A nitrogen and fluorine enriched Fe/Fe₃C@ electrocatalyst for anion/proton exchange membrane f

Nanoscale 12, 2542-2554 DOI: 10.1039/c9nr08631e

Citation Report

#	Article	IF	CITATIONS
1	Dual-Template Construction of Iron–Nitrogen-Codoped Hierarchically Porous Carbon Electrocatalyst for Oxygen Reduction Reaction. Energy & Fuels, 2020, 34, 16720-16728.	5.1	11
2	Micelles of Mesoporous Silica with Inserted Iron Complexes as a Platform for Constructing Efficient Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 54720-54731.	8.0	17
3	Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 22379-22388.	10.3	30
4	Encapsulation of Fe nanoparticles into an N-doped carbon nanotube/nanosheet integrated hierarchical architecture as an efficient and ultrastable electrocatalyst for the oxygen reduction reaction. Nanoscale, 2020, 12, 13987-13995.	5.6	24
5	Atomically dispersed Ni/NixSy anchored on doped mesoporous networked carbon framework: Boosting the ORR performance in alkaline and acidic media. Journal of Colloid and Interface Science, 2020, 571, 285-296.	9.4	27
6	A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors. Journal of Colloid and Interface Science, 2021, 583, 351-361.	9.4	9
7	微纳结构èᇿjį金属化å•̂物èf½æºè½¬åŒ–电å,¬åŒ–å‰,ç"ç©¶èį›å±•. Science China Materials,	2023,64,	1- 26 .
8	Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. Journal of Materials Chemistry A, 2021, 9, 19489-19507.	10.3	104
9	N, F dual-doped carbon embedded with Co&CoN paragenetic structure for oxygen electrocatalytic reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 7454-7463.	7.1	13

10	Recent advances in catalyst materials for proton exchange membrane fuel cells. APL Materials, 2021, 9, 040702.	5.1	28
11	A Highly Active Oxygen Reduction Composite Electrocatalyst of Fe ₃ C with a N, F Dual-Doped Carbon Layer Hide. Journal of the Electrochemical Society, 2021, 168, 054511.	2.9	1
12	A dual ligand coordination strategy for synthesizing drum-like Co, N co-doped porous carbon electrocatalyst towards superior oxygen reduction and zinc-air batteries. International Journal of Hydrogen Energy, 2021, 46, 24472-24483.	7.1	15
13	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	19.5	109
14	Co/MoC Nanoparticles Embedded in Carbon Nanoboxes as Robust Trifunctional Electrocatalysts for a Zn–Air Battery and Water Electrocatalysis. ACS Nano, 2021, 15, 13399-13414.	14.6	141
15	Synthesis of unused-wood-derived C-Fe-N catalysts for oxygen reduction reaction by heteroatom doping during hydrothermal carbonization and subsequent carbonization in nitrogen atmosphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200348.	3.4	3
16	Novel Strontium/Iron Bimetallic Carbon Composites as Synergistic Catalyst for Oxygen Reduction Reaction in Microbial Fuel Cells. Electrocatalysis, 2021, 12, 759-770.	3.0	4
17	Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. Nanoscale, 2021, 13, 15116-15141.	5.6	46
18	Enhanced electrocatalytic oxygen reduction reaction for Fe–N4–C by the incorporation of Co nanoparticles. Nanoscale, 2021, 13, 6521-6530.	5.6	9

CITATION REPORT

#	Article	IF	CITATIONS
19	A graphene-like nanoribbon for efficient bifunctional electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 26688-26697.	10.3	10
20	Porous carbon polyhedrons with exclusive Metal-NX moieties for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 39882-39891.	7.1	14
21	Enhanced Oxygen Reduction Activity of Bimetallic Pd-Ag Alloy Supported Mesoporous Cerium Oxide Electrocatalysts in alkaline Media. New Journal of Chemistry, 0, , .	2.8	5
22	Achievement of a novel organometallic electrocatalyst based on nickel and poly para-aminophenol with excellent oxygen reduction reaction activity: Promoting the commercialization of low temperature fuel cells. Sustainable Energy Technologies and Assessments, 2022, 51, 101988.	2.7	2
23	Catalyst overcoating engineering towards high-performance electrocatalysis. Chemical Society Reviews, 2022, 51, 188-236.	38.1	53
24	N-, F-, and Fe-Doped Mesoporous Carbon Derived from Corncob Waste and Creating Oxygen Reduction Reaction Active Centers with a Maximum Charge Density of ≥0.25 for a Polymer Electrolyte Fuel Cell Catalyst. Energy & Fuels, 2022, 36, 2108-2122.	5.1	17
25	A Cathode Material of Fuel Cells: F-Doped γ-Graphyne/PtPd Nanocomposite from Plasma Activation and Gamma Irradiation. ACS Applied Energy Materials, 2022, 5, 2036-2044.	5.1	16
26	A novel electrocatalyst based on Fe-ZIF-PPY nanocomposite for oxygen reduction reaction in air-breathing direct-ethanol fuel cell. Applied Surface Science, 2022, 584, 152529.	6.1	17
27	Fe ₃ C Encapsulated in Three-Dimensional Porous Cellulose Acetate as a High-Performance Anode for Potassium Ion Batteries. Energy & Fuels, 2022, 36, 1063-1071.	5.1	2
28	Systematically theoretical investigation the effect of nitrogen and iron-doped graphdiyne on the oxygen reduction reaction mechanism in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2022, , .	7.1	1
29	Oxygen reduction reaction in hydrogen fuel cells. , 2022, , 277-303.		0
30	Threeâ€Dimensional Hierarchical Porous Fe, Nâ€Doped Hollow Carbon Nanospheres as Stable Electrocatalyst for Efficient Oxygen Reduction Reaction in Both Acidic and Alkaline Electrolytes. ChemistrySelect, 2022, 7, .	1.5	1
31	Coupling nano-Fe3O4 with oxygen vacancies on a hypercrosslinked iron porphyrin-coated ZIF-8 as a high-efficiency oxygen reduction reaction electrocatalyst. Applied Catalysis A: General, 2022, 642, 118712.	4.3	4
32	Nickel-induced charge redistribution in Ni-Fe/Fe3C@nitrogen-doped carbon nanocage as a robust Mott-Schottky bi-functional oxygen catalyst for rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2022, 625, 521-531.	9.4	22
33	State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Applied Catalysis B: Environmental, 2023, 325, 121733.	20.2	54
34	FeOy@graphitic carbon core–shell nanoparticles loaded on two dimensional carbon nanosheets with exclusive Fe-Nx moieties for efficient oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2022, 923, 116848.	3.8	1
35	Tailoring the d-band center by intermetallic charge-transfer manipulation in bimetal alloy nanoparticle confined in N-doped carbon nanobox for efficient rechargeable Zn-air battery. Chemical Engineering Journal, 2023, 463, 142411.	12.7	23
36	Catalytic upcycling of waste polypropylene for gram-scale production of FeCo@N-doped carbon nanotubes toward efficient oxygen reduction electrocatalysis. Journal of Electroanalytical Chemistry, 2023, 936, 117394.	3.8	4

#	Article	IF	CITATIONS
37	A review of the advancements in the synthesis and modification of mesoporous carbon and its application to electrochemistry. Canadian Journal of Chemical Engineering, 2023, 101, 6417-6445.	1.7	0
39	Atomically Dispersed Isolated Fe–Ce Dual-Metal-Site Catalysts for Proton-Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2023, 15, 23316-23327.	8.0	11
40	dâ€Orbital Electron Delocalization Realized by Axial Fe ₄ C Atomic Clusters Delivers Highâ€Performance Fe–N–C Catalysts for Oxygen Reduction Reaction. Advanced Materials, 2023, 35, .	21.0	10
41	Development of Hydrogen–Oxygen Fuel Cells Based on Anion-Exchange Electrolytes and Catalysts with Reduced Platinum Content. Membranes, 2023, 13, 669.	3.0	0
42	Single atomic Fe-based honeycomb catalysts with hierarchically ordered meso- and macropore for the oxygen reduction reaction. Chemical Engineering Journal, 2023, 474, 145464.	12.7	6
43	Oxygen reduction electrochemistry at F doped carbons: A review on the effect of highly polarized C-F bonding in catalysis and stability of fuel cell catalysts. Coordination Chemistry Reviews, 2024, 500, 215491.	18.8	1
45	Recent advances and prospects of iron-based noble metal-free catalysts for oxygen reduction reaction in acidic environment: A mini review. International Journal of Hydrogen Energy, 2024, 59, 697-714.	7.1	0
46	Efficient preparation of carbon materials composed of warped graphene layers via in-situ nano-templating and estimation of oxygen reduction reaction activity. Carbon, 2024, 221, 118910.	10.3	0
47	Polypyrrole derived carbon nanotube aerogel based single-site Fe-N-C catalyst with superior ORR activity and durability. Fuel, 2024, 366, 131404.	6.4	0

CITATION REPORT