Notes in Computer Science, 2022, , 136-151.	1.0	1
1507	More Sanity Checks forÂSaliency Maps. Lecture Notes in Computer Science, 2022, , 175-184.	1.0	0
1508	On Explainability inÂAI-Solutions: A Cross-Domain Survey. Lecture Notes in Computer Science, 2022, , 235-246.	1.0	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1509	BubblEX: An Explainable Deep Learning Framework for Point-Cloud Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6571-6587.		2.3	5
1510	Using Case-Based Reasoning for Capturing Expert Knowledge on Explanation Methods. Lecture N in Computer Science, 2022, , 3-17.	otes	1.0	1
1511	Military Robotics. , 2022, , 1-16.			0
1512	EXplainable AI. SpringerBriefs in Applied Sciences and Technology, 2022, , 21-28.		0.2	0
1513	Reducing Annotation Need inÂSelf-explanatory Models forÂLung Nodule Diagnosis. Lecture Note Computer Science, 2022, , 33-43.	s in	1.0	1
1514	Ethically Responsible Machine Learning in Fintech. IEEE Access, 2022, 10, 97531-97554.		2.6	8
1515	Adapting a Trusted Al Framework to Space Mission Autonomy. , 2022, , .			10
1516	Levels of Autonomous Radiology. Interactive Journal of Medical Research, 2022, 11, e38655.		0.6	8
1517	An xAl Thick Data Assisted Caption Generation for Labeling Severity of Ulcerative Colitis Video Colonoscopy. , 2022, , .			3
1518	Comparing User Perception of Explanations Developed with XAI Methods. , 2022, , .			4
1519	Counterfactual rule generation for fuzzy rule-based classification systems. , 2022, , .			1
1520	Can Post-hoc Explanations Effectively Detect Out-of-Distribution Samples?. , 2022, , .			4
1521	Quod erat demonstrandum? - Towards a typology of the concept of explanation for the design of explainable AI. Expert Systems With Applications, 2023, 213, 118888.		4.4	29
1522	Predicting the need for mechanical ventilation and mortality in hospitalized COVID-19 patients w received heparin. , 2022, , .	ho		0
1523	An Open-Source Software Library for Explainable Support Vector Machine Classification. , 2022, ,	•		1
1524	Combining Deep Convolutional Feature Extraction with Hyperdimensional Computing for Visual Object Recognition. , 2022, , .			1
1525	Explanation of Anomalies in Business Process Event Logs with Linguistic Summaries. , 2022, , .			2
1526	Search-based framework for transparent non-overlapping ensemble models. , 2022, , .			1

#	Article	IF	CITATIONS
1527	Points2Shapelets: A Salience-Guided Shapelets Selection Approach to Time Series Classification. , 2022, ,		1
1528	Explanation of Multi-Label Neural Networks with Layer-Wise Relevance Propagation. , 2022, , .		0
1529	INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. , 2022, , .		3
1530	Embedding Ethics and Trustworthiness for Sustainable AI in Earth Sciences: Where Do We Begin?. , 2022, , .		0
1531	Measuring Model Understandability by means of Shapley Additive Explanations. , 2022, , .		2
1532	Increasing Accuracy and Explainability in Fuzzy Regression Trees: An Experimental Analysis. , 2022, , .		3
1533	NEWRON: A New Generalization of the Artificial Neuron to Enhance the Interpretability of Neural Networks. , 2022, , .		2
1534	Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures. Chemistry of Materials, 2022, 34, 7761-7773.	3.2	4
1535	Explain yourself! Effects of Explanations in Human-Robot Interaction. , 2022, , .		8
1536	Argumentation-Based Query Answering under Uncertainty with Application to Cybersecurity. Big Data and Cognitive Computing, 2022, 6, 91.	2.9	3
1537	Evaluating the Impact of Emotional Apology on Human-Robot Trust. , 2022, , .		5
1538	Cybersecurity Knowledge Extraction Using XAI. Applied Sciences (Switzerland), 2022, 12, 8669.	1.3	6
1539	Image Embeddings Extracted from CNNs Outperform Other Transfer Learning Approaches in Classification of Chest Radiographs. Diagnostics, 2022, 12, 2084.	1.3	8
1540	Explainability in Collaborative Robotics: The Effect of Informing the User on Task Performance and Trust. , 2022, , .		1
1541	Initial Work on the Development of a Hardware-Based Gradient Descent Trained Expert System. Systems, 2022, 10, 160.	1.2	2
1542	What do artificial neural networks learn? A study for analysis of RBS spectra. Journal of Physics: Conference Series, 2022, 2340, 012003.	0.3	0
1543	Explainable machine learning in materials science. Npj Computational Materials, 2022, 8, .	3.5	58
1544	Cross-Cutting Visual Support of Decision Making for Forming Personalized Learning Spaces. Lecture Notes in Networks and Systems, 2023, , 3-12.	0.5	3

#	Article	IF	CITATIONS
1545	A simple combined projection method for conservative decision-making. International Journal of Machine Learning and Cybernetics, 2022, 13, 3837-3848.	2.3	1
1546	Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine, 2022, 226, 107161.	2.6	168
1547	Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model. Applied Sciences (Switzerland), 2022, 12, 9545.	1.3	13
1548	Knowledge-graph-based explainable AI: A systematic review. Journal of Information Science, 0, , 016555152211128.	2.0	8
1549	Reinforcement learning with intrinsic affinity for personalized prosperity management. Digital Finance, 2022, 4, 241-262.	1.0	0
1550	Bottom-up Coarse-Graining: Principles and Perspectives. Journal of Chemical Theory and Computation, 2022, 18, 5759-5791.	2.3	86
1551	Human Centered Explainability for Intelligent Vehicles $\hat{a} \in A$ User Study. , 2022, , .		3
1552	Opportunities for pharmacoproteomics in biomarker discovery. Proteomics, 2023, 23, .	1.3	7
1553	ProtoMF: Prototype-based Matrix Factorization for Effective and Explainable Recommendations. , 2022, , \cdot		6
1554	Evaluating perceptual and semantic interpretability of saliency methods: A case study of melanoma. Applied Al Letters, 2022, 3, .	1.4	2
1555	Micro-level social structures and the success of COVID-19 national policies. Nature Computational Science, 2022, 2, 595-604.	3.8	4
1556	Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Scientific Reports, 2022, 12, .	1.6	15
1557	Provably efficient machine learning for quantum many-body problems. Science, 2022, 377, .	6.0	65
1558	It Takes Two Flints to Make a Fire: Multitask Learning of Neural Relation and Explanation Classifiers. Computational Linguistics, 0, , 1-40.	2.5	0
1559	System-level failure prognostics: Literature review and main challenges. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 0, , 1748006X2211184.	0.6	0
1560	Electrical Load Forecasting Utilizing an Explainable Artificial Intelligence (XAI) Tool on Norwegian Residential Buildings. , 2022, , .		1
1561	Spoken Language Identification System Using Convolutional Recurrent Neural Network. Applied Sciences (Switzerland), 2022, 12, 9181.	1.3	12
1562	A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences. Artificial Intelligence Review, 2023, 56, 3473-3504.	9.7	16

\sim		<u>_</u>	
		Repo	DT
	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
1563	Explainable Convolutional Neural Networks: A Taxonomy, Review, and Future Directions. ACM Computing Surveys, 2023, 55, 1-37.	16.1	8
1564	Battery Materials Discovery and Smart Grid Management using Machine Learning. Batteries and Supercaps, 2022, 5, .	2.4	2
1565	Explainable AI: A Neurally-Inspired Decision Stack Framework. Biomimetics, 2022, 7, 127.	1.5	3
1566	Hands on Explainable Recommender Systems with Knowledge Graphs. , 2022, , .		4
1568	Interpreting convolutional neural network decision for earthquake detection with feature map visualization, backward optimization and layer-wise relevance propagation methods. Geophysical Journal International, 2022, 232, 923-939.	1.0	2
1569	Machine Learning in Nutrition Research. Advances in Nutrition, 2022, 13, 2573-2589.	2.9	24
1570	A primer on artificial intelligence in plant digital phenomics: embarking on the data to insights journey. Trends in Plant Science, 2023, 28, 154-184.	4.3	15
1571	Using Explainable AI (XAI) for the Prediction of Falls in the Older Population. Algorithms, 2022, 15, 353.	1.2	2
1572	Knowledge Graphs and Explainable AI in Healthcare. Information (Switzerland), 2022, 13, 459.	1.7	9
1573	Predictive models in digital manufacturing: research, applications, and future outlook. International Journal of Production Research, 2023, 61, 6052-6062.	4.9	7
1574	HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists. Hydrology and Earth System Sciences, 2022, 26, 4773-4800.	1.9	7
1575	Self-learning and explainable deep learning network toward the security of artificial intelligence of things. Journal of Supercomputing, 2023, 79, 4436-4467.	2.4	3
1576	Bag-of-Words Similarity inÂeXplainable AI. Lecture Notes in Networks and Systems, 2023, , 835-851.	0.5	1
1577	A New Method to Evaluate Gold Mineralisation-Potential Mapping Using Deep Learning and an Explainable Artificial Intelligence (XAI) Model. Remote Sensing, 2022, 14, 4486.	1.8	8
1578	A data-driven explainable case-based reasoning approach for financial risk detection. Quantitative Finance, 2022, 22, 2257-2274.	0.9	5
1579	Predicting Heavy Metal Concentrations in Shallow Aquifer Systems Based on Low-Cost Physiochemical Parameters Using Machine Learning Techniques. International Journal of Environmental Research and Public Health, 2022, 19, 12180.	1.2	2
1580	Classification of Nuclear Reactor Operations Using Spatial Importance and Multisensor Networks. Journal of Nuclear Engineering, 2022, 3, 243-262.	0.7	1
1581	Assessing receptive vocabulary using state‑of‑the‑art natural language processing techniques. Journal of Second Language Studies, 0, , .	0.5	1

#	Article	IF	CITATIONS
1582	Multilayer dynamic ensemble model for intensive care unit mortality prediction of neonate patients. Journal of Biomedical Informatics, 2022, 135, 104216.	2.5	14
1583	Toward reliable machine learning with Congruity: a quality measure based on formal concept analysis. Neural Computing and Applications, 2023, 35, 1899-1913.	3.2	3
1584	Adaptive and personalized user behavior modeling in complex event processing platforms for remote health monitoring systems. Artificial Intelligence in Medicine, 2022, , 102421.	3.8	2
1585	Artificial intelligence, 21st century competences, and socioâ€emotional learning in education: More than highâ€risk?. European Journal of Education, 2022, 57, 601-619.	1.7	6
1586	Genetics in parkinson's disease: From better disease understanding to machine learning based precision medicine. Frontiers in Molecular Medicine, 0, 2, .	0.6	0
1587	The Past and the Future of Explainable AI Techniques. leice Ess Fundamentals Review, 2022, 16, 83-92.	0.1	0
1588	Multi-omics disease module detection with an explainable Greedy Decision Forest. Scientific Reports, 2022, 12, .	1.6	11
1589	PLENARY: Explaining black-box models in natural language through fuzzy linguistic summaries. Information Sciences, 2022, 614, 374-399.	4.0	12
1590	How the different explanation classes impact trust calibration: The case of clinical decision support systems. International Journal of Human Computer Studies, 2023, 169, 102941.	3.7	18
1592	Greybox XAI: A Neural-Symbolic learning framework to produce interpretable predictions for image classification. Knowledge-Based Systems, 2022, 258, 109947.	4.0	7
1593	Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method. Journal of Hydrology, 2022, 613, 128495.	2.3	23
1594	Explaining deep neural networks: A survey on the global interpretation methods. Neurocomputing, 2022, 513, 165-180.	3.5	19
1595	Explainable artificial intelligence reveals environmental constraints in seagrass distribution. Ecological Indicators, 2022, 144, 109523.	2.6	7
1596	Explanation with the Winter value: Efficient computation for hierarchical Choquet integrals. International Journal of Approximate Reasoning, 2022, 151, 225-250.	1.9	2
1597	An Articulated Learning Method Based on Optimization Approach for Gallbladder Segmentation from MRCP Images and an Effective IoT Based Recommendation Framework. Studies in Computational Intelligence, 2022, , 165-179.	0.7	21
1598	Different Views of Interpretability. , 2022, , 1-20.		5
1599	IMFNet: Interpretable Multimodal Fusion for Point Cloud Registration. IEEE Robotics and Automation Letters, 2022, 7, 12323-12330.	3.3	16
1600	Deep Learning for Micro-Expression Recognition: A Survey. IEEE Transactions on Affective Computing, 2022, 13, 2028-2046.	5.7	25

#	Article	IF	CITATIONS
1601	Biometrics and Artificial Intelligence: Attacks and Challenges. , 2022, , 213-240.		0
1602	INVESTIGATING THE RELIABILITY OF AI MODEL ABLE TO PREDICTING THE PROBABILITY OF DROWNING ACCIDENTS AT BATHING BEACHE. Journal of Japan Society of Civil Engineers Ser B2 (Coastal) Tj ETQq1 1 0.7843	140gBT (Overlock 10
1603	Challenges from the Introduction of Artificial Intelligence in the European Air Traffic Management System. IFAC-PapersOnLine, 2022, 55, 1-6.	0.5	2
1604	Framing Digital Innovation. , 2022, , 263-299.		0
1605	Cyber Weapons and Artificial Intelligence: Impact, Influence and the Challenges for Arms Control. , 2022, , 145-158.		1
1606	Explanation ofÂPseudo-Boolean Functions Using Cooperative Game Theory andÂPrime Implicants. Lecture Notes in Computer Science, 2022, , 295-308.	1.0	1
1607	AI-based Improvement of Decision-makers' Knowledge in Production Planning and Control. IFAC-PapersOnLine, 2022, 55, 2240-2245.	0.5	2
1608	Artificial Intelligence and Emerging Technologies in Hospitality. Management for Professionals, 2022, , 279-313.	0.3	0
1609	Current Trends, Machine Learning, and Food Safety Data Governance. Law, Governance and Technology Series, 2022, , 123-160.	0.3	0
1610	Characterizing Fake News: A Conceptual Modeling-based Approach. Lecture Notes in Computer Science, 2022, , 115-129.	1.0	2
1611	HIVE: Evaluating the Human Interpretability of Visual Explanations. Lecture Notes in Computer Science, 2022, , 280-298.	1.0	14
1612	Al governance in the system development life cycle. , 2022, , .		5
1613	A review of how whistleblowing is studied in software engineering, and the implications for research and practice. , 2022, , .		1
1614	Using Acoustic Signal to Predict Grain Size of Bedload Particles. , 2022, , .		1
1615	New Challenges for Trade Unions in the Face of Algorithmic Management in the Work Environment. Studia Z Zakresu Prawa Pracy I Polityki SpoÅ,ecznej, 2022, 29, 121-143.	0.1	0
1616	Requirements on Explanations: A Quality Framework for Explainability. , 2022, , .		4
1617	CADE: The Missing Benchmark in Evaluating Dataset Requirements of AI-enabled Software. , 2022, , .		1
1618	How to Evaluate Explainability? - A Case for Three Criteria. , 2022, , .		3

#	Article	IF	CITATIONS
1619	Factors influencing clinicians' willingness to use an AI-based clinical decision support system. Frontiers in Digital Health, 0, 4, .	1.5	12
1621	An Explainable Regression Framework for Predicting Remaining Useful Life of Machines. , 2022, , .		2
1622	A Short Review on Explainable Artificial Intelligence in Renewable Energy and Resources. , 2022, , .		2
1623	A Novel Approach for Visualization of Class Activation Maps with Reduced Dimensions. , 2022, , .		0
1624	Digital Privacy of Assistive Technology Users with Visual Disabilities. Proceedings of the Human Factors and Ergonomics Society, 2022, 66, 1105-1109.	0.2	0
1625	Joint Activity Testing: Towards a Multi-Dimensional, High-Resolution Evaluation Method for Human-Machine Teaming. Proceedings of the Human Factors and Ergonomics Society, 2022, 66, 2214-2219.	0.2	1
1626	An overview of violence detection techniques: current challenges and future directions. Artificial Intelligence Review, 2023, 56, 4641-4666.	9.7	9
1627	Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 2022, 40, 1095-1110.	7.7	115
1628	Collaborative Work with Highly Automated Marine Navigation Systems. Computer Supported Cooperative Work, 2024, 33, 7-38.	1.9	0
1629	The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study. Electronic Markets, 2022, 32, 2079-2102.	4.4	9
1630	Convolutional Neural Networks in Computer Vision for Grain Crop Phenotyping: A Review. Agronomy, 2022, 12, 2659.	1.3	26
1631	Machine learning applications in river research: Trends, opportunities and challenges. Methods in Ecology and Evolution, 2022, 13, 2603-2621.	2.2	16
1632	What Is a Digital Twin? Experimental Design for a Data-Centric Machine Learning Perspective in Health. International Journal of Molecular Sciences, 2022, 23, 13149.	1.8	9
1633	A Survey on Medical Image Segmentation Based on Deep Learning Techniques. Big Data and Cognitive Computing, 2022, 6, 117.	2.9	13
1634	Machine Learning-Enabled NIR Spectroscopy in Assessing Powder Blend Uniformity: Clear-Up Disparities and Biases Induced by Physical Artefacts. AAPS PharmSciTech, 2022, 23, .	1.5	5
1635	Effects of Explainable Artificial Intelligence on trust and human behavior in a high-risk decision task. Computers in Human Behavior, 2023, 139, 107539.	5.1	24
1636	TOMBoost: a topic modeling based boosting approach for learning with class imbalance. International Journal of Data Science and Analytics, 0, , .	2.4	0
1637	A Comparative Analysis ofÂLocal Explainability ofÂModels forÂSentiment Detection. Lecture Notes in Networks and Systems, 2023, , 593-606.	0.5	0

#	Article	IF	CITATIONS
1638	An overview of deep learning applications in precocious puberty and thyroid dysfunction. Frontiers in Endocrinology, 0, 13, .	1.5	2
1639	Novel Grasping Mechanisms of 3Dâ€Printed Prosthetic Hands. Advanced Intelligent Systems, 2022, 4, .	3.3	4
1640	Explanation sets: A general framework for machine learning explainability. Information Sciences, 2022, 617, 464-481.	4.0	5
1641	Explainable machine learning multi-label classification of Spanish legal judgements. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 10180-10192.	2.7	0
1642	Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning. Machine Learning and Knowledge Extraction, 2022, 4, 924-953.	3.2	15
1643	Interpretable machine learning methods for predictions in systems biology from omics data. Frontiers in Molecular Biosciences, 0, 9, .	1.6	15
1644	Influence of personality and modality on peer assessment evaluation perceptions using Machine Learning techniques. Expert Systems With Applications, 2023, 213, 119150.	4.4	3
1645	Transparency of Artificial Intelligence in Healthcare: Insights from Professionals in Computing and Healthcare Worldwide. Applied Sciences (Switzerland), 2022, 12, 10228.	1.3	11
1646	Comparing Approaches for Explaining DNN-Based Facial Expression Classifications. Algorithms, 2022, 15, 367.	1.2	5
1647	Enhancing Artificial Intelligence Control Mechanisms: Current Practices, Real Life Applications and Future Views. Lecture Notes in Networks and Systems, 2023, , 287-306.	0.5	7
1648	Machine learning for a sustainable energy future. Nature Reviews Materials, 2023, 8, 202-215.	23.3	76
1649	Black Box Models for eXplainable Artificial Intelligence. Intelligent Systems Reference Library, 2023, , 1-24.	1.0	1
1650	Identifying Critical Infrastructure in Imagery Data Using Explainable Convolutional Neural Networks. Remote Sensing, 2022, 14, 5331.	1.8	2
1651	Information Resilient Society in an <scp>Al</scp> World—Is <scp>XAI</scp> Sufficient?. Proceedings of the Association for Information Science and Technology, 2022, 59, 522-526.	0.3	0
1652	The Recursive Theory of Knowledge Augmentation: Integrating human intuition and knowledge in Artificial Intelligence to augment organizational knowledge. Information Systems Frontiers, 2023, 25, 55-70.	4.1	4
1653	How Much Should You Care About Algorithmic Transparency as Manipulation?. Philosophy and Technology, 2022, 35, .	2.6	3
1654	U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient. Mathematical Problems in Engineering, 2022, 2022, 1-14.	0.6	2
1655	Distributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2023, 13, .	4.6	2

#	Article	IF	CITATIONS
1656	Explainable Artificial Intelligence for Bayesian Neural Networks: Toward Trustworthy Predictions of Ocean Dynamics. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	4
1657	AutoXAI. , 2022, , .		1
1658	An ontology-based system to avoid UAS flight conflicts and collisions in dense traffic scenarios. Expert Systems With Applications, 2023, 215, 119027.	4.4	1
1660	Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software, 2023, 198, 111538.	3.3	4
1661	On the explanatory power of Boolean decision trees. Data and Knowledge Engineering, 2022, 142, 102088.	2.1	10
1662	Evaluation Measures and Applications for Explainable AI. Intelligent Systems Reference Library, 2023, , 89-110.	1.0	0
1663	Predicting Rating Distributions of Website Aesthetics with Deep Learning for Al-Based Research. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-28.	4.6	0
1664	Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Information Fusion, 2023, 91, 376-387.	11.7	145
1665	Explainable artificial intelligence for cybersecurity: a literature survey. Annales Des Telecommunications/Annals of Telecommunications, 2022, 77, 789-812.	1.6	14
1666	Investigating Explainable Artificial Intelligence for MRI-based Classification of Dementia: a New Stability Criterion for Explainable Methods. , 2022, , .		2
1667	Unanswerable Question Correction and Explanation over Personal Knowledge Base. , 2022, , .		2
1668	Explaining Intrusion Detection-Based Convolutional Neural Networks Using Shapley Additive Explanations (SHAP). Big Data and Cognitive Computing, 2022, 6, 126.	2.9	10
1669	Development of a Prediction Method of Cell Density in Autotrophic/Heterotrophic Microorganism Mixtures by Machine Learning Using Absorbance Spectrum Data. BioTech, 2022, 11, 46.	1.3	4
1670	Explainable Machine Learning for Autonomous Vehicle Positioning Using SHAP. Intelligent Systems Reference Library, 2023, , 157-183.	1.0	0
1671	Explainable AI (XAI) In Biomedical Signal and Image Processing: Promises and Challenges. , 2022, , .		3
1672	Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artificial Intelligence Review, 2023, 56, 5261-5315.	9.7	20
1673	An Overview of Explainable AI Methods, Forms and Frameworks. Intelligent Systems Reference Library, 2023, , 43-59.	1.0	1
1674	An In-depth Interactive and Visualized Platform for Evaluating and Analyzing MRC Models. , 2022, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1675	Physics captured by data-based methods in El Ni $ ilde{A}$ ±o prediction. Chaos, 2022, 32, 103115.		1.0	0
1676	Human knowledge models: Learning applied knowledge from the data. PLoS ONE, 2022, 17, e	0275814.	1.1	1
1677	BEERL: Both Ends Explanations for Reinforcement Learning. Applied Sciences (Switzerland), 20 10947.)22, 12,	1.3	2
1678	Change Detection for Local Explainability in Evolving Data Streams. , 2022, , .			3
1679	Recurrent Neural Network-FitNets: Improving Early Prediction of Student Performanceby Time Knowledge Distillation. Journal of Educational Computing Research, 2023, 61, 639-670.	-Series	3.6	3
1680	Supply Chain Resilience: Impact of Stakeholder Behavior and Trustworthy Information Sharing Case Study on Pharmaceutical Supply Chains. , 2022, , 133-159.	with a		0
1681	Privacy explanations – A means to end-user trust. Journal of Systems and Software, 2023, 1	95, 111545.	3.3	5
1682	Towards explainable artificial intelligence in optical networks: the use case of lightpath QoT estimation. Journal of Optical Communications and Networking, 2023, 15, A26.		3.3	4
1683	A Visual Variability and Visuoâ€Tactile Coordination Inspired Child Adaptation Mechanism for Age Group Recognition and Activity Recognition. Advanced Intelligent Systems, 2023, 5, .	Wearable	3.3	2
1684	To the Question of the Practical Implementation of "Digital Immortality―Technologies: N Approaches to the Creation of AI. Lecture Notes in Networks and Systems, 2023, , 368-377.	ew	0.5	1
1685	Explainable Artificial Intelligence forÂtheÂElectric Vehicle Load Demand Forecasting Problem. Notes in Networks and Systems, 2023, , 413-422.	Lecture	0.5	3
1686	Tackling the Accuracy-Interpretability Trade-off: Interpretable Deep Learning Models for Satelli Image-based Real Estate Appraisal. ACM Transactions on Management Information Systems, 2	te 2023, 14, 1-24.	2.1	2
1687	From politics to ethics: Transformations in EU policies on digital technology. Technology in Sc 2022, 71, 102145.	ciety,	4.8	10
1688	Evidence for residential building retrofitting practices using explainable AI and socio-demogra data. Energy Reports, 2022, 8, 13514-13528.	phic	2.5	5
1689	Machine learning methods to estimate observational properties of galaxy clusters in large volu cosmological <i>N</i> -body simulations. Monthly Notices of the Royal Astronomical Society, 2518, 111-129.		1.6	9
1690	Communicating Missing Causal Information to Explain a Robot's Past Behavior. ACM Tran Human-Robot Interaction, 2023, 12, 1-45.	sactions on	3.2	2
1691	Explainability of artificial intelligence methods, applications and challenges: A comprehensive Information Sciences, 2022, 615, 238-292.	survey.	4.0	29
1692	Understanding, Idealization, and Explainable AI. EpistÉmÃ^, 2022, 19, 534-560.		0.6	9

#	Article	IF	CITATIONS
1693	Introduction to XAI and Clinical Decision Support. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 29-57.	0.3	0
1694	Systematic Literature Review. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 161-188.	0.3	0
1695	The HEIC application framework for implementing XAI-based socio-technical systems. Online Social Networks and Media, 2022, 32, 100239.	2.3	1
1696	From Amundson, Aris, and Sargent to the future of process systems engineering. Chemical Engineering Research and Design, 2022, 188, 704-713.	2.7	1
1697	Efficient and explainable ship selection planning in port state control. Transportation Research Part C: Emerging Technologies, 2022, 145, 103924.	3.9	4
1698	Introducing causal inference in the energy-efficient building design process. Energy and Buildings, 2022, 277, 112583.	3.1	5
1699	RuleXAl—A package for rule-based explanations of machine learning model. SoftwareX, 2022, 20, 101209.	1.2	4
1700	Model tree methods for explaining deep reinforcement learning agents in real-time robotic applications. Neurocomputing, 2023, 515, 133-144.	3.5	5
1701	Interpretable hierarchical symbolic regression for safety-critical systems with an application to highway crash prediction. Engineering Applications of Artificial Intelligence, 2023, 117, 105534.	4.3	3
1702	The Statistics of Interpretable Machine Learning. Digital Ethics Lab Yearbook, 2022, , 133-155.	0.2	0
1703	Explainable AI Over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions. IEEE Open Journal of the Communications Society, 2022, 3, 2106-2136.	4.4	18
1704	The Challenges of Artificial Judicial Decision-Making for Liberal Democracy. , 2022, , 179-204.		3
1705	Towards Interpretable Policies inÂMulti-agent Reinforcement Learning Tasks. Lecture Notes in Computer Science, 2022, , 262-276.	1.0	1
1706	Investigating theÂImpact ofÂIndependent Rule Fitnesses inÂaÂLearning Classifier System. Lecture Notes in Computer Science, 2022, , 142-156.	1.0	3
1707	Explainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges, and Opportunities. IEEE Access, 2022, 10, 112392-112415.	2.6	20
1708	Multiobjective Optimization of Interpretable Fuzzy Systems and Applicable Subjects for Fast Estimation of Obstructive Sleep Apnea-hypopnea Severity. IEEE Transactions on Fuzzy Systems, 2022, , 1-13.	6.5	0
1709	Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research. Technological Forecasting and Social Change, 2023, 186, 122120.	6.2	27
1710	An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach. Asian Journal of Psychiatry, 2023, 79, 103316.	0.9	19

# 1711	ARTICLE Health condition monitoring of a complex hydraulic system using Deep Neural Network and DeepSHAP explainable XAI. Advances in Engineering Software, 2023, 175, 103339.	IF 1.8	CITATIONS
1712	Feature selection for distance-based regression: An umbrella review and a one-shot wrapper. Neurocomputing, 2023, 518, 344-359.	3.5	4
1713	Algorithmic Decision Making and Model Explainability Preferences in the Insurance Industry: A Delphi Study. , 2022, , .		0
1714	A generic and modular reference architecture for self-explainable smart homes. , 2022, , .		0
1715	Interpretability of Knowledge Graph-based Explainable Process Analysis. , 2022, , .		2
1716	Data-centric Cyber-attack Detection in Community Microgrids Using ML Techniques. , 2022, , .		0
1717	A Review of the Impact of Convolutional Neural Networks in the Process of Renal Cancer Diagnosis. , 2022, , .		0
1718	Explainable artificial intelligence for deep learning-based model predictive controllers. , 2022, , .		0
1719	Multi-scale model-based explanations for cyber-physical systems. , 2022, , .		0
1720	"Is It My Turn?". Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-23.	2.5	0
1721	Ethical Awareness in Paralinguistics: A Taxonomy of Applications. International Journal of Human-Computer Interaction, 2023, 39, 1904-1921.	3.3	3
1722	Green learning: Introduction, examples and outlook. Journal of Visual Communication and Image Representation, 2023, 90, 103685.	1.7	14
1723	Human-centric artificial intelligence architecture for industry 5.0 applications. International Journal of Production Research, 2023, 61, 6847-6872.	4.9	33
1724	Neural referential form selection: Generalisability and interpretability. Computer Speech and Language, 2023, 79, 101466.	2.9	2
1725	Toward automated interpretable AAST grading for blunt splenic injury. Emergency Radiology, 2023, 30, 41-50.	1.0	11
1726	Ensembles of Random SHAPs. Algorithms, 2022, 15, 431.	1.2	8
1727	Developing moral AI to support decision-making about antimicrobial use. Nature Machine Intelligence, 2022, 4, 912-915.	8.3	7
1728	Integrated Gradient-Based Continuous Wavelet Transform for Bearing Fault Diagnosis. Sensors, 2022, 22, 8760.	2.1	11

#	Article	IF	CITATIONS
1729	Visual explanation and robustness assessment optimization of saliency maps for image classification. Visual Computer, 0, , .	2.5	2
1730	Explainable Data Fusion on Edge: Challenges and Opportunities. Studies in Computational Intelligence, 2023, , 117-138.	0.7	Ο
1731	Complexity measures and features for times series classification. Expert Systems With Applications, 2023, 213, 119227.	4.4	6
1732	Guidelines and evaluation of clinical explainable AI in medical image analysis. Medical Image Analysis, 2023, 84, 102684.	7.0	26
1733	Explainable AI (XAI): A Survey of Current and Future Opportunities. Studies in Computational Intelligence, 2023, , 53-71.	0.7	2
1734	Trust Model Based Data Fusion in Explainable Artificial Intelligence for Edge Computing Using Secure Sequential Discriminant Auto Encoder with Lightweight Optimization Algorithm. Studies in Computational Intelligence, 2023, , 139-160.	0.7	0
1735	Counterfactual explanations as interventions in latent space. Data Mining and Knowledge Discovery, 0, , .	2.4	2
1736	Role of Explainable Edge AI to Resolve Real Time Problem. Studies in Computational Intelligence, 2023, , 101-116.	0.7	0
1737	Thermal and Visual Tracking of Photovoltaic Plants for Autonomous UAV Inspection. Drones, 2022, 6, 347.	2.7	10
1738	Envisioning Identity: The Social Production of Human-Centric Computer Vision Systems. , 2022, , .		0
1739	Investigating the understandability of XAI methods for enhanced user experience: When Bayesian network users became detectives. Artificial Intelligence in Medicine, 2022, , 102438.	3.8	0
1740	Explainable software systems: from requirements analysis to system evaluation. Requirements Engineering, 2022, 27, 457-487.	2.1	6
1741	Acquisition of chess knowledge in AlphaZero. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
1742	LMGAN: Linguistically Informed Semi-Supervised GAN with Multiple Generators. Sensors, 2022, 22, 8761.	2.1	2
1743	Automating anticorruption?. Ethics and Information Technology, 2022, 24, .	2.3	0
1744	Explainable Artificial Intelligence: Concepts and Current Progression. Studies in Computational Intelligence, 2023, , 1-17.	0.7	2
1746	Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection. Big Data Research, 2022, 30, 100359.	2.6	18
1747	<mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">G</mml:mi </mml:math> -LIME: Statistical learning for local interpretations of deep neural networks using global priors. Artificial Intelligence, 2023, 314, 103823.	3.9	8

#	Article	IF	CITATIONS
1748	Justifying Arabic Text Sentiment Analysis Using Explainable AI (XAI): LASIK Surgeries Case Study. Information (Switzerland), 2022, 13, 536.	1.7	4
1749	Deciphering optimal mixed-mode ventilation in the tropics using reinforcement learning with explainable artificial intelligence. Energy and Buildings, 2023, 278, 112629.	3.1	6
1750	Employing deep learning for sex estimation of adult individuals using 2D images of the humerus. Neural Computing and Applications, 2023, 35, 5987-5998.	3.2	2
1751	Identity of Al. Discover Artificial Intelligence, 2022, 2, .	2.1	1
1752	Explainable machine learning in cybersecurity: A survey. International Journal of Intelligent Systems, 2022, 37, 12305-12334.	3.3	7
1753	Artificial Intelligence as an Aid in CBCT Airway Analysis: A Systematic Review. Life, 2022, 12, 1894.	1.1	9
1754	A mixed-integer programming model for identifying intuitive ambulance dispatching policies. Journal of the Operational Research Society, 2023, 74, 2300-2311.	2.1	2
1755	Explainable Artificial Intelligence in Health Care: How XAI Improves User Trust in High-Risk Decisions. Studies in Computational Intelligence, 2023, , 89-99.	0.7	0
1756	Explainable Artificial Intelligence (XAI): Understanding and Future Perspectives. Studies in Computational Intelligence, 2023, , 19-33.	0.7	2
1757	Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions. International Journal of Molecular Sciences, 2022, 23, 13838.	1.8	5
1758	Explainable Artificial Intelligence (XAI): Conception, Visualization and Assessment Approaches Towards Amenable XAI. Studies in Computational Intelligence, 2023, , 35-51.	0.7	0
1759	A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?. European Journal of Radiology, 2022, 157, 110592.	1.2	18
1760	An automatic visible explainer of geometric knowledge for aeroshape design optimization based on SHAP. Aerospace Science and Technology, 2022, 131, 107993.	2.5	6
1761	From coexistence to co-creation: Blurring boundaries in the age of Al. Information and Organization, 2022, 32, 100432.	3.1	5
1762	Establishing Transparency in Artificial Intelligence Systems. , 2022, , .		0
1764	Pattern recognition describing spatio-temporal drivers of catchment classification for water quality. Science of the Total Environment, 2023, 861, 160240.	3.9	4
1765	The Use and Ethics of Digital Twins in Medicine. Journal of Law, Medicine and Ethics, 2022, 50, 583-596.	0.4	11
1766	Modulation spectral features for speech emotion recognition using deep neural networks. Speech Communication, 2023, 146, 53-69.	1.6	13

#	Article	IF	CITATIONS
1767	Why did AI get this one wrong? — Tree-based explanations of machine learning model predictions. Artificial Intelligence in Medicine, 2023, 135, 102471.	3.8	10
1768	A Proof ofÂConcept Implementation ofÂExplainable Artificial Intelligence (XAI) inÂDigital Forensics. Lecture Notes in Computer Science, 2022, , 66-85.	1.0	0
1769	Machine Learning Techniques. Hot Topics in Acute Care Surgery and Trauma, 2022, , 147-164.	0.1	0
1770	Towards Explainable AutoML Using Error Decomposition. Lecture Notes in Computer Science, 2022, , 177-190.	1.0	0
1771	Interpretable by Design: Learning Predictors by Composing Interpretable Queries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1-14.	9.7	2
1772	Good Intentions, Bad Inventions: How Employees Judge Pervasive Technologies in the Workplace. IEEE Pervasive Computing, 2023, 22, 69-76.	1.1	2
1773	User-Centric Explainability in Healthcare: A Knowledge-Level Perspective of Informed Machine Learning. IEEE Transactions on Artificial Intelligence, 2023, 4, 840-857.	3.4	2
1774	OG-SGC: Ontology-Guided Scene Graph Generation—A Case Study in Transfer Learning for Telepresence Robotics. IEEE Access, 2022, 10, 132564-132583.	2.6	6
1775	Explanation-by-Example Based onÂltem Response Theory. Lecture Notes in Computer Science, 2022, , 283-297.	1.0	1
1776	OAK4XAI: Model Towards Out-of-Box eXplainable Artificial Intelligence forÂDigital Agriculture. Lecture Notes in Computer Science, 2022, , 238-251.	1.0	1
1777	Evaluation Metrics inÂExplainable Artificial Intelligence (XAI). Communications in Computer and Information Science, 2022, , 401-413.	0.4	2
1778	Explainable artificial intelligence for photovoltaic fault detection: A comparison of instruments. Solar Energy, 2023, 249, 139-151.	2.9	10
1779	Fine-grained TLS services classification with reject option. Computer Networks, 2023, 220, 109467.	3.2	15
1780	FAT-CAT—Explainability and augmentation for an Al system: A case study on Al recruitment-system adoption. International Journal of Human Computer Studies, 2023, 171, 102976.	3.7	6
1781	Towards a more efficient computation of individual attribute and policy contribution for post-hoc explanation of cooperative multi-agent systems using Myerson values. Knowledge-Based Systems, 2023, 260, 110189.	4.0	4
1782	Optimizing an irrigation treatment using an evolutionary algorithm and a knowledge discovery framework based on Deep models. Applied Soft Computing Journal, 2023, 133, 109940.	4.1	2
1783	Deep learning-based prediction and interpretability of physical phenomena for metaporous materials. Materials Today Physics, 2023, 30, 100946.	2.9	0
1784	Military Robotics. , 2023, , 1-16.		0

#	Article	IF	CITATIONS
1785	How machine learning can accelerate electrocatalysis discovery and optimization. Materials Horizons, 2023, 10, 393-406.	6.4	24
1786	Autonomous vehicles in 5G and beyond: A survey. Vehicular Communications, 2023, 39, 100551.	2.7	18
1787	Interpretable knowledge-guided framework for modeling minimum miscible pressure of CO2-oil system in CO2-EOR projects. Engineering Applications of Artificial Intelligence, 2023, 118, 105687.	4.3	8
1788	Smart data processing for energy harvesting systems using artificial intelligence. Nano Energy, 2023, 106, 108084.	8.2	23
1789	Review of interpretable machine learning for process industries. Chemical Engineering Research and Design, 2023, 170, 647-659.	2.7	16
1790	Segmentation ability map: Interpret deep features for medical image segmentation. Medical Image Analysis, 2023, 84, 102726.	7.0	5
1791	Karstified zone interpretation using deep learning algorithms: Convolutional neural networks applications and model interpretability with explainable AI. Computers and Geosciences, 2023, 171, 105281.	2.0	4
1792	Prediction of minimum miscibility pressure (MMP) of the crude oil-CO2 systems within a unified and consistent machine learning framework. Fuel, 2023, 337, 127194.	3.4	6
1793	Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data. Information Fusion, 2023, 92, 363-388.	11.7	19
1794	Prolog-based agnostic explanation module for structured pattern classification. Information Sciences, 2023, 622, 1196-1227.	4.0	1
1795	Beyond explaining: Opportunities and challenges of XAI-based model improvement. Information Fusion, 2023, 92, 154-176.	11.7	22
1796	EFFECT: Explainable framework for meta-learning in automatic classification algorithm selection. Information Sciences, 2023, 622, 211-234.	4.0	5
1797	Feature-Weighted Counterfactual-Based Explanation for Bankruptcy Prediction. Expert Systems With Applications, 2023, 216, 119390.	4.4	2
1798	Towards a cognitive assistant supporting human operators in the Artificial Intelligence of Things. Internet of Things (Netherlands), 2023, 21, 100673.	4.9	7
1799	Airport terminal passenger forecast under the impact of COVID-19 outbreaks: A case study from China. Journal of Building Engineering, 2023, 65, 105740.	1.6	2
1800	A Framework to Enhance User Experience of Older Adults With Speech-Based Intelligent Personal Assistants. IEEE Access, 2023, 11, 16683-16699.	2.6	4
1801	A Design of Fuzzy Rule-Based Models with Data Privacy. IEEE Transactions on Fuzzy Systems, 2022, , 1-6.	6.5	0
1802	Safe and efficient maneuvering of a Maritime Autonomous Surface Ship (MASS) during encounters at sea: A novel approach. Maritime Transport Research, 2022, 3, 100077.	1.5	3

#	Article	IF	CITATIONS
1803	Explainable Artificial Intelligence by Genetic Programming: A Survey. IEEE Transactions on Evolutionary Computation, 2023, 27, 621-641.	7.5	14
1804	Explainability inÂMechanism Design: Recent Advances andÂtheÂRoad Ahead. Lecture Notes in Computer Science, 2022, , 364-382.	1.0	1
1805	Explainability and Graph Learning From Social Interactions. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 946-959.	1.6	4
1806	Quantifying Explainability of Saliency Methods in Deep Neural Networks With a Synthetic Dataset. IEEE Transactions on Artificial Intelligence, 2023, 4, 858-870.	3.4	5
1807	Transferring Al Explainability to User-Centered Explanations of Complex COVID-19 Information. Lecture Notes in Computer Science, 2022, , 441-460.	1.0	0
1808	A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS. , 2021, 17, 40-55.		2
1809	Subjectivity of Explainable Artificial Intelligence. Russian Journal of Philosophical Sciences, 2022, 65, 72-90.	0.3	1
1810	An Explainable Al Model for Hate Speech Detection on Indonesian Twitter. CommIT Journal, 2022, 16, 175-182.	0.2	1
1811	Artificial Intelligence in Emergency Medicine: Viewpoint of Current Applications and Foreseeable Opportunities and Challenges. Journal of Medical Internet Research, 0, 25, e40031.	2.1	9
1812	The Role of Human Knowledge in Explainable AI. Data, 2022, 7, 93.	1.2	9
1813	Towards Interpretable Deep Reinforcement Learning Models via Inverse Reinforcement Learning. , 2022, , .		1
1814	A New XAI-based Evaluation of Generative Adversarial Networks for IMU Data Augmentation. , 2022, , .		1
1815	Explainable-AI in Automated Medical Report Generation Using Chest X-ray Images. Applied Sciences (Switzerland), 2022, 12, 11750.	1.3	4
1816	A type-2 neuro-fuzzy system with a novel learning method for Parkinson's disease diagnosis. Applied Intelligence, 2023, 53, 15656-15682.	3.3	3
1817	A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients. Scientific Reports, 2022, 12, .	1.6	8
1818	Self-explanatory error checking capability for classifier-based Decision Support Systems. , 2022, , .		0
1819	A data-driven artificial neural network model for the prediction of ground motion from induced seismicity: The case of The Geysers geothermal field. Frontiers in Earth Science, 0, 10, .	0.8	2
1820	Digital Twin: Current Research Trends and Future Directions. Arabian Journal for Science and Engineering, 2023, 48, 1075-1095.	1.7	11

#	Article	IF	CITATIONS
1821	Automatic Diagnosis of Diabetic Retinopathy Stage Focusing Exclusively on Retinal Hemorrhage. Medicina (Lithuania), 2022, 58, 1681.	0.8	2
1822	XAINES: Explaining AI with Narratives. KI - Kunstliche Intelligenz, 2022, 36, 287-296.	2.2	3
1823	Urban Life and Artificial Intelligence, Machine Learning, Deep Learning, and Ambient Learning in Smart Cities. Advances in Civil and Industrial Engineering Book Series, 2022, , 133-155.	0.2	0
1824	Applying XAI to an AI-based system for candidate management to mitigate bias and discrimination in hiring. Electronic Markets, 2022, 32, 2207-2233.	4.4	9
1825	Deep learning models for analysis of <scp>nonâ€destructive</scp> evaluation data to evaluate reinforced concrete bridge decks: A survey. Engineering Reports, 0, , .	0.9	0
1826	Interfaces, Interactions, and Industry 4.0: A Framework for the User-Centered Design of Industrial User Interfaces in the Internet of Production. , 2023, , 361-388.		2
1827	Progressive Interpretation Synthesis: Interpreting Task Solving by Quantifying Previously Used and Unused Information. Neural Computation, 2022, 35, 38-57.	1.3	1
1828	Explainable Regression Via Prototypes. ACM Transactions on Evolutionary Learning, 2022, 2, 1-26.	2.7	2
1829	Rule-based visualization of faulty process conditions in the die-casting manufacturing. Journal of Intelligent Manufacturing, 2024, 35, 521-537.	4.4	1
1830	The Impact of Artificial Intelligence on Portuguese Agriculture. EAI/Springer Innovations in Communication and Computing, 2023, , 95-112.	0.9	0
1831	Feedback-Assisted Automatic Target and Clutter Discrimination Using a Bayesian Convolutional Neural Network for Improved Explainability in SAR Applications. Remote Sensing, 2022, 14, 6096.	1.8	3
1832	Artificial Intelligence Implementation in Healthcare: A Theory-Based Scoping Review of Barriers and Facilitators. International Journal of Environmental Research and Public Health, 2022, 19, 16359.	1.2	18
1833	Designing a feature selection method based on explainable artificial intelligence. Electronic Markets, 2022, 32, 2159-2184.	4.4	17
1834	Analytical Workflows to Unlock Predictive Power in Biotherapeutic Developability. Pharmaceutical Research, 0, , .	1.7	0
1835	Detection and Localisation of Abnormal Parathyroid Glands: An Explainable Deep Learning Approach. Algorithms, 2022, 15, 455.	1.2	5
1836	Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics, Proteomics and Bioinformatics, 2022, 20, 850-866.	3.0	25
1837	Revealing interactions between HVDC cross-area flows and frequency stability with explainable AI. Energy Informatics, 2022, 5, .	1.4	2
1838	Artificial Intelligence and Advanced Materials. Advanced Materials, 2023, 35, .	11.1	10

#	Article	IF	CITATIONS
1839	Artificial intelligence by any other name: a brief history of the conceptualization of "trustworthy artificial intelligenceâ€. Discover Artificial Intelligence, 2022, 2, .	2.1	2
1840	Application of Deep Learning Algorithm for Defect Detection and Cause Analysis of Automotive Parts in Injection Process. Journal of the Korean Society of Manufacturing Technology Engineers, 2022, 31, 452-459.	0.1	0
1841	Targeting resources efficiently and justifiably by combining causal machine learning and theory. Frontiers in Artificial Intelligence, 0, 5, .	2.0	0
1842	XAI Framework for Cardiovascular Disease Prediction Using Classification Techniques. Electronics (Switzerland), 2022, 11, 4086.	1.8	19
1843	Attri-VAE: Attribute-based interpretable representations of medical images with variational autoencoders. Computerized Medical Imaging and Graphics, 2022, , 102158.	3.5	2
1844	A nascent design theory for explainable intelligent systems. Electronic Markets, 2022, 32, 2185-2205.	4.4	3
1845	An Explainable Deep Learning Framework for Detecting and Localising Smoke and Fire Incidents: Evaluation of Grad-CAM++ and LIME. Machine Learning and Knowledge Extraction, 2022, 4, 1124-1135.	3.2	4
1846	Data-driven technology of fault diagnosis in railway point machines: review and challenges. Transportation Safety and Environment, 2022, 4, .	1.1	15
1848	GASTRONOMY AND DIGITALIZATION. Nevşehir Hacı Bektaş Veli Üniversitesi SBE Dergisi, 2022, 12, 2143-2	1591	2
1849	Efficient WSN Node Placement by Coupling KNN Machine Learning for Signal Estimations and I-HBIA Metaheuristic Algorithm for Node Position Optimization. Sensors, 2022, 22, 9927.	2.1	5
1850	Explainable Artificial Intelligence (XAI) in Insurance. Risks, 2022, 10, 230.	1.3	10
1851	Eleven quick tips for data cleaning and feature engineering. PLoS Computational Biology, 2022, 18, e1010718.	1.5	13
1852	XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification. Sensors, 2022, 22, 9875.	2.1	1
1853	Instructional design with ADDIE and rapid prototyping for blended learning: validation and its acceptance in the context of TVET Bangladesh. Education and Information Technologies, 2023, 28, 7601-7630.	3.5	8
1854	User Involvement in Training Smart Home Agents. , 2022, , .		1
1855	Learning Explainable Disentangled Representations of E-Commerce Data by Aligning Their Visual and Textual Attributes. Computers, 2022, 11, 182.	2.1	2
1856	HER2 classification in breast cancer cells: A new explainable machine learning application for immunohistochemistry. Oncology Letters, 2022, 25, .	0.8	3
1857	Explainable AI: A review of applications to neuroimaging data. Frontiers in Neuroscience, 0, 16, .	1.4	9

		CITATION REPORT		
#	Article		IF	CITATIONS
1858	Autonomous learning for fuzzy systems: a review. Artificial Intelligence Review, 2023,	56, 7549-7595.	9.7	6
1859	Global reconstruction of language models with linguistic rules – Explainable AI for or reviews. Electronic Markets, 2022, 32, 2123-2138.	lline consumer	4.4	3
1860	Improving Workflow Integration with xPath: Design and Evaluation of a Human-Al Diag Pathology. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-37.	gnosis System in	4.6	3
1861	On fine-grained visual explanation in convolutional neural networks. Digital Communic Networks, 2022, , .	ations and	2.7	1
1862	Expert-Level Immunofixation Electrophoresis Image Recognition based on Explainable a Generalizable Deep Learning. Clinical Chemistry, 2023, 69, 130-139.	and	1.5	5
1863	Effective Prediction and Important Counseling Experience for Perceived Helpfulness of Question and Answering-Based Online Counseling: An Explainable Machine Learning N in Public Health, 0, 10, .	Social Iodel. Frontiers	1.3	0
1864	Relevance-based channel selection in motor imagery brain–computer interface. Journ Engineering, 2023, 20, 016024.	nal of Neural	1.8	6
1865	How far is brain-inspired artificial intelligence away from brain?. Frontiers in Neuroscier	nce, 0, 16, .	1.4	1
1866	Battery aging mode identification across NMC compositions and designs using machir Joule, 2022, 6, 2776-2793.	ne learning.	11.7	15
1867	An explainable deep-learning approach for job cycle time prediction. Decision Analytics 6, 100153.	Journal, 2023,	2.7	6
1868	Assessment of the Use of Patient Vital Sign Data for Preventing Misidentification and I Healthcare (Switzerland), 2022, 10, 2440.	Medical Errors.	1.0	3
1869	Evaluating eXplainable artificial intelligence tools for hard disk drive predictive mainter Artificial Intelligence Review, 2023, 56, 7279-7314.	iance.	9.7	9
1870	YOLO-P: An efficient method for pear fast detection in complex orchard picking enviro Frontiers in Plant Science, 0, 13, .	nment.	1.7	8
1871	Interpreting direct salesâ \in $^{\mathrm{TM}}$ demand forecasts using SHAP values. Production, 0, 33, .		1.3	1
1872	Predicting Weighing Deviations in the Dispatch Workflow Process: A Case Study in a C IEEE Access, 2023, 11, 8119-8135.	Cement Industry.	2.6	3
1873	Towards anÂOntology ofÂExplanations. Communications in Computer and Information 73-85.	n Science, 2022, ,	0.4	0
1874	The use of artificial intelligence applications in medicine and the standard required for provider-patient briefings—an exploratory study. Digital Health, 2022, 8, 205520762		0.9	2
1875	When Internet of Things Meets Metaverse: Convergence of Physical and Cyber Worlds Things Journal, 2023, 10, 4148-4173.	. IEEE Internet of	5.5	40

#	Article	IF	CITATIONS
1876	Public perceptions on the application of artificial intelligence in healthcare: a qualitative meta-synthesis. BMJ Open, 2023, 13, e066322.	0.8	6
1877	Interpretable machine learning for building energy management: A state-of-the-art review. Advances in Applied Energy, 2023, 9, 100123.	6.6	57
1878	Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist. Pediatric Neurology, 2023, 141, 42-51.	1.0	7
1879	Global Explanations for Multivariate time series models. , 2023, , .		1
1880	What type of algorithm is perceived as fairer and more acceptable? A comparative analysis of rule-driven versus data-driven algorithmic decision-making in public affairs. Government Information Quarterly, 2023, 40, 101803.	4.0	6
1881	One month in advance prediction of air temperature from Reanalysis data with eXplainable Artificial Intelligence techniques. Atmospheric Research, 2023, 284, 106608.	1.8	3
1882	Explainable Anomaly Detection Using Vision Transformer Based SVDD. Computers, Materials and Continua, 2023, 74, 6573-6586.	1.5	0
1883	Special Issue on Ensemble Learning and/or Explainability. Algorithms, 2023, 16, 49.	1.2	0
1884	Explainable artificial intelligence for mental health through transparency and interpretability for understandability. Npj Digital Medicine, 2023, 6, .	5.7	30
1885	Leveraging explainability for discussion forum classification: Using confusion detection as an example. Distance Education, 2023, 44, 190-205.	2.5	1
1886	Six Human-Centered Artificial Intelligence Grand Challenges. International Journal of Human-Computer Interaction, 2023, 39, 391-437.	3.3	53
1887	Textual Pre-Trained Models for Gender Identification Across Community Question-Answering Members. IEEE Access, 2023, 11, 3983-3995.	2.6	5
1888	UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images: A Microscopic Look at UNet Components Buffered With Pruning, Explainable Artificial Intelligence, and Bias. IEEE Access, 2023, 11, 595-645.	2.6	15
1889	An Interpretable Image Deconvolution Framework based on Richardson-Lucy Model. Optics Letters, 0, ,	1.7	0
1890	Estimation of Sugar Content in Wine Grapes via In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Sensors, 2023, 23, 1065.	2.1	14
1891	Shrinkage estimation with reinforcement learning of large variance matrices for portfolio selection. Intelligent Systems With Applications, 2023, 17, 200181.	1.9	4
1892	Explainable Artificial Intelligence (XAI) for Intrusion Detection and Mitigation in Intelligent Connected Vehicles: A Review. Applied Sciences (Switzerland), 2023, 13, 1252.	1.3	28
1893	The Internet of Production as the Foundation of Data Utilization in Production. , 2023, , 247-264.		0

#	Article	IF	CITATIONS
1894	A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts. Data Mining and Knowledge Discovery, 0, , .	2.4	34
1895	Evolutionary Learning of Interpretable Decision Trees. IEEE Access, 2023, 11, 6169-6184.	2.6	12
1896	XAIR: A Systematic Metareview of Explainable AI (XAI) Aligned to the Software Development Process. Machine Learning and Knowledge Extraction, 2023, 5, 78-108.	3.2	27
1897	Early design stage evaluation of architectural factors in fire emergency evacuation of the buildings using Pix2Pix and explainable XGBoost model. Journal of Building Performance Simulation, 0, , 1-19.	1.0	0
1898	Characterization of Synthetic Health Data Using Rule-Based Artificial Intelligence Models. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-9.	3.9	3
1899	Survey of Explainable AI Techniques in Healthcare. Sensors, 2023, 23, 634.	2.1	75
1900	Diagnosis of linear programming supply chain optimization models: Detecting infeasibilities and minimizing changes for new parameter values. Computers and Chemical Engineering, 2023, 171, 108139.	2.0	1
1901	The future of standardised assessment: Validity and trust in algorithms for assessment and scoring. European Journal of Education, 0, , .	1.7	3
1902	Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities. Future Generation Computer Systems, 2023, 143, 191-214.	4.9	6
1903	Responsible AI in Africa—Challenges and Opportunities. Social and Cultural Studies of Robots and AI, 2023, , 35-64.	0.1	1
1904	Who Is in Control? Autonomy, Responsibility, Explainability. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 95-116.	0.2	0
1905	The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor–Patient Communication in Cancer Diagnosis?. Cancers, 2023, 15, 470.	1.7	19
1906	Emerging Trends in Machine Learning: A Polymer Perspective. ACS Polymers Au, 2023, 3, 239-258.	1.7	25
1907	GEAR: A General Inference Engine for Automated MultiStrategy Reasoning. Electronics (Switzerland), 2023, 12, 256.	1.8	4
1908	Leveraging explainability for understanding object descriptions in ambiguous 3D environments. Frontiers in Robotics and AI, 0, 9, .	2.0	1
1909	Explainable Methods for Image-Based Deep Learning: A Review. Archives of Computational Methods in Engineering, 2023, 30, 2651-2666.	6.0	7
1910	Computer-aided breast cancer detection and classification in mammography: A comprehensive review. Computers in Biology and Medicine, 2023, 153, 106554.	3.9	21
1911	<pre><mml:math altimg="si3.svg" display="inline" id="d1e110" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>i</mml:mi><mml:mi>S</mml:mi><mml:mi>eee<!--</td--><td>nl:∰2> <mr< td=""><td>ml:onsup><mr< td=""></mr<></td></mr<></td></mml:mi></mml:mrow></mml:math></pre>	nl:∰2> <mr< td=""><td>ml:onsup><mr< td=""></mr<></td></mr<>	ml: o nsup> <mr< td=""></mr<>

#	Article	IF	CITATIONS
1912	Responsible natural language processing: A principlist framework for social benefits. Technological Forecasting and Social Change, 2023, 188, 122306.	6.2	3
1913	eXplainable Ensemble Strategy using distinct and restrict learning biases: A case study on the Brazilian Forest. Applied Soft Computing Journal, 2023, 134, 109976.	4.1	0
1914	Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems, 2023, 263, 110273.	4.0	69
1915	Towards better interpretable and generalizable AD detection using collective artificial intelligence. Computerized Medical Imaging and Graphics, 2023, 104, 102171.	3.5	1
1916	Responsible and human centric AI-based insurance advisors. Information Processing and Management, 2023, 60, 103273.	5.4	11
1917	Combining white box models, black box machines and human interventions for interpretable decision strategies. Judgment and Decision Making, 2022, 17, 598-627.	0.8	2
1918	Outcome-Preserving Input Reduction for Scientific Data Analysis Workflows. , 2022, , .		3
1919	Explainable AI Prediction of Cooking Oil Prices Over Time. , 2022, , .		0
1920	XAIoT - The Future of Wearable Internet of Things. , 2022, , .		4
1921	Tangible Explainable AI - an Initial Conceptual Framework. , 2022, , .		3
1922	ExplAInable Pixels: Investigating One-Pixel Attacks on Deep Learning Models with Explainable Visualizations. , 2022, , .		1
1923	Knowledge-Driven Transfer Learning for Tree Species Recognition. , 2022, , .		0
1924	Explainabilty Comparison between Random Forests and Neural Networks—Case Study of Amino Acid Volume Prediction. Information (Switzerland), 2023, 14, 21.	1.7	2
1925	A Reliability-constrained Association Rule Mining Method for Explaining Machine Learning Predictions on Continuity of Asthma Care. , 2022, , .		0
1926	A Multi-View Learning-Based Rule Extraction Algorithm For Accurate Hepatotoxicity Prediction. , 2022,		1
1927	Mitigating the Risk of Autonomous Weapon Misuse by Insurgent Groups. Laws, 2023, 12, 5.	0.5	1
1928	Interpretable Machine Learning Techniques in ECG-Based Heart Disease Classification: A Systematic Review. Diagnostics, 2023, 13, 111.	1.3	17

#	Article	IF	CITATIONS
1930	From Emotion AI to Cognitive AI. , 0, , 65-72.		23
1932	Neural Network: Predator, Victim, and Information Security Tool. Optical Memory and Neural Networks (Information Optics), 2022, 31, 323-332.	0.4	2
1933	Open the Black Box of Recurrent Neural Network by Decoding the Internal Dynamics. , 2022, , .		0
1934	Affective Human-Robot Interaction withÂMultimodal Explanations. Lecture Notes in Computer Science, 2022, , 241-252.	1.0	0
1935	Investigation and Imitation of Human Captains' Maneuver Using Inverse Reinforcement Learning. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2022, 36, 137-148.	0.2	0
1936	Towards XAI in the SOC – a user centric study of explainable alerts with SHAP and LIME. , 2022, , .		1
1937	Exploration of Emotions Developed in the Interaction with Explainable AI. , 2022, , .		1
1938	Explainable Artificial Intelligence Techniques for the Analysis of Reinforcement Learning in Non-Linear Flight Regimes. , 2023, , .		1
1939	XAI Design Goals and Evaluation Metrics for Space Exploration: A Survey of Human Spaceflight Domain Experts. , 2023, , .		0
1940	A Graph-Based Methodology for the Sensorless Estimation of Road Traffic Profiles. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 8701-8715.	4.7	1
1941	Towards Explainable Occupational Fraud Detection. Communications in Computer and Information Science, 2023, , 79-96.	0.4	3
1942	Explainable Rules and Heuristics in Al Algorithm Recommendation Approaches—A Systematic Literature Review and Mapping Study. CMES - Computer Modeling in Engineering and Sciences, 2023, 136, 1023-1051.	0.8	0
1943	A concept for emotion recognition systems for children with profound intellectual and multiple disabilities based on artificial intelligence using physiological and motion signals. Disability and Rehabilitation: Assistive Technology, 0, , 1-8.	1.3	1
1944	Explainable AI and Ensemble Learning for Water Quality Prediction. Studies in Autonomic, Data-driven and Industrial Computing, 2023, , 235-250.	0.4	1
1945	Autonomous Vehicles Security: Challenges and Solutions Using Blockchain and Artificial Intelligence. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 3614-3637.	4.7	26
1946	Explaining Technology We Do Not Understand. IEEE Transactions on Technology and Society, 2023, 4, 34-45.	2.4	7
1947	Integration of shapley additive explanations with random forest model for quantitative precipitation estimation of mesoscale convective systems. Frontiers in Environmental Science, 0, 10, .	1.5	4
1948	A stochastic approximation approach to fixed instance selection. Information Sciences, 2023, 628, 558-579.	4.0	1

#	Article	IF	CITATIONS
1949	Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning. Molecular Medicine, 2023, 29, .	1.9	3
1950	Self reward design with fine-grained interpretability. Scientific Reports, 2023, 13, .	1.6	0
1951	Feature Importance in Explainable AI for Expounding Black Box Models. Lecture Notes in Networks and Systems, 2023, , 815-824.	0.5	0
1952	Explainable, Physics-Aware, Trustworthy Artificial Intelligence: A paradigm shift for synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 2023, 11, 8-25.	4.9	14
1953	Visually explaining 3D-CNN predictions for video classification with an adaptive occlusion sensitivity analysis. , 2023, , .		3
1954	Creating meaningful work in the age of AI: explainable AI, explainability, and why it matters to organizational designers. AI and Society, 0, , .	3.1	4
1955	Identifying Student Profiles Within Online Judge Systems Using Explainable Artificial Intelligence. IEEE Transactions on Learning Technologies, 2023, 16, 955-969.	2.2	1
1956	A Survey on Blockchain-Based Trust Management for Internet of Things. IEEE Internet of Things Journal, 2023, 10, 5898-5922.	5.5	26
1957	An overview of explainable and interpretable AI. , 2023, , 55-123.		5
1958	Adoption and utilization of medical decision support systems in the diagnosis of febrile Diseases: A systematic literature review. Expert Systems With Applications, 2023, 220, 119638.	4.4	4
1959	Fuzzy Rule-Based Explainer Systems for Deep Neural Networks: From Local Explainability to Global Understanding. IEEE Transactions on Fuzzy Systems, 2023, , 1-12.	6.5	1
1960	Internet of medical things for enhanced smart healthcare systems. , 2023, , 1-28.		1
1961	Deep learning interpretability: measuring the relevance of clinical concepts in convolutional neural networks features. , 2023, , 157-192.		1
1962	Automatic shooting detection in archery from acceleration data for score prediction. Sports Engineering, 2023, 26, .	0.5	1
1963	Omics Data Preprocessing for Machine Learning: A Case Study in Childhood Obesity. Genes, 2023, 14, 248.	1.0	5
1964	Deep Learning Architecture for UAV Traffic-Density Prediction. Drones, 2023, 7, 78.	2.7	4
1965	XDLL: Explained Deep Learning LiDAR-Based Localization and Mapping Method for Self-Driving Vehicles. Electronics (Switzerland), 2023, 12, 567.	1.8	6
1966	Limits ofÂXAI Application-Grounded Evaluation: An E-Sport Prediction Example. Communications in Computer and Information Science, 2023, , 452-466.	0.4	1

#	Article	IF	CITATIONS
1967	Explainable uncertainty quantifications for deep learning-based molecular property prediction. Journal of Cheminformatics, 2023, 15, .	2.8	10
1968	General Graph Neural Network-Based Model To Accurately Predict Cocrystal Density and Insight from Data Quality and Feature Representation. Journal of Chemical Information and Modeling, 2023, 63, 1143-1156.	2.5	4
1969	Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review. Journal of Healthcare Engineering, 2023, 2023, 1-13.	1.1	10
1970	Machine learning for all! Benchmarking automated, explainable, and coding-free platforms on civil and environmental engineering problems. , 2023, 2, 100028.		5
1971	Integrated Gradients is a Nonlinear Generalization of the Industry Standard Approach to Variable Attribution for Credit Risk Models. , 2022, , .		2
1972	Explainability of deep learning models in medical image classification. , 2022, , .		0
1973	Responsible Artificial Intelligence for Preterm Birth Prediction in Vulnerable Populations. , 2022, , .		1
1974	A Layer-Based Sparsification Method For Distributed DNN Training. , 2022, , .		0
1975	GASTeN: Generative Adversarial Stress Test Networks. Lecture Notes in Computer Science, 2023, , 91-102.	1.0	0
1976	Mythical Ethical Principles forÂAI andÂHow toÂAttain Them. Lecture Notes in Computer Science, 2023, , 275-303.	1.0	3
1977	Substitute Plastic Film withÂKraft Paper inÂAutomatic Pallet Wrapping: An Al Pipeline. Lecture Notes in Computer Science, 2023, , 282-296.	1.0	0
1978	Saliency-Guided Learned Image Compression forÂObject Detection. Communications in Computer and Information Science, 2023, , 324-335.	0.4	0
1979	Interactive Collaborative Learning withÂExplainable Artificial Intelligence. Lecture Notes in Networks and Systems, 2023, , 13-24.	0.5	0
1980	Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature. Management Review Quarterly, 0, , .	5.7	14
1981	Consumer bias against evaluations received by artificial intelligence: the mediation effect of lack of transparency anxiety. Journal of Research in Interactive Marketing, 2023, 17, 831-847.	7.2	3
1982	Toward characterizing cardiovascular fitness using machine learning based on unobtrusive data. PLoS ONE, 2023, 18, e0282398.	1.1	2
1983	Designing a Glyph-Based Polar Chart to Interpret the Results of Machine Learning Models. Ergonomics in Design, 0, , 106480462311660.	0.4	0
1984	On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks. Archives of Computational Methods in Engineering, 2023, 30, 3173-3233.	6.0	16

#		IF	CITATIONS
1985	An Explainable Artificial Intelligence Approach for Multi-Criteria ABC Item Classification. Journal of Theoretical and Applied Electronic Commerce Research, 2023, 18, 848-866.	3.1	0
1986	An ensemble face recognition mechanism based on three-way decisions. Journal of King Saud University - Computer and Information Sciences, 2023, 35, 196-208.	2.7	5
1987	Denoising by Decorated Noise: An Interpretability-Based Framework for Adversarial Example Detection. Wireless Communications and Mobile Computing, 2023, 2023, 1-11.	0.8	0
1988	Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Computers in Biology and Medicine, 2023, 156, 106668.	3.9	43
1989	Machine learning-based clinical decision support systems for pregnancy care: A systematic review. International Journal of Medical Informatics, 2023, 173, 105040.	1.6	5
1990	Explainable AI tools for legal reasoning about cases: A study on the European Court of Human Rights. Artificial Intelligence, 2023, 317, 103861.	3.9	6
1991	A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle. Engineering Applications of Artificial Intelligence, 2023, 121, 106016.	4.3	3
1992	Interpretation of convolutional neural network-based building HVAC fault diagnosis model using improved layer-wise relevance propagation. Energy and Buildings, 2023, 286, 112949.	3.1	19
1993	Explainable AI in medical imaging: An overview for clinical practitioners – Saliency-based XAI approaches. European Journal of Radiology, 2023, 162, 110787.	1.2	10
1994	A daily 5-km all-sky sea-surface longwave radiation product based on statistically modified deep neural network and spatiotemporal analysis for 1981–2018. Remote Sensing of Environment, 2023, 290, 113550.	4.6	1
1995	A semisupervised autoencoder-based method for anomaly detection in cutting tools. Journal of Manufacturing Processes, 2023, 93, 315-327.	2.8	4
1996	Creation of sustainable growth with explainable artificial intelligence: An empirical insight from consumer packaged goods retailers. Journal of Cleaner Production, 2023, 399, 136605.	4.6	9
1997	The coming of age of interpretable and explainable machine learning models. Neurocomputing, 2023, 535, 25-39.	3.5	21
1998	Automated feature selection procedure for particle jet classification. Nuclear Physics B, 2023, 990, 116182.	0.9	0
1999	Explainable AI in medical imaging: An overview for clinical practitioners – Beyond saliency-based XAI approaches. European Journal of Radiology, 2023, 162, 110786.	1.2	8
2000	Estimating explainable Alzheimer's disease likelihood map via clinically-guided prototype learning. NeuroImage, 2023, 273, 120073.	2.1	6
2001	Multi-objective robust optimization for enhanced safety in large-diameter tunnel construction with interactive and explainable AI. Reliability Engineering and System Safety, 2023, 234, 109172.	5.1	15
2002	Towards the spatial analysis of motorway safety in the connected environment by using explainable deep learning. Knowledge-Based Systems, 2023, 269, 110523.	4.0	4

#	Article	IF	CITATIONS
2003	Enabling causality learning in smart factories with hierarchical digital twins. Computers in Industry, 2023, 148, 103892.	5.7	2
2004	A new approach based on association rules to add explainability to time series forecasting models. Information Fusion, 2023, 94, 169-180.	11.7	15
2005	Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Seminars in Cancer Biology, 2023, 91, 50-69.	4.3	10
2006	The influence of building energy performance prediction accuracy on retrofit rates. Energy Policy, 2023, 177, 113542.	4.2	0
2007	Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Science of the Total Environment, 2023, 879, 163004.	3.9	28
2008	Towards the intelligent antioxidant activity evaluation of green tea products during storage: A joint cyclic voltammetry and machine learning study. Food Control, 2023, 148, 109660.	2.8	7
2009	From micro- to nano- and time-resolved x-ray computed tomography: Bio-based applications, synchrotron capabilities, and data-driven processing. Applied Physics Reviews, 2023, 10, .	5.5	3
2010	A state-of-the-art survey of welding radiographic image analysis: Challenges, technologies and applications. Measurement: Journal of the International Measurement Confederation, 2023, 214, 112821.	2.5	7
2011	Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach : A review of two decades of research. Engineering Applications of Artificial Intelligence, 2023, 123, 106139.	4.3	41
2012	Deep learning for brain age estimation: A systematic review. Information Fusion, 2023, 96, 130-143.	11.7	31
2013	Peripheral blood mononuclear cell derived biomarker detection using eXplainable Artificial Intelligence (XAI) provides better diagnosis of breast cancer. Computational Biology and Chemistry, 2023, 104, 107867.	1.1	4
2014	Deep learning for understanding multilabel imbalanced Chest X-ray datasets. Future Generation Computer Systems, 2023, 144, 291-306.	4.9	3
2015	Explaining software fault predictions to spreadsheet users. Journal of Systems and Software, 2023, 201, 111676.	3.3	0
2016	A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 2023, 96, 156-191.	11.7	84
2017	Towards travel recommendation interpretability: Disentangling tourist decision-making process via knowledge graph. Information Processing and Management, 2023, 60, 103369.	5.4	6
2018	An improved explainable artificial intelligence tool in healthcare for hospital recommendation. Healthcare Analytics, 2023, 3, 100147.	2.6	12
2019	Machine Learning for Decision Support in the ICU. , 2022, , 1514-1529.		0
2020	Enhancing Individual Fairness through Propensity Score Matching. , 2022, , .		1

#	Article	IF	CITATIONS
2021	Follow the Successful Herd: Towards Explanations for Improved Use and Mental Models of Natural Language Systems. , 2023, , .		1
2022	Explainable quantum clustering method to model medical data. Knowledge-Based Systems, 2023, 267, 110413.	4.0	5
2023	Capturing the form of feature interactions in black-box models. Information Processing and Management, 2023, 60, 103373.	5.4	0
2024	Understanding electricity prices beyond the merit order principle using explainable AI. Energy and AI, 2023, 13, 100250.	5.8	9
2025	DAAR: Drift Adaption and Alternatives Ranking approach for interpretable clinical decision support systems. Biomedical Signal Processing and Control, 2023, 84, 104793.	3.5	0
2027	EXAM: Explainable Models for Analyzing Malicious Android Applications. Communications in Computer and Information Science, 2022, , 44-58.	0.4	0
2028	A Comparison of Deep Neural Network Architectures in Aircraft Detection from SAR Imagery. Springer Optimization and Its Applications, 2022, , 91-111.	0.6	0
2029	On the forces of driver distraction: Explainable predictions for the visual demand of in-vehicle touchscreen interactions. Accident Analysis and Prevention, 2023, 183, 106956.	3.0	5
2030	XAIRE: An ensemble-based methodology for determining the relative importance of variables in regression tasks. Application to a hospital emergency department. Artificial Intelligence in Medicine, 2023, 137, 102494.	3.8	2
2031	Feature construction using explanations of individual predictions. Engineering Applications of Artificial Intelligence, 2023, 120, 105823.	4.3	1
2032	How should the results of artificial intelligence be explained to users? - Research on consumer preferences in user-centered explainable artificial intelligence. Technological Forecasting and Social Change, 2023, 188, 122343.	6.2	5
2033	TAME: Attention Mechanism Based Feature Fusion for Generating Explanation Maps of Convolutional Neural Networks. , 2022, , .		1
2034	Explainable AI For Data Farming Output Analysis: A Use Case for Knowledge Generation Through Black-Box Classifiers. , 2022, , .		0
2035	Artificial Intelligence and Robotic Automation Hit by the Pandemic: Reality or Myth. , 2023, , 127-147.		0
2036	Fuzzy Linguistic Summaries for Explaining Online Semi-Supervised Learning. , 2022, , .		1
2037	Standardization on Bias in Artificial Intelligence as Industry Support. , 2022, , .		1
2038	Prioritizing Policies for Furthering Responsible Artificial Intelligence in the United States. , 2022, , .		0
2039	GAPS: Generality and Precision with Shapley Attribution. , 2022, , .		0

ARTICLE IF CITATIONS Towards Implementing Responsible AI., 2022,,. 1 2040 Building a Patient-Centered Virtual Hospital Ecosystem Using Both Access Control and CNN-Based 2041 Models., 2022,,. Explainable AI Applied to the Analysis of the Climatic Behavior of 11 Years of Meteosat Water Vapor 2042 0 Images. , 2022, , A survey, review, and future trends of skin lesion segmentation and classification. Computers in 2043 24 Biology and Medicine, 2023, 155, 106624. Systematic Review of the published Explainable Educational Recommendation Systems., 2022,,. 2044 1 Explaining sentiment analysis results on social media texts through visualization. Multimedia Tools 2045 2.6 and Applications, 2023, 82, 22613-22629. Multi-objective optimization determines when, which and how to fuse deep networks: An application 2046 3.9 4 to predict COVID-19 outcomes. Computers in Biology and Medicine, 2023, 154, 106625. Analyzing breast cancer invasive disease event classification through explainable artificial 2047 1.2 intelligence. Frontiers in Medicine, 0, 10, . Interpretable machine learning for dementia: A systematic review. Alzheimer's and Dementia, 2023, 19, 2048 0.4 17 2135-2149. Emerging information and communication technologies for smart energy systems and renewable 2049 6.6 transition. Advances in Applied Energy, 2023, 9, 100125. Ensemble-based genetic algorithm explainer with automized image segmentation: A case study on 2050 4 3.9 melanoma detection dataset. Computers in Biology and Medicine, 2023, 155, 106613. Interpretable Machine Learning for SME Financial Distress Prediction. Lecture Notes in Networks and 0.5 Systems, 2023, , 454-464. Deep neural network heatmaps capture Alzheimer's disease patterns reported in a large meta-analysis 2052 2.1 8 of neuroimaging studies. NeuroImage, 2023, 269, 119929. Reading bots: The implication of deep learning on guided reading. Frontiers in Psychology, 0, 14, . 2053 1.1 State of the Art of Visual Analytics for eXplainable Deep Learning. Computer Graphics Forum, 2023, 42, 2054 1.8 9 319-355. Algorithmic Fairness in Al. Business and Information Systems Engineering, 2023, 65, 209-222. Finding a fit between CXO's experience and AI usage in CXO decision-making: evidence 2056 fromÄknowledge-intensive professionalÄservice firms. Journal of Service Theory and Practice, 2023, 33, 1.9 7 280-308. Measures for explainable AI: Explanation goodness, user satisfaction, mental models, curiosity, trust, 1.7 and human-Al performance. Frontiers in Computer Science, 0, 5, .

#	Article	IF	CITATIONS
2058	GASEL: Genetic algorithm-supported ensemble learning for fault detection in autonomous underwater vehicles. Ocean Engineering, 2023, 272, 113844.	1.9	2
2059	Integrated Photonic Neural Networks: Opportunities and Challenges. ACS Photonics, 0, , .	3.2	5
2060	A ³ R: Argumentative explanations for recommendations. , 2022, , .		0
2061	Fast Hybrid Oracle-Explainer Approach to Explainability Using Optimized Search of Comprehensible Decision Trees. , 2022, , .		1
2062	Feature relevance XAI in anomaly detection: Reviewing approaches and challenges. Frontiers in Artificial Intelligence, 0, 6, .	2.0	6
2063	Why is the prediction wrong? Towards underfitting case explanation via meta-classification. , 2022, , .		0
2064	Explainable AI for Estimating Pathogenicity of Genetic Variants Using Large-Scale Knowledge Graphs. Cancers, 2023, 15, 1118.	1.7	1
2065	Example-based explainable AI and its application for remote sensing image classification. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103215.	0.9	2
2066	Three Levels of Al Transparency. Computer, 2023, 56, 93-100.	1.2	7
2067	Learning Visual Explanations forÂDCNN-Based Image Classifiers Using anÂAttention Mechanism. Lecture Notes in Computer Science, 2023, , 396-411.	1.0	0
2068	A Bayesian Network Approach to Explainable Reinforcement Learning with Distal Information. Sensors, 2023, 23, 2013.	2.1	1
2069	GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos. Sensors, 2023, 23, 2087.	2.1	3
2070	Improving Credit Scoring: A Rescaled Cluster-Then-Predict Approach. SSRN Electronic Journal, 0, , .	0.4	0
2071	An application of Bayesian inference to examine student retention and attrition in the STEM classroom. Frontiers in Education, 0, 8, .	1.2	1
2072	Machine learning and deep learning—A review for ecologists. Methods in Ecology and Evolution, 2023, 14, 994-1016.	2.2	44
2073	Interpretable Skin Cancer Classification based on Incremental Domain Knowledge Learning. Journal of Healthcare Informatics Research, 2023, 7, 59-83.	5.3	4
2074	Explainable AI as evidence of fair decisions. Frontiers in Psychology, 0, 14, .	1.1	1
2075	Visual Quality Control via eXplainable AI and the Case of Human in the AI Loop. Lecture Notes in Mechanical Engineering, 2023, , 252-260.	0.3	Ο

#	Article	IF	CITATIONS
2076	Explainability of High Energy Physics events classification using SHAP. Journal of Physics: Conference Series, 2023, 2438, 012082.	0.3	1
2077	The public perceptions of algorithmic decision-making systems: Results from a large-scale survey. Telematics and Informatics, 2023, 79, 101954.	3.5	1
2078	Counterfactual Thinking and Causal Mediation: An Application to Female Labour Force Participation in India. Understanding Complex Systems, 2023, , 187-205.	0.3	0
2079	Toward a taxonomy of trust for probabilistic machine learning. Science Advances, 2023, 9, .	4.7	1
2080	Deep learning methods for drug response prediction in cancer: Predominant and emerging trends. Frontiers in Medicine, 0, 10, .	1.2	16
2081	The Road to Trustworthy 6G: A Survey on Trust Anchor Technologies. IEEE Open Journal of the Communications Society, 2023, 4, 581-595.	4.4	4
2082	Toward Reliable Software Analytics: Systematic Integration of Explanations From Different Model-Agnostic Techniques. IEEE Software, 2023, 40, 34-42.	2.1	1
2083	Preliminary analysis of explainable machine learning methods for multiple myeloma chemotherapy treatment recognition. Evolutionary Intelligence, 2024, 17, 513-533.	2.3	1
2084	A review on soft computing approaches for predicting maintainability of software: Stateâ€ofâ€ŧheâ€art, technical challenges, and future directions. Expert Systems, 2023, 40, .	2.9	5
2085	Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis. International Journal of Semantic Computing, 0, , 1-25.	0.4	1
2086	The grammar of interactive explanatory model analysis. Data Mining and Knowledge Discovery, 0, , .	2.4	4
2087	A Survey of Explainable Artificial Intelligence for Smart Cities. Electronics (Switzerland), 2023, 12, 1020.	1.8	42
2088	Towards Automated Analysis of Rhetorical Categories in Students Essay Writings using Bloom's Taxonomy. , 2023, , .		0
2089	Justice, trust, and moral judgements when personnel selection is supported by algorithms. European Journal of Work and Organizational Psychology, 0, , 1-16.	2.2	1
2090	Towards an explainable clinical decision support system for large-for-gestational-age births. PLoS ONE, 2023, 18, e0281821.	1.1	1
2091	Deep Learning Applied to Scientific Discovery: A Hot Interface with Philosophy of Science. Journal for General Philosophy of Science, 0, , .	0.7	0
2092	Learning Patch-Channel Correspondence for Interpretable Face Forgery Detection. IEEE Transactions on Image Processing, 2023, 32, 1668-1680.	6.0	7
2093	What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 2023, 10, .	4.3	283

#	Article	IF	CITATIONS
2094	Explanation ofÂBlack Box AI forÂGDPR Related Privacy Using Isabelle. Lecture Notes in Computer Science, 2023, , 69-84.	1.0	0
2095	On the Importance of Domain Awareness in Classifier Interpretations in Medical Imaging. IEEE Transactions on Medical Imaging, 2023, 42, 2286-2298.	5.4	2
2096	An Empirical Survey on Explainable AI Technologies: Recent Trends, Use-Cases, and Categories from Technical and Application Perspectives. Electronics (Switzerland), 2023, 12, 1092.	1.8	10
2097	Artificial Intelligence and Machine Learning for Job Automation. Journal of Database Management, 2023, 34, 1-12.	1.0	2
2098	Multiparametric MRI. Investigative Radiology, 2023, 58, 548-560.	3.5	2
2099	From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI. ACM Computing Surveys, 2023, 55, 1-42.	16.1	43
2100	Attitudinal Tensions in the Joint Pursuit of Explainable and Trusted AI. Minds and Machines, 2023, 33, 55-82.	2.7	0
2101	Knowledge Discovery from Agricultural Data. , 2023, , 1-8.		0
2102	Comprehensible Machine-Learning-Based Models for the Pre-Emptive Diagnosis of Multiple Sclerosis Using Clinical Data: A Retrospective Study in the Eastern Province of Saudi Arabia. International Journal of Environmental Research and Public Health, 2023, 20, 4261.	1.2	5
2103	Integrating a Blockchain-Based Governance Framework for Responsible AI. Future Internet, 2023, 15, 97.	2.4	1
2104	The Design, Education and Evolution of a Robotic Baby. IEEE Transactions on Robotics, 2023, , 1-20.	7.3	0
2105	Interpretable and explainable machine learning: A methodsâ€centric overview with concrete examples. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2023, 13, .	4.6	11
2106	Repeated Potentiality Augmentation forÂMulti-layered Neural Networks. Lecture Notes in Networks and Systems, 2023, , 117-134.	0.5	0
2107	Need for UAI–Anatomy of the Paradigm of Usable Artificial Intelligence for Domain-Specific AI Applicability. Multimodal Technologies and Interaction, 2023, 7, 27.	1.7	3
2108	Ergo, SMIRK is safe: a safety case for a machine learning component in a pedestrian automatic emergency brake system. Software Quality Journal, 0, , .	1.4	4
2109	Machine Learning Security in Industry: A Quantitative Survey. IEEE Transactions on Information Forensics and Security, 2023, 18, 1749-1762.	4.5	5
2110	Exploration of the intelligent-auxiliary design of architectural space using artificial intelligence model. PLoS ONE, 2023, 18, e0282158.	1.1	2
2111	How can we manage biases in artificial intelligence systems – A systematic literature review. International Journal of Information Management Data Insights, 2023, 3, 100165.	6.5	19

# 2112	ARTICLE Automated Quantification of Pneumonia Infected Volume in Lung CT Images: A Comparison with Subjective Assessment of Radiologists. Bioengineering, 2023, 10, 321.	IF 1.6	Citations
2113	Leverage zones in Responsible AI: towards a systems thinking conceptualization. Humanities and Social Sciences Communications, 2023, 10, .	1.3	5
2115	Deep learning-assisted diagnosis of chronic atrophic gastritis in endoscopy. Frontiers in Oncology, 0, 13, .	1.3	1
2116	Method to Produce More Reasonable Candidate Solutions With Explanations in Intelligent Decision Support Systems. IEEE Access, 2023, 11, 20861-20876.	2.6	0
2117	Adversarial Defense Mechanisms for Supervised Learning. , 2023, , 151-238.		0
2118	Artificial intelligence applied in pulmonary hypertension: a bibliometric analysis. Al and Ethics, 2023, 3, 1063-1093.	4.6	1
2119	Aspects andÂViews onÂResponsible Artificial Intelligence. Lecture Notes in Computer Science, 2023, , 384-398.	1.0	1
2120	Painting the Black Box White: Experimental Findings from Applying XAI to an ECG Reading Setting. Machine Learning and Knowledge Extraction, 2023, 5, 269-286.	3.2	4
2121	Fuzzy Cognitive Maps: Their Role in Explainable Artificial Intelligence. Applied Sciences (Switzerland), 2023, 13, 3412.	1.3	5
2122	Feature Extraction and Classification of Simulated Monostatic Acoustic Echoes from Spherical Targets of Various Materials Using Convolutional Neural Networks. Journal of Marine Science and Engineering, 2023, 11, 571.	1.2	1
2123	Explainable Misinformation Detection Across Multiple Social Media Platforms. IEEE Access, 2023, 11, 23634-23646.	2.6	2
2124	TREAT: Automated Construction andÂMaintenance ofÂProbabilistic Knowledge Bases fromÂLogs (Extended Abstract). Lecture Notes in Computer Science, 2023, , 325-329.	1.0	1
2125	Designing porthole aluminium extrusion dies on the basis of eXplainable Artificial Intelligence. Expert Systems With Applications, 2023, 222, 119808.	4.4	1
2126	Combining Machine Learning and Semantic Web: A Systematic Mapping Study. ACM Computing Surveys, 2023, 55, 1-41.	16.1	8
2127	EFI: A Toolbox forÂFeature Importance Fusion andÂInterpretation inÂPython. Lecture Notes in Computer Science, 2023, , 249-264.	1.0	2
2128	What's next for responsible artificial intelligence: a way forward through responsible innovation. Heliyon, 2023, 9, e14379.	1.4	4
2129	<scp><i>DeepFixCX</i></scp> : Explainable privacyâ€preserving image compression for medical image analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2023, 13, .	4.6	3
2130	Knowledge representation and acquisition for ethical AI: challenges and opportunities. Ethics and Information Technology, 2023, 25, .	2.3	2

#	Article	IF	CITATIONS
2131	The Influence of Disclosing the AI Potential Error to the User on the Efficiency of User–AI Collaboration. Applied Sciences (Switzerland), 2023, 13, 3572.	1.3	0
2132	Investigating Employees' Concerns and Wishes Regarding Digital Stress Management Interventions With Value Sensitive Design: Mixed Methods Study. Journal of Medical Internet Research, 0, 25, e44131.	2.1	3
2133	Extreme Low-Visibility Events Prediction Based on Inductive and Evolutionary Decision Rules: An Explicability-Based Approach. Atmosphere, 2023, 14, 542.	1.0	5
2134	Advanced <scp>MR</scp> Techniques for Preoperative Glioma Characterization: Part 2. Journal of Magnetic Resonance Imaging, 2023, 57, 1676-1695.	1.9	12
2135	Artificial intelligence for secondary prevention of myocardial infarction: A qualitative study of patient and health professional perspectives. International Journal of Medical Informatics, 2023, 173, 105041.	1.6	2
2136	Towards Cognitive Self-Management of IoT-Edge-Cloud Continuum based on User Intents. , 2022, , .		1
2137	Explainability of deep learning models in medical video analysis: a survey. PeerJ Computer Science, 0, 9, e1253.	2.7	3
2138	Analysis of Airglow Image Classification Based on Feature Map Visualization. Applied Sciences (Switzerland), 2023, 13, 3671.	1.3	0
2139	Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau. Journal of Hydrology, 2023, 620, 129401.	2.3	12
2140	Al Ethics Principles in Practice: Perspectives of Designers and Developers. IEEE Transactions on Technology and Society, 2023, 4, 171-187.	2.4	12
2141	Wildfire hazard mapping in the eastern Mediterranean landscape. International Journal of Wildland Fire, 2023, 32, 417-434.	1.0	8
2142	Fair andÂEfficient Alternatives toÂShapley-based Attribution Methods. Lecture Notes in Computer Science, 2023, , 309-324.	1.0	0
2143	Fooling Partial Dependence viaÂData Poisoning. Lecture Notes in Computer Science, 2023, , 121-136.	1.0	1
2144	Knowledge is Power, Understanding is Impact: Utility andÂBeyond Goals, Explanation Quality, andÂFairness inÂPath Reasoning Recommendation. Lecture Notes in Computer Science, 2023, , 3-19.	1.0	3
2146	A methodology to compare XAI explanations on natural language processing. , 2023, , 191-216.		1
2147	Traffic data analysis and route planning. , 2023, , 217-243.		0
2148	A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations. Emergency Radiology, 2023, 30, 267-277.	1.0	9
2149	Affective Design Analysis of Explainable Artificial Intelligence (XAI): A User-Centric Perspective. Informatics, 2023, 10, 32.	2.4	1

#	Article	IF	Citations
π 2150	MoDALAS: addressing assurance for learning-enabled autonomous systems in the face of uncertainty.	2.2	0
2150	Software and Systems Modeling, 0, , .	2.2	0
2151	Conceptualizing the Secure Machine Learning Operations (SecMLOps) Paradigm. , 2022, , .		1
2152	Toward A Two-Sided Fairness Framework in Search and Recommendation. , 2023, , .		3
2153	Let's go to the Alien Zoo: Introducing an experimental framework to study usability of counterfactual explanations for machine learning. Frontiers in Computer Science, 0, 5, .	1.7	1
2154	Building XAI-Based Agents for IoT Systems. Applied Sciences (Switzerland), 2023, 13, 4040.	1.3	1
2155	Artificial intelligence technology in MR neuroimaging. Еradiologist's perspective. , 2023, 3, 6-17.		0
2156	A New Framework to Assess the Individual Fairness of Probabilistic Classifiers. , 2022, , .		1
2157	A Scenario-Based Model Comparison for Short-Term Day-Ahead Electricity Prices in Times of Economic and Political Tension. Algorithms, 2023, 16, 177.	1.2	2
2158	On theÂPotential ofÂTextual Data forÂExplainable Predictive Process Monitoring. Lecture Notes in Business Information Processing, 2023, , 190-202.	0.8	0
2159	Trustworthy artificial intelligence in Alzheimer's disease: state of the art, opportunities, and challenges. Artificial Intelligence Review, 2023, 56, 11149-11296.	9.7	8
2160	GUI Design Patterns for Improving the HCI in Explainable Artificial Intelligence. , 2023, , .		0
2161	A Perspective on Explanations of Molecular Prediction Models. Journal of Chemical Theory and Computation, 2023, 19, 2149-2160.	2.3	13
2162	Efficient Human-in-the-loop System for Guiding DNNs Attention. , 2023, , .		0
2163	Investigating the Intelligibility of Plural Counterfactual Examples for Non-Expert Users: an Explanation User Interface Proposition and User Study. , 2023, , .		1
2164	Comprehensive Potentiality Maximization toÂlmprove andÂInterpret Multi-Layered Neural Networks. Lecture Notes in Networks and Systems, 2023, , 605-615.	0.5	1
2165	It Seems Smart, but It Acts Stupid: Development of Trust in Al Advice in a Repeated Legal Decision-Making Task. , 2023, , .		0
2166	Categorical and Continuous Features in Counterfactual Explanations of Al Systems. , 2023, , .		4
2167	AEGA: enhanced feature selection based on ANOVA and extended genetic algorithm for online customer review analysis. Journal of Supercomputing, 0, , .	2.4	1

#	Article	IF	CITATIONS
2168	Feature Analysis of Predictors Affecting the Nidus Obliteration of Linear Accelerator-Based Radiosurgery for Arteriovenous Malformations Using Explainable Predictive Modeling. Applied Sciences (Switzerland), 2023, 13, 4267.	1.3	0
2169	Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 859-876.	8.5	14
2170	Algorithmic Transparency and Consumer Disclosure. , 2023, , 135-159.		0
2172	Designing Al Using a Human-Centered Approach: Explainability and Accuracy Toward Trustworthiness. IEEE Transactions on Technology and Society, 2023, 4, 9-23.	2.4	5
2173	Learning positive-negative rule-based fuzzy associative classifiers with a good trade-off between complexity and accuracy. Fuzzy Sets and Systems, 2023, 465, 108511.	1.6	0
2174	mHealth hyperspectral learning for instantaneous spatiospectral imaging of hemodynamics. , 2023, 2, .		5
2175	Data-Centric Perspective onÂExplainability Versus Performance Trade-Off. Lecture Notes in Computer Science, 2023, , 42-54.	1.0	1
2176	APPLICATION OF EXPLAINABLE ARTIFICIAL INTELLIGENCE IN SOFTWARE BUG CLASSIFICATION. Informatyka Automatyka Pomiary W Gospodarce I Ochronie Åšrodowiska, 2023, 13, 14-17.	0.2	Ο
2177	Human understandable thyroid ultrasound imaging Al report system — A bridge between Al and clinicians. IScience, 2023, 26, 106530.	1.9	2
2178	Aligning Organization Development Initiatives With Organizational Philosophical Perspectives. Advances in Human Resources Management and Organizational Development Book Series, 2023, , 190-244.	0.2	0
2179	Ebenen der Explizierbarkeit für medizinische künstliche Intelligenz: Was brauchen wir normativ und was können wir technisch erreichen?. Ethik in Der Medizin, 2023, 35, 173-199.	1.0	2
2180	The role of explainable Artificial Intelligence in high-stakes decision-making systems: a systematic review. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 7827-7843.	3.3	7
2181	Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer. Nature Machine Intelligence, 2023, 5, 408-420.	8.3	10
2182	Evaluating Explainable Artificial Intelligence Methods Based on Feature Elimination: A Functionality-Grounded Approach. Electronics (Switzerland), 2023, 12, 1670.	1.8	2
2183	Creation of the People as Technology Theoretical Concept. Advances in Human Resources Management and Organizational Development Book Series, 2023, , 37-68.	0.2	0
2184	Data-Driven Early Diagnosis of Chronic Kidney Disease: Development and Evaluation of an Explainable Al Model. IEEE Access, 2023, 11, 38359-38369.	2.6	4
2187	Improved extended-range prediction of persistent stratospheric perturbations using machine learning. Weather and Climate Dynamics, 2023, 4, 287-307.	1.2	0
2188	Environmentally sustainable smart cities and their converging AI, IoT, and big data technologies and solutions: an integrated approach to an extensive literature review. Energy Informatics, 2023, 6, .	1.4	24

#	Article	IF	Citations
2189	Interpretable selective learning in credit risk. Research in International Business and Finance, 2023, 65, 101940.	3.1	6
2190	Explainable AI Model for Recognizing Financial Crisis Roots Based on Pigeon Optimization and Gradient Boosting Model. International Journal of Computational Intelligence Systems, 2023, 16, .	1.6	2
2191	EEG decoding for effects of visual joint attention training on ASD patients with interpretable and lightweight convolutional neural network. Cognitive Neurodynamics, 0, , .	2.3	0
2192	The black box problem revisited. Real and imaginary challenges for automated legal decision making. Artificial Intelligence and Law, O, , .	3.0	3
2193	Towards transparent deep learning for surface water detection from SAR imagery. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103287.	0.9	0
2194	A new xAI framework with feature explainability for tumors decision-making in Ultrasound data: comparing with Grad-CAM. Computer Methods and Programs in Biomedicine, 2023, 235, 107527.	2.6	5
2195	NICE: an algorithm for nearest instance counterfactual explanations. Data Mining and Knowledge Discovery, 0, , .	2.4	2
2196	Visual Relationship Detection for Workplace Safety Applications. IEEE Transactions on Artificial Intelligence, 2024, 5, 956-961.	3.4	1
2197	Tensor-Based Baum–Welch Algorithms in Coupled Hidden Markov Model for Responsible Activity Prediction. IEEE Transactions on Computational Social Systems, 2023, 10, 2924-2937.	3.2	1
2198	Implementation of a Hybrid Intelligence System Enabling the Effectiveness Assessment of Interaction Channels Use in HMI. Sensors, 2023, 23, 3826.	2.1	1
2199	Data-Driven System-Level Design Framework for Responsible Cyber-Physical-Social Systems. Computer, 2023, 56, 80-91.	1.2	1
2200	A Trustworthy View on Explainable Artificial Intelligence Method Evaluation. Computer, 2023, 56, 50-60.	1.2	1
2201	A machine learning and explainable artificial intelligence approach for predicting the efficacy of hematopoietic stem cell transplant in pediatric patients. Healthcare Analytics, 2023, 3, 100170.	2.6	3
2202	Uncovering Strategies and Commitment Through Machine Learning System Introspection. SN Computer Science, 2023, 4, .	2.3	0
2203	Generative adversarial networks in EEG analysis: an overview. Journal of NeuroEngineering and Rehabilitation, 2023, 20, .	2.4	11
2204	Internet of Things Communication protocols optimization using Blockchain Technology integrated with Reinforcement Learning. , 2022, , .		0
2205	Business Model Data Tools and Artificial intelligence (Al). Advances in Finance, Accounting, and Economics, 2023, , 131-154.	0.3	0
2206	EASE© framework in design and development of clinical artificial intelligence applications. CSI Transactions on ICT, 2023, 11, 57-70.	0.7	0

#	Article	IF	CITATIONS
2207	Learning Customised Decision Trees for Domain-knowledge Constraints. Pattern Recognition, 2023, 142, 109610.	5.1	3
2208	Advancing Federated Learning with Granular Computing. Fuzzy Information and Engineering, 2023, 15, 1-13.	1.0	3
2209	Being Trustworthy is Not Enough: How Untrustworthy Artificial Intelligence (AI) Can Deceive the End-Users and Gain Their Trust. Proceedings of the ACM on Human-Computer Interaction, 2023, 7, 1-17.	2.5	5
2210	Face Work: A Human-Centered Investigation into Facial Verification in Gig Work. Proceedings of the ACM on Human-Computer Interaction, 2023, 7, 1-24.	2.5	2
2211	Sliding into My DMs: Detecting Uncomfortable or Unsafe Sexual Risk Experiences within Instagram Direct Messages Grounded in the Perspective of Youth. Proceedings of the ACM on Human-Computer Interaction, 2023, 7, 1-29.	2.5	4
2212	An optimized Belief-Rule-Based (BRB) approach to ensure the trustworthiness of interpreted time-series decisions. Knowledge-Based Systems, 2023, 271, 110552.	4.0	2
2213	Deep learning virtual indenter maps nanoscale hardness rapidly and non-destructively, revealing mechanism and enhancing bioinspired design. Matter, 2023, 6, 1975-1991.	5.0	8
2214	Social and ethical challenges of the metaverse. Al and Ethics, 2023, 3, 689-697.	4.6	8
2215	Business rule extraction using decision tree machine learning techniques: A case study into smart returnable transport items. Procedia Computer Science, 2023, 220, 446-455.	1.2	1
2216	The American Society of Emergency Radiology (ASER) AI/ML expert panel: inception, mandate, work products, and goals. Emergency Radiology, 0, , .	1.0	1
2217	Arg-XAI: a Tool for Explaining Machine Learning Results. , 2022, , .		0
2218	Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 2023, 99, 101805.	11.7	84
2219	A case study of improving a non-technical losses detection system through explainability. Data Mining and Knowledge Discovery, 0, , .	2.4	1
2220	Applying Predictive Analytics Algorithms to Support Sales Volume Forecasting. Lecture Notes in Business Information Processing, 2023, , 63-76.	0.8	0
2221	A Survey of Data Quality Requirements That Matter in ML Development Pipelines. Journal of Data and Information Quality, 2023, 15, 1-39.	1.5	3
2222	Who Should I Trust: AI or Myself? Leveraging Human and AI Correctness Likelihood to Promote Appropriate Trust in AI-Assisted Decision-Making. , 2023, , .		2
2223	Is this AI trained on Credible Data? The Effects of Labeling Quality and Performance Bias on User Trust. , 2023, , .		0
2224	Human-Centered Explainable AI (HCXAI): Coming of Age. , 2023, , .		1

#	Article	IF	Citations
2225	Explainable Human-Robot Training and Cooperation with Augmented Reality. , 2023, , .		4
2226	Tracing and Visualizing Human-ML/Al Collaborative Processes through Artifacts of Data Work. , 2023, ,		1
2227	Al Knowledge: Improving Al Delegation through Human Enablement. , 2023, , .		0
2228	Framework for Evaluating Ethics in Al. , 2023, , .		4
2229	Al for human assessment: What do professional assessors need?. , 2023, , .		2
2230	Blaming Humans and Machines: What Shapes People's Reactions to Algorithmic Harm. , 2023, , .		2
2231	DeepSeer: Interactive RNN Explanation and Debugging via State Abstraction. , 2023, , .		0
2232	Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Computational Biology, 2023, 19, e1010988.	1.5	13
2233	Visualizing Research on Explainable Artificial Intelligence for Medical and Healthcare. , 2023, , .		0
2234	Risk-aware controller for autonomous vehicles using model-based collision prediction and reinforcement learning. Artificial Intelligence, 2023, 320, 103923.	3.9	3
2235	Are Two Heads Better Than One in Al-Assisted Decision Making? Comparing the Behavior and Performance of Groups and Individuals in Human-Al Collaborative Recidivism Risk Assessment. , 2023, , .		2
2236	Artificial Intelligence Bias in Health Care: Web-Based Survey. Journal of Medical Internet Research, 0, 25, e41089.	2.1	4
2238	Higher performance for women than men in MRI-based Alzheimer's disease detection. Alzheimer's Research and Therapy, 2023, 15, .	3.0	1
2239	Symbolic and Hybrid Models of Cognition. , 2023, , 139-172.		0
2246	Applying the Shapley Value Method to Predict Mortality in Liver Cancer Based on Explainable AI. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 133-143.	0.2	0
2258	Explainable Articial Intelligence for Cybersecurity in Smart Manufacturing. Springer Series in Reliability Engineering, 2023, , 199-223.	0.3	1
2277	Explainable Artificial Intelligence for Energy-Efficient Radio Resource Management. , 2023, , .		0
2284	Explainable Artificial Intelligence (XAI) for Deep Learning Based Intrusion Detection Systems. , 2023, , 39-55.		1

	Article	IF	CITATIONS
2289	Challenges and Solutions for Artificial Intelligence Adoption in Healthcare – A Literature Review. Smart Innovation, Systems and Technologies, 2023, , 53-62.	0.5	1
2293	Explaining Machine Learning-Based Feature Selection ofÂIDS forÂIoT andÂCPS Devices. IFIP Advances in Information and Communication Technology, 2023, , 69-80.	0.5	0
2296	Efficient and Trustworthy Federated Learning-Based Explainable Anomaly Detection: Challenges, Methods, and Future Directions. Springer Series in Reliability Engineering, 2023, , 145-166.	0.3	1
2299	IDSOJ: An Intrusion Detection System in Online Judges for evaluating programming exercises. , 2023, , .		0
2300	Al for Nanomaterials Development in Clean Energy and Carbon Capture, Utilization and Storage (CCUS). ACS Nano, 2023, 17, 9763-9792.	7.3	5
2306	From Explainable AI to Explainable Simulation: Using Machine Learning and XAI to understand System Robustness. , 2023, , .		0
2309	Healthcare Revolution and Integration of Artificial Intelligence. EAI/Springer Innovations in Communication and Computing, 2023, , 67-79.	0.9	0
2310	Evolutionary computation to explain deep learning models for time series forecasting. , 2023, , .		0
2311	Quality Diversity Evolutionary Learning of Decision Trees. , 2023, , .		3
2314	Raising User Awareness about the Consequences of Online Photo Sharing. , 2023, , .		0
2315	Evaluation of Heatmaps as an Explicative Method for Classifying Acute Lymphoblastic Leukemia Cells. Lecture Notes in Computer Science, 2023, , 252-260.	1.0	0
2315 2323		1.0 1.0	0
	Lecture Notes in Computer Science, 2023, , 252-260. Explainable Integration ofÂKnowledge Graphs Using Large Language Models. Lecture Notes in Computer		
2323	Lecture Notes in Computer Science, 2023, , 252-260. Explainable Integration ofÂKnowledge Graphs Using Large Language Models. Lecture Notes in Computer Science, 2023, , 124-139. Deep Learning Model With Game Theory-Based Gradient Explanations for Retinal Images. Lecture Notes	1.0	0
2323 2338	Lecture Notes in Computer Science, 2023, , 252-260. Explainable Integration ofÂKnowledge Graphs Using Large Language Models. Lecture Notes in Computer Science, 2023, , 124-139. Deep Learning Model With Game Theory-Based Gradient Explanations for Retinal Images. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 217-229.	1.0	0
2323 2338 2339	Lecture Notes in Computer Science, 2023, , 252-260. Explainable Integration ofÂKnowledge Graphs Using Large Language Models. Lecture Notes in Computer Science, 2023, , 124-139. Deep Learning Model With Game Theory-Based Gradient Explanations for Retinal Images. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 217-229. Beyond Predictions: Explainability and Learning from Machine Learning. , 2023, , 199-218.	1.0	0 0 0
2323 2338 2339 2343	Lecture Notes in Computer Science, 2023, , 252-260. Explainable Integration ofÂKnowledge Graphs Using Large Language Models. Lecture Notes in Computer Science, 2023, , 124-139. Deep Learning Model With Game Theory-Based Gradient Explanations for Retinal Images. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 217-229. Beyond Predictions: Explainability and Learning from Machine Learning. , 2023, , 199-218. Interpretable Machine Learning Models for Predicting Malaria. , 2023, , .	1.0	0 0 0 0

		CITATION REPORT		
#	Article		IF	CITATIONS
2365	Case Study: Impacts of Air-Conditioner Air Supply Strategy on Thermal Environment an Consumption in Offices Using BES–CFD Co-Simulation. Sensors, 2023, 23, 5958.	d Energy	2.1	3
2367	Implementation ofÂeXplainable Artificial Intelligence. Lecture Notes in Computer Scien 564-580.	ce, 2023, ,	1.0	0
2371	Provenance in earth Al. , 2023, , 357-378.			1
2380	Gender, Health, and AI: How Using AI to Empower Women Could Positively Impact the Development Goals. Philosophical Studies Series, 2023, , 291-304.	Sustainable	1.3	1
2389	An Empirical Comparison of Model-Agnostic Techniques for Defect Prediction Models.	, 2023, , .		0
2391	Giving DIAnA More TIME – Guidance for the Design of XAI-Based Medical Decision Su Lecture Notes in Computer Science, 2023, , 107-122.	ipport Systems.	1.0	0
2394	Explanatory Didactic Dialogue inÂtheÂIntelligent Tutoring Systems Based onÂtheÂCros Lecture Notes in Computer Science, 2023, , 371-380.	ss-Cutting Approach.	1.0	1
2396	Synthesizing Didactic Explanatory Texts inÂlntelligent Tutoring Systems Based onÂthe, inÂCognitive Maps. Lecture Notes in Computer Science, 2023, , 233-246.	ÂInformation	1.0	0
2398	Potential of Machine Learning Algorithms in Material Science: Predictions in Design, Pre Applications of Novel Functional Materials. , 2023, , 75-94.	operties, and		0
2402	Machine learning basic concepts for the movement disorders specialist. International R Movement Disorders, 2023, , 21-47.	eview of	0.1	0
2409	Explainable Object Detection inÂtheÂField ofÂSearch andÂRescue Robotics. Mechanisr Science, 2023, , 37-44.	ns and Machine	0.3	0
2411	Enhancing Hate Speech Detection through Explainable AI. , 2023, , .			1
2414	Explainable AI for Detecting Fissures on Concrete Surfaces Using Transfer Learning. , 20	023,,.		1
2415	Harnessing Prior Knowledge for Explainable Machine Learning: An Overview. , 2023, , .			2
2416	Explainability in Al Policies: A Critical Review of Communications, Reports, Regulations, in the EU, US, and UK. , 2023, , .	and Standards		4
2417	On the Impact of Explanations on Understanding of Algorithmic Decision-Making. , 202	23, , .		0
2421	Osteoarthritis Detection and Classification in Knee X-Ray Images Using Particle Swarm with Deep Neural Network. Internet of Things, 2023, , 91-101.	Optimization	1.3	0
2424	A Study of Diabetes Prediction Based on Adaptive Weighted Decision Forest. , 2023, , .			Ο

#	Article	IF	CITATIONS
2425	Explainable Artificial Intelligence in Medical Image Analysis: State of the Art and Prospects. , 2023, , .		1
2428	Post hoc Interpretability: Review on New Frontiers of Interpretable AI. Lecture Notes in Networks and Systems, 2023, , 261-276.	0.5	0
2429	"When Can I Trust It?" Contextualising Explainability Methods for Classifiers. , 2023, , .		0
2431	Assessment and Visualization of Course-Level and Curriculum-Level Competency Profiles. Lecture Notes in Computer Science, 2023, , 478-493.	1.0	0
2435	Towards Understanding ofÂDeep Reinforcement Learning Agents Used inÂCloud Resource Management. Lecture Notes in Computer Science, 2023, , 561-575.	1.0	0
2437	XAI for Self-supervised Clustering of Wireless Spectrum Activity. , 2023, , .		1
2441	Intrinsic Explainable Self-Enforcing Networks Using the ICON-D2-Ensemble Prediction System for Runway Configurations. , 0, , .		0
2447	Probabilistic Modelling for Trustworthy Artificial Intelligence in Drone-Supported Autonomous Wheelchairs. , 2023, , .		0
2448	Ethics and Safety of Human-Machine Teaming. , 2023, , .		1
2454	Al Explainability, Interpretability, Fairness, and Privacy: An Integrative Review of Reviews. Lecture Notes in Computer Science, 2023, , 305-317.	1.0	0
2455	Requirements forÂExplainability andÂAcceptance ofÂArtificial Intelligence inÂCollaborative Work. Lecture Notes in Computer Science, 2023, , 355-380.	1.0	0
2456	How toÂExplain It toÂaÂModel Manager?. Lecture Notes in Computer Science, 2023, , 209-242.	1.0	0
2458	Sonar Signal Prediction Using Explainable AI for IoT Environment. Lecture Notes in Networks and Systems, 2023, , 209-222.	0.5	0
2459	Exploring Mental Models for Explainable Artificial Intelligence: Engaging Cross-disciplinary Teams Using a Design Thinking Approach. Lecture Notes in Computer Science, 2023, , 337-354.	1.0	0
2464	Can we Knapsack Software Defect Prediction? Nokia 5G Case. , 2023, , .		1
2468	Exploring High-dimensional Rules Indirectly via Latent Space Through a Dimensionality Reduction for XCS. , 2023, , .		0
2473	Machine learning in solar physics. Living Reviews in Solar Physics, 2023, 20, .	7.8	3
2474	Explainable Artificial Intelligence in Clinical Decision Support Systems. , 2023, , .		0

#	Article	IF	CITATIONS
2484	Enhancing Neonatal Pain Assessment Transparency via Explanatory Training Examples Identification. , 2023, , .		0
2485	Al-enabled strategies for climate change adaptation: protecting communities, infrastructure, and businesses from the impacts of climate change. Computational Urban Science, 2023, 3, .	1.9	5
2498	Explaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis , 2023, , .		2
2502	Exploring Out-of-Distribution inÂlmage Classification forÂNeural Networks ViaÂConcepts. Lecture Notes in Networks and Systems, 2023, , 155-171.	0.5	0
2508	Toward a Unified Framework for Verifying and Interpreting Learning-Based Networking Systems. , 2023,		1
2509	Textual Explanations for Automated Commentary Driving. , 2023, , .		0
2512	Challenges and future work directions in artificial intelligence with human-computer interaction. , 2023, , 295-310.		0
2516	CCXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs. Lecture Notes in Computer Science, 2023, , 60-72.	1.0	0
2518	Selecting Explanation Methods forÂIntelligent IoT Systems: A Case-Based Reasoning Approach. Lecture Notes in Computer Science, 2023, , 185-199.	1.0	0
2522	Towards a Knowledge-Based Decision Support System for the Management of Type 2 Diabetic Patients. Lecture Notes in Networks and Systems, 2023, , 309-320.	0.5	2
2525	ESSA: Explanation Iterative Supervision via Saliency-guided Data Augmentation. , 2023, , .		2
2526	Machine Learning for Building Energy Modeling. , 2023, , 667-688.		0
2527	Fairness of artificial intelligence in healthcare: review and recommendations. Japanese Journal of Radiology, 2024, 42, 3-15.	1.0	17
2533	Explainability ofÂlmage Semantic Segmentation Through SHAP Values. Lecture Notes in Computer Science, 2023, , 188-202.	1.0	0
2535	Survey on Explainable AI: From Approaches, Limitations and Applications Aspects. Human-centric Intelligent Systems, 2023, 3, 161-188.	2.2	5
2543	Crafting Data-Driven Strategies to Disentangle Socioeconomic Disparities from Disease Spread. , 2023, , 147-176.		0
2553	A Bayesian Interpretation of Fuzzy C-Means. Lecture Notes in Computer Science, 2023, , 443-454.	1.0	0
2554	Interpretable Neuro-Fuzzy Models forÂStress Prediction. Lecture Notes in Computer Science, 2023, , 630-641.	1.0	Ο

#	Article	IF	CITATIONS
2556	Contextual Boosting toÂExplainable SVM Classification. Lecture Notes in Computer Science, 2023, , 480-491.	1.0	0
2557	Fairness, Bias andÂTrust inÂtheÂContext ofÂBiometric-Enabled Autonomous Decision Support. Lecture Notes in Computer Science, 2023, , 66-87.	1.0	Ο
2560	Software-Based Mass Customization of Artificial Neural Networks and its Benefits. , 2022, , .		0
2561	Opportunities and challenges of explainable artificial intelligence in medicine. , 2023, , 281-307.		0
2563	Optimizing LIME Explanations Using REVEL Metrics. Lecture Notes in Computer Science, 2023, , 304-313.	1.0	0
2565	Feature Relevance in NAT Detection Using Explainable AI. , 2023, , .		0
2566	Initial Development of a Physics-Aware Machine Learning Framework for Soot Mass Prediction in Gasoline Direct Injection Engines. , 0, , .		0
2567	Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review. Theoretical and Applied Climatology, 2024, 155, 1-44.	1.3	4
2568	Anomaly-Based Intrusion Detection in IIoT Networks Using Transformer Models. , 2023, , .		0
2569	Ground Truth Or Dare: Factors Affecting The Creation Of Medical Datasets For Training AI. , 2023, , .		1
2571	Physical artificial intelligence (PAI): the next-generation artificial intelligence. Frontiers of Information Technology and Electronic Engineering, 2023, 24, 1231-1238.	1.5	2
2573	Enhancing Model Explainability in Financial Trading Using Training Aid Samples: A CNN-Based Candlestick Pattern Recognition Approach. , 2023, , .		0
2578	A rigorous uncertainty-aware quantification framework is essential for reproducible and replicable machine learning workflows. , 2023, 2, 1251-1258.		0
2583	Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects. , 2023, , .		1
2594	AI4Gov: Trusted AI for Transparent Public Governance Fostering Democratic Values. , 2023, , .		0
2598	Strokecopilot: a literature-based clinical decision support system for acute ischemic stroke treatment. Journal of Neurology, 0, , .	1.8	1
2605	Artificial intelligence for digital and computational pathology. , 2023, 1, 930-949.		9
2606	A Study of eXplainable Artificial Intelligence: A Systematic Literature Review of the Applications. Studies in Computational Intelligence, 2023, , 243-259.	0.7	0

#	Article	IF	CITATIONS
2617	An Al Framework for Modelling and Evaluating Attribution Methods in Enhanced Machine Learning Interpretability. , 2023, , .		0
2625	The Importance ofÂDistrust inÂAl. Communications in Computer and Information Science, 2023, , 301-317.	0.4	1
2630	A Survey ofÂExplainable Artificial Intelligence Approaches forÂSentiment Analysis. Lecture Notes in Computer Science, 2023, , 52-62.	1.0	1
2633	Self-Explaining Neural Networks for Respiratory Sound Classification with Scale-free Interpretability. , 2023, , .		1
2638	Sequential Feature Selection and Instance Selection Using SpFSR and SpFixedIS. , 2023, , .		0
2643	Dealing with Explainability Requirements for Machine Learning Systems. , 2023, , .		0
2645	Natural Language Explanations for Machine Learning Classification Decisions. , 2023, , .		0
2646	Feature Attribution Explanation to Detect Harmful Dataset Shift. , 2023, , .		1
2648	Explainable AI for Systematic Detection of Potential Problems in Natural Language Datasets. , 2023, , .		0
2652	Enhancing Trust in Machine Learning Systems by Formal Methods. Lecture Notes in Computer Science, 2023, , 170-187.	1.0	0
2657	Learning Bottleneck Concepts in Image Classification. , 2023, , .		3
2658	Explaining Deep Neural Networks for Bearing Fault Detection with Vibration Concepts. , 2023, , .		0
2659	Motivational Exploration of Explanations in Industrial Analytics [*] ., 2023, , .		0
2660	X-Pruner: eXplainable Pruning for Vision Transformers. , 2023, , .		1
2663	Artificial Intelligence Techniques in Software Design for Mathematics Education. Springer International Handbooks of Education, 2023, , 1-31.	0.1	1
2666	Explanation Generation viaÂDecompositional Rules Extraction forÂHead andÂNeck Cancer Classification. Lecture Notes in Computer Science, 2023, , 187-211.	1.0	0
2667	A General-Purpose Protocol forÂMulti-agent Based Explanations. Lecture Notes in Computer Science, 2023, , 38-58.	1.0	0
2673	Computational Accountability. , 2023, , .		0

#	Article	IF	CITATIONS
2674	Uncovering Trauma in Genocide Tribunals. , 2023, , .		2
2676	Using Explainable Artificial Intelligence in Drug Discovery: A Theoretical Research. , 2023, , 181-190.		0
2678	Explainable Machine Learning (XML) for Multimedia-Based Healthcare Systems: Opportunities, Challenges, Ethical and Future Prospects. , 2023, , 21-46.		0
2679	Application of Interpretable Artificial Intelligence Enabled Cognitive Internet of Things for COVID-19 Pandemics. , 2023, , 191-213.		0
2681	A Low-Cost Strategic Monitoring Approach forÂScalable andÂInterpretable Error Detection inÂDeep Neural Networks. Lecture Notes in Computer Science, 2023, , 75-88.	1.0	1
2683	Visual Explanation of Object Detectors via Saliency Maps. , 2023, , .		0
2687	Conformal Prediction and Uncertainty Wrapper: What Statistical Guarantees Can You Get for Uncertainty Quantification in Machine Learning?. Lecture Notes in Computer Science, 2023, , 314-327.	1.0	0
2688	Smart Grid 3.0: Grid with Proactive Intelligence. Power Systems, 2023, , 1-22.	0.3	0
2694	Situational Question Answering overÂCommonsense Knowledge Using Memory Nets. Communications in Computer and Information Science, 2023, , 175-194.	0.4	0
2696	Counterfactual Explanations forÂRemote Sensing Time Series Data: An Application toÂLand Cover Classification. Lecture Notes in Computer Science, 2023, , 20-36.	1.0	0
2698	TIGTEC: Token Importance Guided TExt Counterfactuals. Lecture Notes in Computer Science, 2023, , 496-512.	1.0	0
2699	Data-Driven Explainable Artificial Intelligence forÂEnergy Efficiency inÂShort-Sea Shipping. Lecture Notes in Computer Science, 2023, , 226-241.	1.0	0
2700	A Maturity Model for Collaborative Agents in Human-Al Ecosystems. IFIP Advances in Information and Communication Technology, 2023, , 328-335.	0.5	0
2703	Tabular Data Interpretation onÂCOVID-19 Through Explainable Machine Learning. Lecture Notes in Networks and Systems, 2023, , 653-666.	0.5	0
2704	Explainable AI: Graph Based Sampling Approach forÂHigh Dimensional AI System. Lecture Notes in Networks and Systems, 2023, , 410-422.	0.5	0
2706	Explainable Document Classification viaÂPattern Structures. Lecture Notes in Networks and Systems, 2023, , 423-434.	0.5	0
2708	Explaining, Evaluating andÂEnhancing Neural Networks' Learned Representations. Lecture Notes in Computer Science, 2023, , 269-287.	1.0	0
2709	An Explainable Feature Selection Approach forÂFair Machine Learning. Lecture Notes in Computer Science, 2023, , 75-86.	1.0	0

#	Article	IF	CITATIONS
2710	Explainability of Machine Learning Models for Hydrological Time Series Forecasting: The Case of Neuro-Fuzzy Approaches. , 2023, , .		0
2711	Automated Driving Without Ethics: Meaning, Design and Real-World Implementation. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 123-143.	0.2	0
2712	Case Study ofÂOrganization ofÂDecision-Making andÂFeedback Synthesis inÂIntelligent Tutoring Systems withÂaÂCross-Cutting Approach. Lecture Notes in Networks and Systems, 2023, , 114-124.	0.5	0
2713	Contextual Challenges to Explainable Driving Automation: The Case of Machine Perception. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 37-61.	0.2	0
2716	AI-Enabled Solutions, Explainability and Ethical Concerns for Predicting Sepsis in ICUs: A Systematic Review. , 2023, , .		1
2724	Towards a Unified Multidimensional Explainability Metric: Evaluating Trustworthiness in Al Models. , 2023, , .		0
2727	LIFEDATA - A Framework for Traceable Active Learning Projects. , 2023, , .		0
2728	A New Perspective on Evaluation Methods for Explainable Artificial Intelligence (XAI). , 2023, , .		1
2730	Revisiting the Performance-Explainability Trade-Off in Explainable Artificial Intelligence (XAI). , 2023, , .		2
2731	Sources of Opacity in Computer Systems: Towards a Comprehensive Taxonomy. , 2023, , .		1
2733	Redefining Management With Advent of Artificial Intelligence in the Current Business World. Advances in Computational Intelligence and Robotics Book Series, 2023, , 186-197.	0.4	0
2735	A Short Review on XAI Techniques in Text Data. Lecture Notes in Electrical Engineering, 2023, , 353-364.	0.3	0
2736	Enhancing Model Learning and Interpretation using Multiple Molecular Graph Representations for Compound Property and Activity Prediction. , 2023, , .		2
2740	Trustworthy Artificial Intelligence in Medical Applications: A Mini Survey. , 2023, , .		Ο
2742	General Prediction Models. , 2023, , 17-28.		0
2743	Machine Learning in Computer Aided Engineering. Computational Methods in Engineering & the Sciences, 2023, , 1-83.	0.3	0
2755	MetaLung: Towards a Secure Architecture for Lung Cancer Patient Care on the Metaverse. , 2023, , .		0
2756	Fairness-Aware Mixture ofÂExperts withÂInterpretability Budgets. Lecture Notes in Computer Science, 2023, , 341-355.	1.0	Ο

#	Article	IF	CITATIONS
2768	Knowledge Discovery from Agricultural Data. , 2023, , 761-768.		0
2769	Empowering Machine Learning Development withÂService-Oriented Computing Principles. Communications in Computer and Information Science, 2023, , 24-44.	0.4	0
2772	Black Box Model Analysis for Industrial Fault Monitoring. , 2023, , .		0
2778	Explainable artificial intelligence for gastrointestinal cancer using CNN-a review. AIP Conference Proceedings, 2023, , .	0.3	0
2781	ls Visual Explanation withÂGrad-CAM More Reliable forÂDeeper Neural Networks? AÂCase Study withÂAutomatic Pneumothorax Diagnosis. Lecture Notes in Computer Science, 2024, , 224-233.	1.0	0
2784	Recent trends in the digitalization of finance and accounting. Journal of Business Economics, 2023, 93, 1451-1461.	1.3	0
2787	How Human Resource Managers Can Utilize AI to Promote Employee Well-Being. Advances in Logistics, Operations, and Management Science Book Series, 2023, , 263-281.	0.3	4
2788	Intelligence Augmentation via Human-Al Symbiosis. Advances in Human and Social Aspects of Technology Book Series, 2023, , 301-314.	0.3	0
2789	Machine Learning Implementations in Childhood Stunting Research: A Systematic Literature Review. , 2023, , .		0
2801	An Exploration ofÂtheÂLatent Space ofÂaÂConvolutional Variational Autoencoder forÂtheÂGeneration ofÂMusical Instrument Tones. Communications in Computer and Information Science, 2023, , 470-486.	0.4	0
2802	Responsible AI for Earth Observation: Attitides Among Experts. , 2023, , .		0
2803	Explaining Deep Reinforcement Learning-Based Methods forÂControl ofÂBuilding HVAC Systems. Communications in Computer and Information Science, 2023, , 237-255.	0.4	0
2804	What Will Make Misinformation Spread: An XAI Perspective. Communications in Computer and Information Science, 2023, , 321-337.	0.4	0
2805	From Black Boxes toÂConversations: Incorporating XAI inÂaÂConversational Agent. Communications in Computer and Information Science, 2023, , 71-96.	0.4	0
2806	Natural Example-Based Explainability: A Survey. Communications in Computer and Information Science, 2023, , 24-47.	0.4	0
2808	Scalable Concept Extraction inÂIndustryÂ4.0. Communications in Computer and Information Science, 2023, , 512-535.	0.4	0
2810	Credible Recognition of Radar Images: Interpretability Metric and Classification Score. , 2023, , .		0
2811	Necessary andÂSufficient Explanations ofÂMulti-Criteria Decision Aiding Models, withÂandÂWithout Interacting Criteria. Communications in Computer and Information Science, 2023, , 279-302.	0.4	0

#	Article	IF	CITATIONS
2812	Explainable Automated Anomaly Recognition in Failure Analysis: is Deep Learning Doing it Correctly?. Communications in Computer and Information Science, 2023, , 420-432.	0.4	Ο
2813	Human-Computer Interaction andÂExplainability: Intersection andÂTerminology. Communications in Computer and Information Science, 2023, , 214-236.	0.4	0
2814	HOLMES: HOLonym-MEronym Based Semantic Inspection forÂConvolutional Image Classifiers. Communications in Computer and Information Science, 2023, , 475-498.	0.4	0
2817	A Comprehensive Survey ofÂExplainable Artificial Intelligence (XAI) Methods: Exploring Transparency andÂInterpretability. Lecture Notes in Computer Science, 2023, , 915-925.	1.0	1
2819	Tell Me More: Black Box Explainability for APT Detection on System Provenance Graphs. , 2023, , .		0
2828	Metrics forÂEvaluating Interface Explainability Models forÂCyberattack Detection inÂloT Data. Lecture Notes in Computer Science, 2023, , 180-192.	1.0	0
2837	Artificial intelligence in time-lapse system: advances, applications, and future perspectives in reproductive medicine. Journal of Assisted Reproduction and Genetics, 2024, 41, 239-252.	1.2	0
2850	Artificial Intelligence (AI) Ethics: A Critical Realist Emancipatory Approach. , 2023, , .		0
2853	Federated Learning ofÂExplainable Artificial Intelligence Models forÂPredicting Parkinson's Disease Progression. Communications in Computer and Information Science, 2023, , 630-648.	0.4	0
2856	Perlocution vs Illocution: How Different Interpretations ofÂtheÂAct ofÂExplaining Impact onÂtheÂEvaluation ofÂExplanations and XAI. Communications in Computer and Information Science, 2023, , 25-47.	0.4	0
2863	XAI Requirements inÂSmart Production Processes: A Case Study. Communications in Computer and Information Science, 2023, , 3-24.	0.4	0
2866	Natural Language Processing andÂText Mining (Turning Unstructured Data intoÂStructured). , 2023, , 69-93.		0
2875	Beyond Prediction Similarity: ShapGAP forÂEvaluating Faithful Surrogate Models inÂXAI. Communications in Computer and Information Science, 2023, , 160-173.	0.4	0
2876	An Interactive XAI Interface withÂApplication inÂHealthcare forÂNon-experts. Communications in Computer and Information Science, 2023, , 649-670.	0.4	0
2877	Dear XAI Community, We Need toÂTalk!. Communications in Computer and Information Science, 2023, , 48-65.	0.4	0
2878	SAC-FACT: Soft Actor-Critic Reinforcement Learning forÂCounterfactual Explanations. Communications in Computer and Information Science, 2023, , 195-216.	0.4	0
2879	The Co-12 Recipe forÂEvaluating Interpretable Part-Prototype Image Classifiers. Communications in Computer and Information Science, 2023, , 397-420.	0.4	0
2881	Regulating the Technology (Placement). SpringerBriefs in Law, 2024, , 35-67.	0.0	0

#	Article	IF	CITATIONS
2882	Evaluation Metrics for XAI: A Review, Taxonomy, and Practical Applications. , 2023, , .		0
2883	Erkläbare Künstliche Intelligenz im Kontext von Bildung und Lernen. , 2023, , 413-432.		0
2888	Cognitive and Perceptual Computing. Fuzzy Management Methods, 2024, , 33-45.	0.1	0
2891	On the Different Concepts and Taxonomies of eXplainable Artificial Intelligence. Communications in Computer and Information Science, 2024, , 75-85.	0.4	0
2894	Classification with Explanation for Human Trafficking Networks. , 2023, , .		0
2895	Towards Quality Measures for xAl algorithms: Explanation Stability. , 2023, , .		0
2896	Goals andÂStakeholder Involvement inÂXAI forÂRemote Sensing: A Structured Literature Review. Lecture Notes in Computer Science, 2023, , 519-525.	1.0	0
2897	Exploring Optimal Configurations inÂActive Learning forÂMedical Imaging. Lecture Notes in Computer Science, 2023, , 75-88.	1.0	0
2898	Explaining aÂStaff Rostering Problem byÂMining Trajectory Variance Structures. Lecture Notes in Computer Science, 2023, , 275-290.	1.0	0
2900	Metaverse with the Internet of Things: Convergence of Physical and Cyber Worlds. Lecture Notes in Networks and Systems, 2023, , 117-134.	0.5	Ο
2903	Bridging the Gap Between Academia and Industry in Machine Learning Software Defect Prediction: Thirteen Considerations. , 2023, , .		0
2906	An Application for Federated Learning of XAI Models in Edge Computing Environments. , 2023, , .		0
2908	An Explainable Intrusion Detection System for IoT Networks. , 2023, , .		0
2909	GEnI-FR: Granularity to Ensure Interpretability of the Fuzzy Rules. , 2023, , .		0
2910	An Initial Step Towards Stable Explanations for Multivariate Time Series Classifiers with LIME. , 2023, , .		0
2911	Human-Oriented Fuzzy Set Based Explanations of Spatial Concepts. , 2023, , .		1
2912	Federated TSK Models for Predicting Quality of Experience in B5G/6G Networks. , 2023, , .		0
2914	Towards Explainable Linguistic Summaries. , 2023, , .		0

#	Article	IF	CITATIONS
2915	HMI Design for Explainable Machine Learning Enhanced Risk Detection in Low-Altitude UAV Operations. , 2023, , .		0
2916	Using Informative AI to Understand Camouflaged Object Detection and Segmentation. , 2023, , .		о
2917	Enhancing Counter Drone Operations Through Human-AI Collaboration: A Hierarchical Decision-Making Framework. , 2023, , .		0
2919	Machine Learning based Intrusion Detection System for IoT Applications using Explainable AI. , 2023, , .		О
2921	FaKy: A Feature Extraction Library toÂDetect theÂTruthfulness ofÂaÂText. Lecture Notes in Computer Science, 2023, , 29-44.	1.0	0
2922	Extracting Knowledge fromÂlncompletely Known Models. Lecture Notes in Computer Science, 2023, , 257-268.	1.0	Ο
2926	Designing Explainable Artificial Intelligence withÂActive Inference: AÂFramework forÂTransparent Introspection andÂDecision-Making. Communications in Computer and Information Science, 2024, , 123-144.	0.4	1
2938	Selection of Research Approach for Development of Human-Centered Intrusion Detection System. , 2023, , .		О
2940	Modifications ofÂtheÂMiller Definition ofÂContrastive (Counterfactual) Explanations. Lecture Notes in Computer Science, 2024, , 54-67.	1.0	0
2943	Performance or Explainability? A Law of Armed Conflict Perspective. Law, Governance and Technology Series, 2023, , 255-279.	0.3	Ο
2946	The outlook of ChatCPT, an Al-based tool adoption in Academia: applications, challenges, and opportunities. , 2023, , .		0
2950	Modeling Inverse Demand Function with Explainable Dual Neural Networks. , 2023, , .		Ο
2953	Explainable Error Detection Method for Structured Data using HoloDetect framework. , 2023, , .		0
2954	Explainability of Artificial Intelligence Systems: A Survey. , 2023, , .		0
2960	ClusteredSHAP: Faster GradientExplainer based on K-means Clustering and Selections of Gradients in Explaining 12-Lead ECG Classification Model. , 2023, , .		0
2961	A Neuro-Symbolic Approach for Anomaly Detection and Complex Fault Diagnosis Exemplified in the Automotive Domain. , 2023, , .		0
2963	Social Transparency in Network Monitoring and Security Systems. , 2023, , .		0
2964	Expound: A Black-Box Approach forÂGenerating Diversity-Driven Adversarial Examples. Lecture Notes in Computer Science, 2024, , 19-34.	1.0	0

#	Article	IF	CITATIONS
2966	Explainable AI in Manufacturing: an Analysis of Transparency and Interpretability Methods for the XMANAI Platform. , 2023, , .		2
2967	A Visual Analytics Approach to Understanding Proximal Policy Optimization. , 2023, , .		0
2969	A novel Explainable Artificial Intelligence and secure Artificial Intelligence asset sharing platform for the manufacturing industry. , 2023, , .		0
2970	Explainable Artificial Intelligence Bundles for Algorithm Lifecycle Management in the Manufacturing Domain. , 2023, , .		0
2971	Towards Explainable AI Validation in Industry 4.0: A Fuzzy Cognitive Map-based Evaluation Framework for Assessing Business Value. , 2023, , .		0
2972	Explainable Search: An Exploratory Study in SameGame. , 2023, , .		0
2973	Adaptive Learning and Al to Support Medication Management. , 2023, , .		0
2974	Explainable Artificial Intelligence in Drones: A Brief Review. , 2023, , .		0
2980	Explainable Recommendation for Hazard Inspection Reasoning Through Knowledge Graph. , 2023, , .		0
2982	Computational Sensing, Understanding, and Reasoning: An Artificial Intelligence Approach to Physics-Informed World Modeling. Archives of Computational Methods in Engineering, 0, , .	6.0	0
2985	Identifying Challenges of Governmental Automated Decision-Making. Law, Governance and Technology Series, 2023, , 93-109.	0.3	0
2988	Fintech Innovations. Advances in Finance, Accounting, and Economics, 2023, , 35-58.	0.3	1
2997	In humans, we trust. Discover Artificial Intelligence, 2023, 3, .	2.1	0
2999	ATIAS: A Model for Understanding Intentions to Use Al Technology. Studies in Computational Intelligence, 2023, , 85-112.	0.7	0
3002	Explainable AI (XAI) for AI-Acceptability: The Coming Age of Digital Management 5.0. , 2023, , .		0
3007	An Approach Aligned withÂModel Driven Development toÂEvaluate theÂQuality ofÂExplainable Artificial Intelligence. Lecture Notes in Computer Science, 2023, , 284-293.	1.0	0
3013	An Interpretable Machine Learning Model withÂDeep Learning-Based Imaging Biomarkers forÂDiagnosis ofÂAlzheimer's Disease. Lecture Notes in Computer Science, 2023, , 69-78.	1.0	1
3017	Explainability. , 2024, , 189-199.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
3021	Formal XAI viaÂSyntax-Guided Synthesis. Lecture Notes in Computer Science, 2024, , 1	19-137.	1.0	0
3024	An Ethical Perspective on Intelligent Transport Systems. Lecture Notes in Computer Sc 426-437.	ience, 2023, ,	1.0	0
3027	Toward Anomaly Detection Using Explainable Al. , 2024, , 293-324.			0
3028	Applying DOI Theory to Assess the Required Level of Explainability in Artificial Intelliger Medical Applications. , 2023, , .	ice-empowered		0
3030	A Forward Propagation Automatic Seeking Solution Artificial Intelligence Model. , 2023	3, , .		0
3041	Tailored Explainability in Medical Artificial Intelligence-empowered Applications: Persor the Technology Acceptance Model. , 2023, , .	alisation via		0
3042	A Novel Metric for XAI Evaluation Incorporating Pixel Analysis and Distance Measureme	ent. , 2023, , .		0
3043	Human-Centered AI Goals forÂSpeech Therapy Tools. Communications in Computer ar Science, 2023, , 121-136.	id Information	0.4	0
3045	A Closer Look at Reward Decomposition for High-Level Robotic Explanations. , 2023, ,			1
3046	Quantification of Explainability in Black Box Models using Complexity Measures. , 202.	3, , .		0
3047	Black-Box Attacks on Image Activity Prediction and its Natural Language Explanations.	, 2023, , .		0
3050	Explainable Artificial Intelligence (XAI) for IoT. , 2023, , 150-160.			0
3058	Verstädliche Künstliche Intelligenz in Assistenzsystemen an Mensch-System-Schnit 317-343.	tstellen. , 2023, ,		0
3059	KI-basiertes akustisches Monitoring: Herausforderungen und LösungsansÃæze für d Innovationen auf Basis audiovisueller Analyse. , 2023, , 85-115.	atengetriebene		0
3062	Towards ML Explainability withÂRough Sets, Clustering, andÂDimensionality Reduction Computer Science, 2023, , 371-386.	1. Lecture Notes in	1.0	0
3067	Explainable AI in Healthcare Application. Advances in Computational Intelligence and R Series, 2024, , 123-176.	obotics Book	0.4	6
3075	A transfer learning approach based on integrated feature extractor for anti-jamming in networks. , 2023, , .	wireless		0
3077	Opacity, Machine Learning and Explainable AI. The International Library of Ethics, Law a 2023, , 39-58.	and Technology,	0.2	0

#	Article	IF	CITATIONS
3078	Explainergy: Towards Explainability of Metaheuristic Performance in the Energy Field. , 2023, , .		0
3079	Interpreting Restricted Boltzmann Machines from Optics Theory Perspectives. , 2023, , .		Ο
3081	How Explainable Is Explainability? Towards Better Metrics for Explainable AI. Springer Proceedings in Complexity, 2024, , 685-695.	0.2	0
3086	When an Explanation is not Enough: An Overview of Evaluation Metrics of Explainable AI Systems in the Healthcare Domain. IFMBE Proceedings, 2024, , 573-584.	0.2	Ο
3094	EduBoost: An Interpretable Grey-Box Model Approach to Identify and Prevent Student Failure and Dropout. , 2023, , .		0
3105	Explainable AI techniques for Deep Convolutional Neural Network based plant disease identification. , 2023, , .		0
3109	Toward Human-centered XAI in Practice: A survey. , 0, , .		0
3116	MAGI: Multi-Annotated Explanation-Guided Learning. , 2023, , .		0
3122	Specific-Modal Spatial Guidance and Feature Enhancement for Multi-modal Brain Tumor Segmentation. , 2023, , .		0
3124	Explainable activity recognition for the elderly. , 2023, , .		0
3126	A Multi-View Learning-Based Bayesian Ruleset Extraction Algorithm For Accurate Hepatotoxicity Prediction. , 2023, , .		0
3127	Overview of XAI for the Development and Modernization of Smart Cities. Advances in Computational Intelligence and Robotics Book Series, 2024, , 177-198.	0.4	0
3128	Explainable Artificial Intelligence as a Cybersecurity Aid. Advances in Computational Intelligence and Robotics Book Series, 2024, , 98-113.	0.4	0
3130	Explainable AI for Cybersecurity. Advances in Computational Intelligence and Robotics Book Series, 2024, , 31-97.	0.4	6
3131	Role of XAI in building a super smart society 5.0. , 2024, , 295-326.		0
3132	Modern Smart Cities and Open Research Challenges and Issues of Explainable Artificial Intelligence. Advances in Computational Intelligence and Robotics Book Series, 2024, , 389-424.	0.4	6
3134	Clash ofÂtheÂExplainers: Argumentation forÂContext-Appropriate Explanations. Communications in Computer and Information Science, 2024, , 7-23.	0.4	0
3135	Commonsense Reasoning andÂExplainable Artificial Intelligence Using Large Language Models. Communications in Computer and Information Science, 2024, , 302-319.	0.4	0

ARTICLE IF CITATIONS Xplainable AI for deep learning model on PCOD analysis., 2024, , 131-152. 0 3136 XAI in Society 5.0 through the lens of marketing and HRM., 2024, 327-363. Paradigm shift from AI to XAI of Society 5.0: Machine-centric to human-centric. , 2024, , 3-28. 0 3138 Security and privacy aspects in intelligence systems through blockchain and explainable AI., 2024, 3139 365-400. Explainable e-Discovery (XeD) Using an Interpretable Fuzzy ARTMAP Neural Network for 3141 0 Technology-Assisted Review., 2023, , . 3142 Artificial Intelligence for Spectral Analysis: Challenges and Opportunities., 2023, , . Active Learning on Neural Networks through Interactive Generation of Digit Patterns and Visual 3146 0 Representation., 2023,,. Postâ€^emining onÂAssociation Rule Bases. Communications in Computer and Information Science, 2024, , 3151 0.4 23-35. Towards Model-Driven Explainable Artificial Intelligence. AnÂExperiment withÂShallow Methods Versus 3152 0.4 0 Grammatical Evolution. Communications in Computer and Information Science, 2024, , 360-365. Trust in Artificial Intelligence: Exploring the Influence of Model Presentation and Model Interaction 0.4 on Trust in a Medical Setting. Communications in Computer and Information Science, 2024, , 76-86. Adapting Teaching and Learning in Higher Education Using Explainable Student Agency Analytics. 3156 0.4 0 Advances in Computational Intelligence and Robotics Book Series, 2023, , 20-51. Operating a remote autonomous train: degradation of senses and cooperation., 2023,,. 3159 Explainable Artificial Intelligence: A Study of Current State-of-the-Art Techniques for Making ML 3160 0 Models Interpretable and Transparent., 2023,,. An Explainable AI-Based Framework forÂSupporting Decisions inÂEnergy Management. Learning and 3164 Analytics in Intelligent Systems, 2024, , 1-27 Evolutionary Reinforcement Learning: A Hybrid Approach for Safety-informed Intelligent 3168 0 Fault-tolerant Flight Control., 2024, , . Probabilistic Learning of Operator Interest in Surveillance Environments for Online Track 3171 Characterization., 2024, , . AI Sovereignty in Autonomous Driving: Exploring Needs and Possibilities for Overcoming Challenges., 3172 0 2023,,. 3176 Al Guidelines and Ethical Readiness Inside SMEs: A Review and Recommendations., 2024, 3, .

#	Article	IF	Citations
3177	Deep Unrolling for Anomaly Detection in Network Flows. , 2023, , .		0
3180	Algorithmen entscheiden. , 2023, , 87-95.		0
3181	KONX: A Dynamic Approach for Explainable AI in Higher Education. , 2023, , .		0
3183	Enhancement of Low-Resolution Remote Sensing Images Using ANN. Lecture Notes in Electrical Engineering, 2024, , 853-861.	0.3	0
3184	Artificial intelligence applications in histopathology. , 2024, 1, 93-108.		0
3185	On Computing Paradigms - Where Will Large Language Models Be Going. , 2023, , .		0
3189	Tree-based Kendallâ \in ™s Ï" Maximization for Explainable Unsupervised Anomaly Detection. , 2023, , .		0
3192	Explainable Multi-Modal and Local Approaches to Modelling Injuries in Sports Data. , 2023, , .		0
3200	Human in the AI Loop via xAI and Active Learning for Visual Inspection. , 2024, , 381-406.		0
3201	Toward Explainable Metrology 4.0: Utilizing Explainable AI to Predict the Pointwise Accuracy of Laser Scanning Devices in Industrial Manufacturing. , 2024, , 479-501.		0
3203	Advances in materials informatics: a review. Journal of Materials Science, 2024, 59, 2602-2643.	1.7	0
3204	XAI for Product Demand Planning: Models, Experiences, and Lessons Learnt. , 2024, , 437-458.		0
3212	A Causal Deep Learning Framework for Traffic Forecasting. , 2023, , .		0
3215	GASx: Explainable Artificial Intelligence For Detecting GPS Spoofing Attacks. , 0, , .		0
3220	Explainable Machine Learning for Drug Classification. Lecture Notes in Electrical Engineering, 2024, , 673-683.	0.3	0
3224	The Value of Proactive Data forÂIntelligent Contracts. Lecture Notes in Networks and Systems, 2024, , 107-125.	0.5	1
3225	Applications of Machine Learning in Modern Power Systems: A Comprehensive Review. , 2023, , .		0
3226	Al with Consciousness: Advancing Explainability in the Healthcare Sector. , 2023, , .		0

ARTICLE IF CITATIONS # Algorithmic Transparency, Manipulation, and Two Concepts of Liberty. Philosophy and Technology, 3227 2.6 0 2024, 37, . Ensuring Trustworthy Neural Network Training via Blockchain., 2023, , . Artificial Intelligence: An Overview. Synthesis Lectures on Engineering Science and Technology, 2024, , 3231 0.2 0 3-22 An Empirical Study Concerning the Impact of Perceived Usefulness and Ease of Use on the Adoption of Al-Empowered Médical Applications. , 2023, , . Catching Silent Failures: A Machine Learning Model Monitoring and Explainability Survey., 2023,,. 3237 0 3246 Artificial intelligence in civil engineering., 2024, , 1-74. Enabling trustworthiness in human-swarm systems through a digital twin., 2024, , 93-125. 3247 0 Data Harmonization to Address the Non-biological Variances in Radiomic Studies. Imaging Informatics 3249 0.4 for Healthcare Professionals, 2023, , 95-115. 3255 Artificial Intelligence in Accounting: Ethical Challenges and Legal Perspectives., 2024, , 321-345. 0 Explaining Federated Learning Through Concepts inÂlmage Classification. Lecture Notes in Computer 1.0 Science, 2024, , 325-340. 'Put the Car on the Stand'., 2024, , . 3257 0 Explainable Human-in-the-Loop Dynamic Data-Driven Digital Twins. Lecture Notes in Computer Science, 3258 1.0 2024, , 233-243. Stroke Probability Prediction from Medical Survey Data: Al-Driven Analysis with Insightful Feature 3259 0 Importance using Explainable AI (XAI)., 2023,,. An Explainable Deep Learning Approach for EEG- Induced Motor Imagery Classification., 2023, , . Overview ofÂSocial Engineering Protection andÂPrevention Methods. Lecture Notes in Computer 3267 1.0 0 Science, 2024, , 64-83. Explainable Artificial Intelligence in Consumer-Centric Business Practices and Approaches. Advances in Marketing, Customer Relationship Management, and E-services Book Series, 2024, , 36-55. Enhancing Fault Detection and Diagnosis in AHU Using Explainable AI. Smart Innovation, Systems and 3278 0.5 0 Technologies, 2024, , 131-142. The Metaverse: A Multidisciplinary Perspective onÂtheÂFuture ofÂHuman Interaction. Communications in 0.4 Computer and Information Science, 2024, , 29-43.

#	Article	IF	CITATIONS
3282	Beyond Debiasing: Actively Steering Feature Selection viaÂLoss Regularization. Lecture Notes in Computer Science, 2024, , 394-408.	1.0	0
3290	Artificial intelligence and medicine: A psychological perspective on AI implementation in healthcare context. , 2024, , 231-237.		0
3291	SOK: Application of machine learning models in child and youth mental health decision-making. , 2024, , 113-132.		0
3306	Enhancing Security Assurance inÂSoftware Development: Al-Based Vulnerable Code Detection withÂStatic Analysis. Lecture Notes in Computer Science, 2024, , 341-356.	1.0	0
3318	Unveiling the Depths of Explainable AI. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2024, , 78-106.	0.5	0
3327	Patient Self-reports for Explainable Machine Learning Predictions of Risks to Psychotherapy Outcomes. Communications in Computer and Information Science, 2024, , 80-105.	0.4	0
3329	Interpretable Solutions forÂBreast Cancer Diagnosis withÂGrammatical Evolution andÂData Augmentation. Lecture Notes in Computer Science, 2024, , 224-239.	1.0	0