CITATION REPORT List of articles citing

DOI: 10.1021/acs.est.9b04749 Environmental Science & Samp; Technology, 2020, 54, 1848-18

Source: https://exaly.com/paper-pdf/75200374/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
16	A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. <i>Nano Research</i> , 2021 , 14, 684-69	91 ⁰	11
15	3D hierarchical porous N-doped carbon quantum dots/vanadium nitride hybrid microflowers as a superior electrode material toward high-performance asymmetric capacitive deionization. <i>Environmental Science: Nano</i> , 2021 , 8, 2059-2068	7.1	2
14	Capacitive Removal of Heavy Metal Ions from Wastewater an Electro-Adsorption and Electro-Reaction Coupling Process. <i>Environmental Science & Electro-Reaction Coupling Process</i> . <i>Environmental Science & Electro-Reaction Coupling Process</i> . <i>Environmental Science & Electro-Reaction Coupling Process</i> .	10.3	40
13	Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes an Electro-Adsorption Process. <i>Environmental Science & Environmental Science & Envi</i>	10.3	16
12	Synchronous removal of tetracycline and water hardness ions by capacitive deionization. <i>Journal of Cleaner Production</i> , 2021 , 316, 128251	10.3	2
11	Novel Inorganic Integrated Membrane Electrodes for Membrane Capacitive Deionization. <i>ACS Applied Materials & Deionization (Materials & Deionization</i>	9.5	1
10	Capacitive-faradaic fuel cells (CFFCs) for selective separation of copper(II) ions from water and wastewater. <i>Chemical Engineering Journal</i> , 2021 , 421, 129950	14.7	2
9	Exceptional capacitive deionization desalination performance of hollow bowl-like carbon derived from MOFs in brackish water. <i>Separation and Purification Technology</i> , 2022 , 278, 119550	8.3	2
8	Converting mesoporous polydopamine coated MIL-125 (Ti) to a core©hell heterostructure for efficient water desalination. <i>Environmental Science: Nano</i> ,	7.1	O
7	Forward-Looking Roadmaps for Long-Term Continuous Water Quality Monitoring: Bottlenecks, Innovations, and Prospects in a Critical Review <i>Environmental Science & Environmental Science & Environmen</i>	10.3	3
6	Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems. <i>Nano Research</i> ,	10	1
5	Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. 2022 , 122, 13547-13635		8
4	Advances and perspectives in integrated membrane capacitive deionization for water desalination. 2022 , 542, 116043		1
3	Integration of pore structure modulation and B, N co-doping for enhanced capacitance deionization of biomass-derived carbon. 2023 ,		О
2	Stop-flow discharge operation aggravates spacer scaling in CDI treating brackish hard water. 2023 , 552, 116422		O
1	Interlayer Structure and Chemistry Engineering of MXene-Based Anode for Effective Capture of Chloride Anions in Asymmetric Capacitive Deionization. 2023 , 15, 16266-16276		0