Engineering and Functionalization of Gelatin Biomateri Applications

Tissue Engineering - Part B: Reviews 26, 164-180 DOI: 10.1089/ten.teb.2019.0256

Citation Report

#	Article	IF	CITATIONS
1	Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 156, 133-187.	6.6	173
2	Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering, 2020, 7, 115.	1.6	72
3	Anatase Incorporation to Bioactive Scaffolds Based on Salmon Gelatin and Its Effects on Muscle Cell Growth. Polymers, 2020, 12, 1943.	2.0	3
4	Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. International Journal of Molecular Sciences, 2020, 21, 6752.	1.8	15
5	Engineered Collagen Matrices. Bioengineering, 2020, 7, 163.	1.6	33
6	Regeneration of skeletal system with genipin crosslinked biomaterials. Journal of Tissue Engineering, 2020, 11, 204173142097486.	2.3	47
7	A facile design of EGF conjugated PLA/gelatin electrospun nanofibers for nursing care of in vivo wound healing applications. Journal of Industrial Textiles, 2020, , 152808372097634.	1.1	14
8	Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Marine Drugs, 2020, 18, 627.	2.2	72
9	Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 2021, 121, 10908-10949.	23.0	216
10	A Facile Fabrication of Biodegradable and Biocompatible Cross-Linked Gelatin as Screen Printing Substrates. Polymers, 2020, 12, 1186.	2.0	7
11	Blending Gelatin and Cellulose Nanofibrils: Biocomposites with Tunable Degradability and Mechanical Behavior. Nanomaterials, 2020, 10, 1219.	1.9	14
12	Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications—A Review. Polymers, 2020, 12, 844.	2.0	116
13	Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials, 2021, 264, 120445.	5.7	24
14	FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials, 2021, 264, 120383.	5.7	32
15	Measurement methods for the mechanical testing and biocompatibility assessment of polymer-ceramic connective tissue replacements. Measurement: Journal of the International Measurement Confederation, 2021, 171, 108733.	2.5	11
16	3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomaterials Science, 2021, 9, 2620-2630.	2.6	73
17	A 3D cell printing-fabricated HepG2 liver spheroid model for high-content <i>in situ</i> quantification of drug-induced liver toxicity. Biomaterials Science, 2021, 9, 5939-5950.	2.6	24
18	Biomaterial-based cell delivery strategies to promote liver regeneration. Biomaterials Research, 2021, 25, 5.	3.2	22

#	Article	IF	CITATIONS
19	Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules, 2021, 22, 1115-1126.	2.6	12
20	Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 3648.	1.8	9
21	Direct and Labelâ€Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry. Small, 2021, 17, e2007500.	5.2	28
22	Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomedical Materials (Bristol), 2021, 16, 042003.	1.7	19
24	Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules, 2021, 26, 1643.	1.7	22
25	3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. International Journal of Pharmaceutics, 2021, 599, 120423.	2.6	27
26	Protein-Based 3D Biofabrication of Biomaterials. Bioengineering, 2021, 8, 48.	1.6	28
27	Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomaterialia, 2021, 124, 108-129.	4.1	58
28	Combined Analytical Approaches to Standardize and Characterize Biomaterials Formulations: Application to Chitosan-Gelatin Cross-Linked Hydrogels. Biomolecules, 2021, 11, 683.	1.8	11
29	Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers, 2021, 13, 1546.	2.0	48
30	Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomaterials Science and Engineering, 2021, 7, 4330-4346.	2.6	25
31	Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 347.	2.4	11
32	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	2.3	57
33	Recent Advances in 3D Printing for Parenteral Applications. AAPS Journal, 2021, 23, 87.	2.2	6
34	Engineering Bioactive Scaffolds for Skin Regeneration. Small, 2021, 17, e2101384.	5.2	65
35	Biofabrication of Cell-Laden Gelatin Methacryloyl Hydrogels with Incorporation of Silanized Hydroxyapatite by Visible Light Projection. Polymers, 2021, 13, 2354.	2.0	10
36	Chitosan/PVA Based Membranes Processed by Gamma Radiation as Scaffolding Materials for Skin Regeneration. Membranes, 2021, 11, 561.	1.4	7
37	Chitosan/Gelatin/PVA Scaffolds for Beta Pancreatic Cell Culture. Polymers, 2021, 13, 2372.	2.0	27

#	Article	IF	CITATIONS
38	Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. International Journal of Biological Macromolecules, 2021, 182, 2048-2055.	3.6	25
39	Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers, 2021, 13, 2319.	2.0	77
40	The versatility of collagen and chitosan: From food to biomedical applications. Food Hydrocolloids, 2021, 116, 106633.	5.6	83
41	The Influence of Bloom Index, Endotoxin Levels and Polyethylene Glycol Succinimidyl Glutarate Crosslinking on the Physicochemical and Biological Properties of Gelatin Biomaterials. Biomolecules, 2021, 11, 1003.	1.8	6
42	Photoinduced Porcine Gelatin Cross-Linking by Homobi- and Homotrifunctional Tetrazoles. Gels, 2021, 7, 124.	2.1	6
43	Targeting Tumor Cells with Nanoparticles for Enhanced Co-Drug Delivery in Cancer Treatment. Pharmaceutics, 2021, 13, 1327.	2.0	7
44	3D two-photon polymerization of smart cell gelatin – collagen matrixes with incorporated ruthenium complexes for the monitoring of local oxygen tensions. Acta Biomaterialia, 2021, 130, 172-182.	4.1	6
45	Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review. Biomedicines, 2021, 9, 979.	1.4	47
46	Threeâ€dimensional printing of <scp>cellâ€laden</scp> microporous constructs using blended bioinks. Journal of Biomedical Materials Research - Part A, 2022, 110, 535-546.	2.1	10
47	Nature-Based Biomaterials and Their Application in Biomedicine. Polymers, 2021, 13, 3321.	2.0	53
48	Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. International Journal of Biological Macromolecules, 2021, 186, 656-685.	3.6	104
49	Recent Advances on Stimuli-Responsive Hydrogels Based on Tissue-Derived ECMs and Their Components: Towards Improving Functionality for Tissue Engineering and Controlled Drug Delivery. Polymers, 2021, 13, 3263.	2.0	6
50	Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values. Pharmaceutics, 2021, 13, 1537.	2.0	13
51	Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel. Acta Biomaterialia, 2021, 131, 138-148.	4.1	20
52	Gelatin-based instant gel-forming volatile spray for wound-dressing application. Progress in Biomaterials, 2021, 10, 235-243.	1.8	6
53	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	4.1	61
54	Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Marine Drugs, 2021, 19, 502.	2.2	7
55	Current Trends on Protein Driven Bioinks for 3D Printing. Pharmaceutics, 2021, 13, 1444.	2.0	16

#	Article	IF	CITATIONS
56	A rapid quantitation of cell attachment and spreading based on digital image analysis: Application for cell affinity and compatibility assessment of synthetic polymers. Materials Science and Engineering C, 2021, 128, 112267.	3.8	5
57	Matrilin3/TGFβ3 gelatin microparticles promote chondrogenesis, prevent hypertrophy, and induce paracrine release in MSC spheroid for disc regeneration. Npj Regenerative Medicine, 2021, 6, 50.	2.5	24
58	Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Materials Science and Engineering Reports, 2021, 146, 100641.	14.8	93
59	Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents. Materials, 2021, 14, 396.	1.3	90
60	A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 2021, 42, 240-250.	0.9	162
61	Biomimetic hydrogels designed for cartilage tissue engineering. Biomaterials Science, 2021, 9, 4246-4259.	2.6	86
62	Cell morphology as a design parameter in the bioengineering of cell–biomaterial surface interactions. Biomaterials Science, 2021, 9, 8032-8050.	2.6	7
63	3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Frontiers in Bioengineering and Biotechnology, 2021, 9, 754113.	2.0	12
64	Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials. Journal of Composites Science, 2021, 5, 278.	1.4	9
65	Natural Biomaterials from Biodiversity for Healthcare Applications. Advanced Healthcare Materials, 2022, 11, e2101389.	3.9	19
66	Polymer coatings on magnesiumâ€based implants for orthopedic applications. Journal of Polymer Science, 2022, 60, 32-51.	2.0	34
67	Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. Journal of Polymers and the Environment, 2022, 30, 1683-1708.	2.4	9
68	An eco-friendly wood adhesive based on waterborne polyurethane grafted with gelatin derived from chromium shavings waste. Environmental Research, 2022, 206, 112266.	3.7	9
69	Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. Materials Science and Engineering C, 2021, 131, 112489.	3.8	55
70	Reduced Platelet Adhesion for Blended Electrospun Meshes with Low Amounts of Collagen Type I. Macromolecular Bioscience, 2021, , 2100267.	2.1	1
71	Cross-linked Porous Gelatin Microparticles with Tunable Shape, Size, and Porosity. Langmuir, 2021, 37, 12781-12789.	1.6	9
72	3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chemical Engineering Journal, 2022, 430, 132926.	6.6	40
74	Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. International Journal of Molecular Sciences, 2021, 22, 12563.	1.8	8

#	Article	IF	CITATIONS
75	Strategies Using Gelatin Microparticles for Regenerative Therapy and Drug Screening Applications. Molecules, 2021, 26, 6795.	1.7	23
76	Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants, 2021, 10, 1904.	2.2	3
77	Highly Efficient Synthesis of Type B Gelatin and Low Molecular Weight Chitosan Nanoparticles: Potential Applications as Bioactive Molecule Carriers and Cell-Penetrating Agents. Polymers, 2021, 13, 4078.	2.0	9
78	Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. International Journal of Biological Macromolecules, 2022, 195, 179-189.	3.6	24
79	Superparamagnetic Iron Oxide Decorated Indium Hydroxide Nanocomposite: Synthesis, Characterization and Its Photocatalytic Activity. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 113-126.	0.5	1
80	Building Valveless Impedance Pumps From Biological Components: Progress and Challenges. Frontiers in Physiology, 2021, 12, 770906.	1.3	7
81	Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules, 2022, 27, 379.	1.7	10
82	Animal models of inflammatory musculoskeletal diseases for tissue engineering and regenerative medicine: updates and translational application. , 2022, , 123-135.		Ο
83	Biomaterials-based strategies for <i>in vitro</i> neural models. Biomaterials Science, 2022, 10, 1134-1165.	2.6	7
84	Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics, 2022, 14, 297.	2.0	15
85	Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals, 2022, 15, 171.	1.7	37
86	Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment. Polymer Bulletin, 2022, 79, 11217-11233.	1.7	10
87	Musculoskeletal tissue engineering. , 2022, , 531-553.		0
88	Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomaterialia, 2022, 141, 219-232.	4.1	31
89	Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with <scp>GO</scp> / <scp>MgO</scp> . Cell Biochemistry and Function, 2022, 40, 203-212.	1.4	4
90	Biodegradation of gelatin stabilized tetragonal zirconia synthesized by microwave assisted sol-gel method. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 127, 105070.	1.5	5
91	Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomedical Materials (Bristol), 2022, 17, 025014.	1.7	1
93	Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels. Cancers, 2022, 14, 1225.	1.7	7

#	Article	IF	CITATIONS
94	Biomimetic Organic–Inorganic Nanocomposite Scaffolds to Regenerate Cranial Bone Defects in a Rat Animal Model. ACS Biomaterials Science and Engineering, 2022, 8, 1258-1270.	2.6	4
95	Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues. Frontiers in Bioengineering and Biotechnology, 2022, 10, 764682.	2.0	15
96	Additive-Free Gelatine-Based Devices for Chondral Tissue Regeneration: Shaping Process Comparison among Mould Casting and Three-Dimensional Printing. Polymers, 2022, 14, 1036.	2.0	4
97	Application of artificial neural networks to predict Young's moduli of cartilage scaffolds: An in-vitro and micromechanical study. , 2022, 136, 212768.		10
98	Fusobacterium nucleatum Subspecies Differ in Biofilm Forming Ability in vitro. Frontiers in Oral Health, 2022, 3, 853618.	1.2	11
99	Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromolecular Research, 2022, 30, 212-221.	1.0	9
100	Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels, 2022, 8, 179.	2.1	89
102	Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Advanced Drug Delivery Reviews, 2022, 183, 114161.	6.6	21
103	Synthesis of a novel monofilament bioabsorbable suture for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2189-2210.	1.6	3
104	3D printed hydrogel for articular cartilage regeneration. Composites Part B: Engineering, 2022, 237, 109863.	5.9	44
106	Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an inÂvitro invasion of cancer cells. Regenerative Therapy, 2021, 18, 516-522.	1.4	12
107	Fabrication and characterization of osteogenic function of progenitor <scp>cellâ€laden</scp> gelatin microcarriers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1265-1278.	1.6	1
108	Preparation of External Stimulus-Free Gelatin–Catechol Hydrogels with Injectability and Tunable Temperature Responsiveness. ACS Applied Materials & Interfaces, 2022, 14, 236-244.	4.0	11
109	Development of aqueous protein/polysaccharide mixture-based inks for 3D printing towards food applications. Food Hydrocolloids, 2022, 131, 107742.	5.6	22
110	Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1704-1758.	1.9	10
111	Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Frontiers in Bioengineering and Biotechnology, 2022, 10, 856398.	2.0	8
112	Fabrication of gelatin Bi ₂ S ₃ capsules as a highly sensitive X-ray contrast agent for gastrointestinal motility assessment <i>in vivo</i> . RSC Advances, 2022, 12, 13645-13652.	1.7	2
113	Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomaterialia, 2022, 146, 80-93.	4.1	14

		CITATION REPORT	
#	Article	IF	Citations
114	Binary polymer systems for biomedical applications. International Materials Reviews, 2023, 68, 184	-224. 9.4	7
115	Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines, 2022, 10, 1095.	1.4	15
116	Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Frontier Bioengineering and Biotechnology, 2022, 10, .	rs in 2.0	18
117	Highly elastic 3D-printed gelatin/HA/placental-extract scaffolds for bone tissue engineering. Theranostics, 2022, 12, 4051-4066.	4.6	15
118	Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 2022, 14, 1177.	2.0	63
119	Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Patholo Advanced Healthcare Materials, 2022, 11, .	gy. 3.9	13
120	An Updated Account on Formulations and Strategies for the Treatment of Burn Infection – A Rev Current Pharmaceutical Design, 2022, 28, 1480-1492.	iew. 0.9	14
121	Applications of some biopolymeric materials as medical implants: An overview. Materials Today: Proceedings, 2022, , .	0.9	2
122	Characterization and Cytocompatibility of Collagen–Gelatin–Elastin (CollaGee) Acellular Skin Substitute towards Human Dermal Fibroblasts: In Vitro Assessment. Biomedicines, 2022, 10, 1327	. 1.4	15
123	Polymeric biomaterials for wound healing applications: a comprehensive review. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1998-2050.	1.9	25
124	Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial. ACS Applied Materials & Interfaces, 2022, 14, 28501-28513.	4.0	10
125	Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
126	Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers, 2022, 14, 2365.	2.0	28
127	Planarâ€/Curvilinearâ€Bioprinted Triâ€Cellâ€Laden Hydrogel for Healing Irregular Chronic Wounds. Advanced Healthcare Materials, 2022, 11, .	. 3.9	12
128	Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. Langmuir, 2022, 38, 8733-8747.	1.6	6
129	A Bioprinted Bruch's Membrane for Modeling Smokeâ€Induced Retinal Pigment Epithelium Degene via Hybrid Membrane Printing Technology. Advanced Healthcare Materials, 2022, 11, .	eration 3.9	5
130	Bioactive Cell-Derived ECM Scaffold Forms a Unique Cellular Microenvironment for Lung Tissue Engineering. Biomedicines, 2022, 10, 1791.	1.4	8
131	Coacervates: Recent developments as nanostructure delivery platforms for therapeutic biomolecul International Journal of Pharmaceutics, 2022, 624, 122058.	es. 2.6	13

#	Article	IF	CITATIONS
132	Production of biopolymers from food waste: Constrains and perspectives. Bioresource Technology, 2022, 361, 127650.	4.8	23
133	Dominant geometrical factors of collective cell migration in flexible 3D gelatin tube structures. Biophysical Reports, 2022, , 100063.	0.7	0
134	Advances in 3D Bioprinting for Cancer Biology and Precision Medicine: From Matrix Design to Application. Advanced Healthcare Materials, 2022, 11, .	3.9	23
135	Surface properties of plasma electrolytic oxidation coating modified by polymeric materials: A review. Progress in Organic Coatings, 2022, 171, 107053.	1.9	21
136	Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials. Polymers, 2022, 14, 3112.	2.0	6
137	Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomaterials Science and Engineering, 2022, 8, 3271-3298.	2.6	18
138	Mechanically Enhanced Salmo salar Gelatin by Enzymatic Cross-linking: Premise of a Bioinspired Material for Food Packaging, Cosmetics, and Biomedical Applications. Marine Biotechnology, 2022, 24, 801-819.	1.1	5
139	Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	18
140	Mussel-inspired polydopamine decorated alginate dialdehyde-gelatin 3D printed scaffolds for bone tissue engineering application. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
141	Effects of decellularized extracellular matrix derived from Jagged1-treated human dental pulp stem cells on biological responses of stem cells isolated from apical papilla. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
142	Grafting of Methyl Methacrylate onto Gelatin Initiated by Tri-Butylborane—2,5-Di-Tert-Butyl-p-Benzoquinone System. Polymers, 2022, 14, 3290.	2.0	3
143	Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering. International Journal of Biological Macromolecules, 2022, 221, 314-333.	3.6	9
144	Biodegradable Polymers for Cardiac Tissue Engineering. , 2022, , 1-35.		0
145	Natural polymers for wound dressing applications. Studies in Natural Products Chemistry, 2022, , 367-441.	0.8	6
146	Three dimensional lung models - Three dimensional extracellular matrix models. , 2022, , 109-131.		1
147	A defined heat pretreatment of gelatin enables control of hydrolytic stability, stiffness, and microstructural architecture of fibrin–gelatin hydrogel blends. Biomaterials Science, 2022, 10, 5552-5565.	2.6	5
148	A review on developments of <i>in-vitro</i> and <i>in-vivo</i> evaluation of hybrid PCL-based natural polymers nanofibers scaffolds for vascular tissue engineering. Journal of Industrial Textiles, 2022, 52, 152808372211283.	1.1	3
149	Lithography-based 3D printed hydrogels: From bioresin designing to biomedical application. Colloids and Interface Science Communications, 2022, 50, 100667.	2.0	9

#	Article	IF	Citations
150	A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell and Tissue Research, 2022, 390, 399-411.	1.5	1
151	Antimicrobial cryogel dressings towards effective wound healing. Progress in Biomaterials, 2022, 11, 331-346.	1.8	13
152	Solvent types used for the preparation of hydrogels determine their mechanical properties and influence cell viability through gelatine and calcium ions release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 314-330.	1.6	2
153	Electrospun poly(<scp>l</scp> â€lactideâ€ <i>co</i> â€îµâ€caprolactone)/gelatin core–shell nanofibers encapsulated with doxorubicin hydrochloride as a drug delivery system. Polymer International, 2023, 72, 166-175.	1.6	3
154	Injectable nanoporous microgels generate vascularized constructs and support bone regeneration in critical-sized defects. Scientific Reports, 2022, 12, .	1.6	10
155	Current Concepts and Methods in Tissue Interface Scaffold Fabrication. Biomimetics, 2022, 7, 151.	1.5	10
156	Preparation and characterization of self-stimuli conductive nerve regeneration conduit using co-electrospun nanofibers filled with gelatin-chitosan hydrogels containing polyaniline-graphene-ZnO nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 165-175.	1.8	1
157	A Macroporous Cryogel with Enhanced Mechanical Properties for Osteochondral Regeneration In vivo. Chinese Journal of Polymer Science (English Edition), 2023, 41, 40-50.	2.0	6
158	Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications. Materials, 2022, 15, 6942.	1.3	2
159	Fabrication and in vitro evaluation of chitosan-gelatin based aceclofenac loaded scaffold. International Journal of Biological Macromolecules, 2023, 224, 223-232.	3.6	12
160	Towards Clinical Translation of In Situ Cartilage Engineering Strategies: Optimizing the Critical Facets of a Cell-Laden Hydrogel Therapy. Tissue Engineering and Regenerative Medicine, 0, , .	1.6	1
161	Magnetically Activated Piezoelectric 3D Platform Based on Poly(Vinylidene) Fluoride Microspheres for Osteogenic Differentiation of Mesenchymal Stem Cells. Gels, 2022, 8, 680.	2.1	4
162	In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. Polymers, 2022, 14, 4459.	2.0	7
163	Engineered-Skin of Single Dermal Layer Containing Printed Hybrid Gelatin-Polyvinyl Alcohol Bioink via 3D-Bioprinting: In Vitro Assessment under Submerged vs. Air-Lifting Models. Pharmaceuticals, 2022, 15, 1328.	1.7	3
164	Routine development of long-term primary cell culture and finite cell line from the hemolymph of greasyback shrimp (Metapenaeus ensis) and virus susceptibility. Aquaculture, 2023, 563, 739007.	1.7	1
165	Hybrid Biodegradable Polymeric Scaffolds for Cardiac Tissue Engineering. , 2022, , 1-48.		0
166	Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 768-790.	1.9	1
167	High throughput 3D gel-based neural organotypic model for cellular assays using fluorescence biosensors. Communications Biology, 2022, 5, .	2.0	2

#	Article	IF	CITATIONS
168	Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Research Notes, 2022, 15, .	0.6	1
169	Plant proteins as the functional building block of edible microcarriers for cell-based meat culture application. Critical Reviews in Food Science and Nutrition, 0, , 1-11.	5.4	4
170	Bioactivated gellan gum hydrogels affect cellular rearrangement and cell response in vascular co-culture and subcutaneous implant models. , 2022, 143, 213185.		3
171	Bioactive glass-based organic/inorganic hybrids: an analysis of the current trends in polymer design and selection. Journal of Materials Chemistry B, 2023, 11, 519-545.	2.9	4
172	Chick embryo chorioallantoic membrane: A biomaterial testing platform for tissue engineering applications. Process Biochemistry, 2023, 124, 81-91.	1.8	4
173	Injectable bioorthogonal hydrogel (BIOCEL) accelerates tissue regeneration in degenerated intervertebral discs. Bioactive Materials, 2023, 23, 551-562.	8.6	6
174	Antiâ€Müllerian hormone stimulates expression of the collagenâ€specific chaperone 47â€kDa heat shock protein in bovine uterine epithelial cells. Animal Science Journal, 2022, 93, .	0.6	0
175	Chapter 5. Mimicking Chemical Features of the Tumor Microenvironment. Biomaterials Science Series, 2022, , 97-140.	0.1	0
176	Study on Gelatin Biomaterial for Embryonic Stem Cell Culture by Measuring Young's Modulus via Atomic Force Microscopy. Applied Science and Convergence Technology, 2022, 31, 171-174.	0.3	0
177	Methacrylated Gelatin as an On-Demand Injectable Vehicle for Drug Delivery in Dentistry. Methods in Molecular Biology, 2023, , 493-503.	0.4	1
179	Inorganic/Biopolymers Hybrid Hydrogels Dual Cross-Linked for Bone Tissue Regeneration. Gels, 2022, 8, 762.	2.1	2
180	Versatile Poly(3,4-ethylenedioxythiophene) Polyelectrolytes for Bioelectronics by Incorporation of an Activated Ester. Chemistry of Materials, 2023, 35, 41-50.	3.2	8
181	Accurate detection of enzymatic degradation processes of gelatin–alginate microcapsule by 1H NMR spectroscopy: Probing biodegradation mechanism and kinetics. Carbohydrate Polymers, 2023, 304, 120490.	5.1	3
182	Design, characterization and evaluation of gelatin/carboxymethyl cellulose hydrogels for effective delivery of ciprofloxacin. Polymer Bulletin, 2023, 80, 12271-12299.	1.7	0
183	Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. International Journal of Molecular Sciences, 2022, 23, 16185.	1.8	6
184	Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications. Biomedicines, 2022, 10, 3224.	1.4	12
185	Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics. , 2023, , 79-108.		0
186	Hybrid Hydrogels of FKF-Peptide Assemblies and Gelatin for Sustained Antimicrobial Activity. ACS Biomaterials Science and Engineering, 2023, 9, 352-362.	2.6	4

#	Article	IF	CITATIONS
187	Effect of Tryptophan Metabolites on Cell Damage Revealed by Bacteria–Cell Interactions in Hydrogel Microspheres. Analytical Chemistry, 0, , .	3.2	0
188	Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Biomaterials Science, 2023, 11, 1895-1909.	2.6	10
189	Growing Skin-Like Tissue. Springer Briefs in Molecular Science, 2023, , 45-102.	0.1	0
190	Development of an alginate–gelatin bioink enhancing osteogenic differentiation by gelatin release. International Journal of Bioprinting, 2022, 9, 660.	1.7	2
191	Injectable Multifunctional Natural Polymer-Based Hydrogels for the Local Delivery of Therapeutic Agents. , 0, , 10.		1
192	Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. Journal of Functional Biomaterials, 2023, 14, 23.	1.8	5
193	Properties and Printability of the Synthesized Hydrogel Based on GelMA. International Journal of Molecular Sciences, 2023, 24, 2121.	1.8	6
194	Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing. Materials, 2023, 16, 1162.	1.3	4
195	Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration. Polymers, 2023, 15, 589.	2.0	2
196	Characterization and Analysis of Chitosan-Gelatin Composite-Based Biomaterial Effectivity as Local Hemostatic Agent: A Systematic Review. Polymers, 2023, 15, 575.	2.0	10
197	Biomaterial-based fibers for enhanced wound healing and effective tissue regeneration. , 2023, , 73-96.		0
198	Hybrid Biodegradable Polymeric Scaffolds for Cardiac Tissue Engineering. , 2023, , 1045-1092.		0
199	Engineered approach coupled with machine learning in biofabrication of patient-specific nerve guide conduits - Review. Bioprinting, 2023, 30, e00264.	2.9	2
200	Nanoscale level gelatin-based scaffolds enhance colony formation of porcine testicular germ cells. Theriogenology, 2023, 202, 125-135.	0.9	0
201	Gelatin-based scaffolds: An intuitive support structure for regenerative therapy. Current Opinion in Biomedical Engineering, 2023, 26, 100452.	1.8	5
202	Extrusion based bioprinting of alginate based multicomponent hydrogels for tissue regeneration applications: State of the art. Materials Today Communications, 2023, 35, 105696.	0.9	3
203	Stem cell niche-inspired microcarriers with ADSCs encapsulation for diabetic wound treatment. Bioactive Materials, 2023, 26, 159-168.	8.6	5
204	A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials, 2023, 13, 1374.	1.9	4

#	Article	IF	CITATIONS
206	Novel hydrogels: are they poised to transform 3D cell-based assay systems in early drug discovery?. Expert Opinion on Drug Discovery, 2023, 18, 335-346.	2.5	1
207	Gelatin modified with alkoxysilanes (GelmSi) forms hybrid hydrogels for bioengineering applications. , 2023, 147, 213321.		2
208	Biomass-derived fiber materials for biomedical applications. Frontiers in Materials, 0, 10, .	1.2	3
209	The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute. Polymers, 2023, 15, 779.	2.0	2
210	Biomimetic In Vitro Lung Models: Current Challenges and Future Perspective. Advanced Materials, 2023, 35, .	11.1	8
211	Biomimetic polyelectrolyte coating of stem cells suppresses thrombotic activation and enhances its survival and function. , 2023, 147, 213331.		2
212	Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly. Jorjani Biomedicine Journal, 2022, 10, 13-25.	0.1	5
213	Gelatinâ€Based Ingestible Impedance Sensor to Evaluate Gastrointestinal Epithelial Barriers. Advanced Materials, 2023, 35, .	11.1	2
214	Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 2023, 28, 1920.	1.7	8
215	High-Resolution In Situ High-Content Imaging of 3D-Bioprinted Single Breast Cancer Spheroids for Advanced Quantification of Benzo(<i>a</i>)pyrene Carcinogen-Induced Breast Cancer Stem Cells. ACS Applied Materials & Interfaces, 2023, 15, 11416-11430.	4.0	2
216	Sustained Release of BMSCâ€EVs from 3D Printing Gel/HA/nHAP Scaffolds for Promoting Bone Regeneration in Diabetic Rats. Advanced Healthcare Materials, 2023, 12, .	3.9	5
217	Biodegradable Polymers for Cardiac Tissue Engineering. , 2023, , 979-1013.		2
218	Biopolymer-Based Gels. , 2023, , 1-22.		0
219	Biomaterial types, properties, medical applications, and other factors: a recent review. Journal of Zhejiang University: Science A, 2023, 24, 1027-1042.	1.3	8
220	Emerging Trends in Biodegradable Microcarriers for Therapeutic Applications. Polymers, 2023, 15, 1487.	2.0	1
221	Biobased materials in nano drug delivery. , 2023, , 447-462.		0
222	The role of three-dimensional scaffolds based on polyglycerol sebacate/ polycaprolactone/ gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Biological Procedures Online, 2023, 25, .	1.4	6
223	In vitro evaluation of genipin-crosslinked gelatin hydrogels for vocal fold injection. Scientific Reports, 2023, 13, .	1.6	7

#	Article	IF	CITATIONS
224	Transdermal drug delivery system of lidocaine hydrochloride based on dissolving gelatin/sodium carboxymethylcellulose microneedles. AAPS Open, 2023, 9, .	0.4	2
225	Innovative Approaches and Advances for Hair Follicle Regeneration. ACS Biomaterials Science and Engineering, 2023, 9, 2251-2276.	2.6	5
226	Recombinant Proteins for Assembling as Nano- and Micro-Scale Materials for Drug Delivery: A Host Comparative Overview. Pharmaceutics, 2023, 15, 1197.	2.0	5
227	Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. , 2023, 150, 213436.		3
228	Natural compound-based scaffold to design inÂvitro disease systems. , 2023, , 373-389.		0
229	Encapsulation in tendon and ligament regeneration. , 2023, , 557-588.		0
230	Biodegradable nanomaterials as antimicrobial agents. , 2023, , 117-130.		0
234	Biopolymer-Based Gels. , 2023, , 469-490.		0
235	Scaffold Materials and Toxicity. , 2023, , 535-558.		0
237	longels prepared from biopolymers and their applications. , 2023, , 73-98.		0
238	Current applications of biomolecules in biomedical engineering. , 2023, , 419-437.		0
240	Two-in-One Visual Gelatin Embolization Microspheres for Precise Localization and Rapid Embolization Studies. , 0, , 1859-1869.		0
256	Advanced strategies in the application of gelatin-based bioink for extrusion bioprinting. Bio-Design and Manufacturing, 2023, 6, 586-608.	3.9	5
277	Additive manufacturing in biomedical and healthcare sector: an umbrella review. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	0
278	Synthesis of Composites Based on Natural and Synthetic Polymers as Precursors for Medical Materials in the Presence of β-Pyrochlore Oxides. Green Chemistry and Sustainable Technology, 2024, , 147-189.	0.4	0
296	Closer to nature. , 2024, , 47-92.		0