Multifunctional materials for implantable and wearable

Nature Reviews Materials 5, 149-165 DOI: 10.1038/s41578-019-0167-3

Citation Report

#	Article	IF	CITATIONS
1	Large-gain low-voltage and wideband organic photodetectors <i>via</i> unbalanced charge transport. Materials Horizons, 2020, 7, 3234-3241.	6.4	29
2	Octacyanidometallates for multifunctional molecule-based materials. Chemical Society Reviews, 2020, 49, 5945-6001.	18.7	100
3	Biocompatible Magnesium Implant Double-Coated with Dexamethasone-Loaded Black Phosphorus and Poly(lactide- <i>co</i> -glycolide). ACS Applied Bio Materials, 2020, 3, 8879-8889.	2.3	8
4	3D motion tracking display enabled by magneto-interactive electroluminescence. Nature Communications, 2020, 11, 6072.	5.8	27
5	Nearâ€Field Communication Powered Hydrogelâ€Based Smart Contact Lens. Advanced Materials Technologies, 2020, 5, 2000702.	3.0	17
6	Tough Gel-Fibers as Strain Sensors Based on Strain–Optics Conversion Induced by Anisotropic Structural Evolution. Chemistry of Materials, 2020, 32, 9675-9687.	3.2	24
7	Materdicine: Interdiscipline of materials and medicine. View, 2020, 1, 20200016.	2.7	22
8	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
9	Interstitial nanoclusters within graphene sheets for highly conductive, strong and electrochemically active fiber-shaped supercapacitors. Applied Materials Today, 2020, 20, 100768.	2.3	10
10	Intercalation of Metal lons into Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Highâ€Arealâ€Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials, 2020, 30, 2003721.	7.8	61
11	Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals, 2020, 10, 668.	1.0	17
12	Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Advanced Materials Technologies, 2020, 5, .	3.0	37
13	Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsystems and Nanoengineering, 2020, 6, 62.	3.4	69
14	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	3.2	49
15	Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors. Cellulose, 2020, 27, 9975-9989.	2.4	53
16	Standâ€Alone Intrinsically Stretchable Electronic Device Platform Powered by Stretchable Rechargeable Battery. Advanced Functional Materials, 2020, 30, 2003608.	7.8	36
17	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	5.8	166
18	Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes. Nature Communications, 2020, 11, 6248.	5.8	12

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Wearable Biosensors for Body Computing. Advanced Functional Materials, 2021, 31, 2008087.	7.8	56
20	Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics. ACS Nano, 2020, 14, 15688-15699.	7.3	62
21	Ti ₃ C ₂ MXene Photoexciting Nanoflakes for Localization of Supercontinuum Lasing of Aqueous-Phase Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 13385-13392.	1.5	2
22	Understanding the Effect of End Group Halogenation in Tuning Miscibility and Morphology of Highâ€Performance Small Molecular Acceptors. Solar Rrl, 2020, 4, 2000250.	3.1	63
23	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424.	10.2	136
24	Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing. Polymers, 2020, 12, 625.	2.0	43
25	Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. Applied Sciences (Switzerland), 2020, 10, 805.	1.3	23
26	Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. Materials, 2020, 13, 921.	1.3	15
27	Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & Interfaces, 2020, 12, 34337-34361.	4.0	72
28	Biodegradable hollow Co3S4@N-doped carbon as enhanced PTT/PDT agent for multimodal MR/thermal imaging and synergistic antitumor therapy. Chemical Engineering Journal, 2020, 392, 124555.	6.6	65
29	Recent Advances in Bioplastics: Application and Biodegradation. Polymers, 2020, 12, 920.	2.0	195
30	Celluloseâ€Based Flexible Functional Materials for Emerging Intelligent Electronics. Advanced Materials, 2021, 33, e2000619.	11.1	425
31	Digital manufacturing of functional materials for wearable electronics. Journal of Materials Chemistry C, 2020, 8, 10587-10603.	2.7	41
32	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Advanced Materials, 2021, 33, e2002640.	11.1	278
33	Strain loading dependent optoelectronic characteristics in CdS micro/nanowires. Journal of Alloys and Compounds, 2021, 857, 157489.	2.8	2
34	Lowâ€Voltage Operable and Strainâ€Insensitive Stretchable Allâ€Carbon Nanotube Integrated Circuits with Local Strain Suppression Layer. Advanced Electronic Materials, 2021, 7, .	2.6	9
35	Ultraflexible Integrated Organic Electronics for Ultrasensitive Photodetection. Advanced Materials Technologies, 2021, 6, .	3.0	15
36	Smart Stretchable Electronics for Advanced Human–Machine Interface. Advanced Intelligent Systems, 2021, 3, 2000157.	3.3	38

#	Article	IF	CITATIONS
37	FullyPrinted Flexible Plasmonic Metafilms with Directional Color Dynamics. Advanced Science, 2021, 8, 2002419.	5.6	20
38	Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Advanced Energy Materials, 2021, 11, 2002838.	10.2	78
39	<i>Nepenthes</i> pitcher inspired isotropic/anisotropic polymer solid–liquid composite interface: preparation, function, and application. Materials Chemistry Frontiers, 2021, 5, 1716-1742.	3.2	19
40	Upconversion nanoparticles coated organic photovoltaics for near infrared light controlled drug delivery systems. Nano Energy, 2021, 81, 105650.	8.2	18
41	Passive Polarized Light Guiding and Thermally Induced Visible Fluorescence in Histidine Microstructures with Optical Switching Function. Advanced Functional Materials, 2021, 31, 2008183.	7.8	6
42	Multispectral upconversion nanoparticles for near infrared encoding of wearable devices. RSC Advances, 2021, 11, 21897-21903.	1.7	4
43	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	2.2	18
44	Application of Bioplastics in Agro-Based Industries and Bioremediation. , 2021, , 661-701.		0
45	Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 2021, 9, 12265-12275.	5.2	29
46	Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. Journal of the American Chemical Society, 2021, 143, 1562-1569.	6.6	31
47	From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano, 2021, 15, 1960-2004.	7.3	171
48	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	7.9	36
49	Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Advanced Science, 2021, 8, 2004023.	5.6	73
50	Ultrafast assembly and healing of nanomaterial networks on polymer substrates for flexible hybrid electronics. Applied Materials Today, 2021, 22, 100956.	2.3	7
51	Systematic Review on Human Skin-Compatible Wearable Photoplethysmography Sensors. Applied Sciences (Switzerland), 2021, 11, 2313.	1.3	27
52	Flexible organic solar cells for biomedical devices. Nano Research, 2021, 14, 2891-2903.	5.8	19
53	Functional photonic structures for external interaction with flexible/wearable devices. Nano Research, 2021, 14, 2904-2918.	5.8	8
54	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	7.8	26

	Сіт	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
55	wearable modelectric Nanogenerators for merapeutics. menus in Chemistry, 2021, 3, 279-290.	4.4	100
56	Flexible infrared photodetector based on indium antimonide nanowire arrays. Nanotechnology, 2021, 32, 27LT01.	1.3	4
57	A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 18021-180	32. 4.0	17
58	Smart Contact Lenses with a Transparent Silver Nanowire Strain Sensor for Continuous Intraocular Pressure Monitoring. ACS Applied Bio Materials, 2021, 4, 4532-4541.	2.3	24
59	Insights on Flexible Zincâ€lon Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	11.1	191
60	Regioregularity-Dependent Crystalline Structures and Thermal Transitions in Poly(3-dodecylthiophene)s. Chemistry of Materials, 2021, 33, 3312-3320.	3.2	10
61	Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Research, 2021, 14, 2919-2937.	5.8	34
62	Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nature Communications, 2021, 12, 2399.	5.8	101
63	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. MRS Bulletin, 2021, 46, 576-587.	1.7	5
64	Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology, 2021, 325, 124739.	4.8	226
65	Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance. Nanotechnology, 2021, 32, 295401.	1.3	15
66	Stretchable and Transparent Paper Based on PDMS–CNC Composite for Direct Printing. Advanced Materials Technologies, 2021, 6, 2100156.	3.0	7
67	Emerging Biomedical Applications of Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 202 9, 2100269.	.1, 3.6	49
68	A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine. Advanced Science, 2021, 8, 2005010.	5.6	56
69	Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100158.	3.9	27
71	An Efficient Narrowband Nearâ€Infrared at 1040Ânm Organic Photodetector Realized by Intermolecula Charge Transfer Mediated Coupling Based on a Squaraine Dye. Advanced Materials, 2021, 33, e210058	r 11.1 32	88
72	Ultraâ€Deformable and Tissueâ€Adhesive Liquid Metal Antennas with High Wireless Powering Efficienc Advanced Materials, 2021, 33, e2008062.	y. 11.1	65
73	Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391.	7.8	102

#	Article	IF	CITATIONS
74	Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. Advanced Materials, 2021, 33, e2005930.	11.1	14
75	Protoporphyrin IX: An Endogenous Theranostic Compound. , 2021, , .		Ο
76	22â€4: Invited Paper: OLEDs for Wearables: From Form Factor Engineering to Healthcare Applications. Digest of Technical Papers SID International Symposium, 2021, 52, 274-277.	0.1	2
77	Biophotonic probes for bio-detection and imaging. Light: Science and Applications, 2021, 10, 124.	7.7	74
78	Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 31418-31430.	4.0	23
79	Biocompatible, Highâ€Performance, Wetâ€Adhesive, Stretchable Allâ€Hydrogel Supercapacitor Implant Based on PANI@rGO/Mxenes Electrode and Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2101329.	10.2	91
80	Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Science Advances, 2021, 7, .	4.7	144
81	SARS-CoV-2, hemoglobin and protoporphyrin IX: Interactions and perspectives. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102324.	1.3	14
82	Flexible electronics from intrinsically soft materials. Giant, 2021, 6, 100051.	2.5	31
83	Near-Infrared Emissive Cyanido-Bridged {YbFe2} Molecular Nanomagnets Sensitive to the Nitrile Solvents of Crystallization. Magnetochemistry, 2021, 7, 79.	1.0	7
84	Adhesive aero-hydrogel hybrid conductor assembled from silver nanowire architectures. Science China Materials, 2021, 64, 2868-2876.	3.5	12
85	Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 2022, 139, 280-295.	4.1	48
86	A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society, 2021, 143, 11679-11689.	6.6	65
87	Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables. Chemical Engineering Journal, 2021, 416, 128981.	6.6	13
88	Plasmonic enhancement of current-driven whispering gallery polariton device of single microwire based heterojunction via Rh nanocubes deposition. Journal of Luminescence, 2021, 235, 118016.	1.5	7
89	Pyridinyl-Carbazole Fragments Containing Host Materials for Efficient Green and Blue Phosphorescent OLEDs. Molecules, 2021, 26, 4615.	1.7	2
90	Photonic skins based on flexible organic microlaser arrays. Science Advances, 2021, 7, .	4.7	42
91	Artificial Intelligence-Enabled Caregiving Walking Stick Powered by Ultra-Low-Frequency Human Motion. ACS Nano, 2021, 15, 19054-19069.	7.3	98

#	Article	IF	CITATIONS
92	Amine-Assisted Delaminated 2D Ti ₃ C ₂ T <i>_x</i> MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 35878-35888.	4.0	26
93	Scaling Metalâ€Elastomer Composites toward Stretchable Multiâ€Helical Conductive Paths for Robust Responsive Wearable Health Devices. Advanced Healthcare Materials, 2021, 10, e2100221.	3.9	18
94	A Wavy-Structured Highly Stretchable Thermoelectric Generator with Stable Energy Output and Self-Rescuing Capability. CCS Chemistry, 2021, 3, 2404-2414.	4.6	42
95	Flexible and Airâ€Stable Nearâ€Infrared Sensors Based on Solutionâ€Processed Inorganic–Organic Hybrid Phototransistors. Advanced Functional Materials, 2021, 31, 2105887.	7.8	47
96	A Highly Controlled Organic–Inorganic Encapsulation Nanocomposite with Versatile Features toward Wearable Device Applications. Macromolecular Rapid Communications, 2021, 42, e2100134.	2.0	1
97	Realizing Stretchable Aqueous Zn–Based Batteries by Material and Structural Designs. Frontiers in Energy Research, 2021, 9, .	1.2	2
98	Embroidering a Light and Foldable Photovoltaic Gauze Kerchiefs. Energy Technology, 2021, 9, 2100285.	1.8	2
99	Azobenzene-containing liquid crystalline composites for robust ultraviolet detectors based on conversion of illuminance-mechanical stress-electric signals. Nature Communications, 2021, 12, 4875.	5.8	37
100	Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Research, 2022, 15, 2616-2625.	5.8	19
101	Triboelectric Nanogenerators for Self-Powered Breath Monitoring. ACS Applied Energy Materials, 2022, 5, 3952-3965.	2.5	39
102	3D-printed solid-state electrolytes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4547-4564.	1.2	11
103	Soft Implantable Bioelectronics. , 2021, 3, 1528-1540.		24
104	Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo. Advanced Functional Materials, 2021, 31, 2105989.	7.8	35
105	In-reactor engineering of bioactive aliphatic polyesters via magnesium-catalyzed polycondensation for guided tissue regeneration. Chemical Engineering Journal, 2021, 424, 130432.	6.6	13
106	High quality quarternary-alloyed ZnCdSSe/ZnS quantum dots with single photoluminescence decay channel and high devise stability. Journal of Luminescence, 2021, 240, 118463.	1.5	4
107	Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomaterials Science, 2021, 9, 5472-5483.	2.6	24
108	Rationally designed hierarchical C/TiO ₂ /Ti multilayer core–sheath wires for high-performance energy storage devices. Nanoscale, 2021, 13, 8658-8664.	2.8	4
109	Flexible Nano Smart sensors. , 2021, , 199-230.		1

#	Article	IF	CITATIONS
110	Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Materials Advances, 2021, 2, 1787-1820.	2.6	13
111	Materials with aggregation-induced emission characteristics for applications in diagnosis, theragnosis, disease mechanism study and personalized medicine. Materials Chemistry Frontiers, 2021, 5, 3322-3343.	3.2	20
112	Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 745-754.	4.0	64
113	Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano, 2020, 14, 6470-6497.	7.3	186
115	Infrared neurostimulation of earthworm: from modeling to experiment. Optical Engineering, 2020, 59, 1.	0.5	1
116	Wearable chem-biosensing devices: from basic research to commercial market. Lab on A Chip, 2021, 21, 4285-4310.	3.1	29
117	Phototriggered Aggregationâ€Induced Emission and Direct Generation of 4D Soft Patterns. Advanced Materials, 2021, 33, e2105113.	11.1	40
118	A wireless optoelectronic skin patch for light delivery and thermal monitoring. IScience, 2021, 24, 103284.	1.9	5
119	Carbonâ€Based Nanomaterials and Sensing Tools for Wearable Health Monitoring Devices. Advanced Materials Technologies, 2022, 7, 2100572.	3.0	38
120	A perspective on flexible sensors in developing diagnostic devices. Applied Physics Letters, 2021, 119, .	1.5	23
121	Tough Carbon Nanotubeâ€Implanted Bioinspired Threeâ€Dimensional Electrical Adhesive for Isotropically Stretchable Waterâ€Repellent Bioelectronics. Advanced Functional Materials, 2022, 32, 2107285.	7.8	30
122	Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials, 2021, 279, 121201.	5.7	28
123	Optimal control and design of magnetic field-responsive smart polymer composites. Applied Mathematical Modelling, 2022, 103, 141-161.	2.2	6
124	Low-dimensional material based wearable sensors. Nanotechnology, 2022, 33, 072001.	1.3	12
125	Diagnosis and prognosis for exercise-induced muscle injuries: from conventional imaging to emerging point-of-care testing. RSC Advances, 2020, 10, 38847-38860.	1.7	1
126	Bio-micro-photonic Devices Made of Amico-Acid Microstructures. , 2021, , .		0
127	Recent advances of flexible sensors for biomedical applications. Progress in Natural Science: Materials International, 2021, 31, 872-882.	1.8	42
128	Highly Stretchable Starch Hydrogel Wearable Patch for Electrooculographic Signal Detection and Human–Machine Interaction. Small Structures, 2021, 2, 2100105.	6.9	16

#	Article	IF	CITATIONS
129	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	6.9	16
130	Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy, 2022, 91, 106676.	8.2	30
131	A Flexible and Wavelengthâ€Designable Polymer Lightâ€Emitting Diode Employing Sandwichâ€Encapsulation for Wearable Skin Rejuvenation Photomedicine. Advanced Materials Interfaces, 2021, 8, 2100856.	1.9	7
132	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€skin: A Delicate Design for Versatile Sensing. Small, 2022, 18, e2103734.	5.2	76
133	Organic–Inorganic Hybrid Approach to Pulse Oximetry Sensors with Reliability and Low Power Consumption. ACS Photonics, 2021, 8, 3564-3572.	3.2	12
134	Reconsidering the Roles of Noncovalent Intramolecular "Locks―in π-Conjugated Molecules. Chemistry of Materials, 2021, 33, 9139-9151.	3.2	8
135	Light-Responsive Nanomaterials for Cancer Therapy. Engineering, 2022, 13, 18-30.	3.2	31
137	Microdome-Tunable Graphene/Carbon Nanotubes Pressure Sensors Based on Polystyrene Array for Wearable Electronics. Materials, 2021, 14, 7385.	1.3	11
138	Evolving Flexible Sensors, Wearable and Implantable Technologies Towards BodyNET for Advanced Healthcare and Reinforced Life Quality. IEEE Open Journal of Circuits and Systems, 2021, 2, 702-720.	1.4	34
139	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. Journal of Materials Chemistry C, 2021, 9, 17042-17049.	2.7	16
140	Noninvasive Multimodal Physiological Sensing Systems: Design, Implementation and Validation. , 2021, ,		0
141	Effects of hafnium on the structural, optical and ferroelectric properties of sol–gel synthesized barium titanate ceramics. Journal of the Korean Ceramic Society, 2022, 59, 240-251.	1.1	4
142	Smart Wireless Nearâ€Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy. Advanced Science, 2022, 9, e2103254.	5.6	22
143	A Review on Solution-Processed Organic Phototransistors and Their Recent Developments. Electronics (Switzerland), 2022, 11, 316.	1.8	24
144	Exosome-mediated delivery of transforming growth factor-β receptor 1 kinase inhibitors and toll-like receptor 7/8 agonists for combination therapy of tumors. Acta Biomaterialia, 2022, 141, 354-363.	4.1	17
145	Functionalization of Fiber Devices: Materials, Preparations and Applications. Advanced Fiber Materials, 2022, 4, 324-341.	7.9	29
146	A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics. Advanced Materials, 2022, 34, e2101339.	11.1	35
147	Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electronic Advances, 2022, 5, 210098-210098.	6.4	71

#	Article	IF	CITATIONS
148	A Degradable-Renewable Ionic Skin Based on Edible Glutinous Rice Gel. ACS Applied Materials & Interfaces, 2022, 14, 5122-5133.	4.0	17
149	Tissueâ€Like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation. Advanced Healthcare Materials, 2022, 11, e2102160.	3.9	21
150	Rare-earth activated SnO2 photoluminescent thin films on flexible glass: Synthesis, deposition and characterization. Optical Materials, 2022, 124, 111978.	1.7	13
151	Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals. Materials Horizons, 2022, 9, 961-972.	6.4	26
152	Applications of nanogenerators for biomedical engineering and healthcare systems. InformaÄnÃ- Materiály, 2022, 4, .	8.5	45
153	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
154	Materials for wearable sensors. , 2022, , 5-40.		3
155	Generation of multiple triplet states in an orthogonal bodipy dimer: a breakthrough spectroscopic and theoretical approach. Physical Chemistry Chemical Physics, 2022, 24, 5929-5938.	1.3	10
156	A biosensor material with robust mechanical properties, fatigue-resistance, biocompatibility, biodegradability, and anti-freezing capabilities. Journal of Materials Chemistry A, 2022, 10, 8491-8500.	5.2	7
157	Stationary, Continuous, and Sequential Surfaceâ€Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymerâ€Metal Composite Sensor Particles through Microfluidics: A Review. Advanced Optical Materials, 2022, 10, .	3.6	11
158	Light-dependent ionic-electronic conduction in an amorphous octahedral molybdenum cluster thin film. NPG Asia Materials, 2022, 14, .	3.8	11
159	Wetâ€Adhesive Elastomer for Liquid Metalâ€Based Conformal Epidermal Electronics. Advanced Functional Materials, 2022, 32, .	7.8	59
160	Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Longâ€Term Robust Continuous Glucose Monitoring of Smart Contact Lens. Advanced Materials, 2022, 34, e2110536.	11.1	48
161	Advanced Electronics and Artificial Intelligence: Mustâ€Have Technologies Toward Human Body Digital Twins. Advanced Intelligent Systems, 2022, 4, .	3.3	11
162	Ultrafast, Light, Soft Martensitic Materials. Advanced Functional Materials, 2022, 32, .	7.8	7
163	An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Resistant Bacteria. Advanced Materials, 2022, 34, e2200334.	11.1	25
164	Soft wearable devices for deep-tissue sensing. Nature Reviews Materials, 2022, 7, 850-869.	23.3	103
165	Flexible Metamaterial Electronics. Advanced Materials, 2022, 34, e2200070.	11.1	87

#	Article	IF	CITATIONS
166	Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review. Healthcare (Switzerland), 2022, 10, 547.	1.0	32
167	Heteroalkylâ€Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Advanced Functional Materials, 2022, 32, .	7.8	22
168	AÂ2D material–based transparent hydrogel with engineerable interference colours. Nature Communications, 2022, 13, 1212.	5.8	37
169	Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials, 2022, 283, 121435.	5 .7	52
170	Natural Material Inspired Organic Thin-Film Transistors for Biosensing: Properties and Applications. , 2022, 4, 918-937.		17
171	High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.	3.2	18
172	Fully roll-to-roll gravure printed electronics: challenges and the way to integrating logic gates. Japanese Journal of Applied Physics, 2022, 61, SE0802.	0.8	14
173	Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nature Communications, 2022, 13, 1906.	5.8	22
174	Designing inorganic nanoparticles into computed tomography and magnetic resonance (CT/MR) imaging-guidable photomedicines. Materials Today Nano, 2022, 18, 100187.	2.3	8
175	Transparent Photovoltaics for Self-Powered Bioelectronics and Neuromorphic Applications. Journal of Physical Chemistry Letters, 2021, 12, 12426-12436.	2.1	12
176	The ability of silver-biochar green-synthesized from Citrus maxima peel to adsorb pollutant organic compounds and antibacterial activity. Green Chemistry Letters and Reviews, 2022, 15, 18-27.	2.1	9
177	Recent Advances in 1D Nanomaterialâ€Based Bioelectronics for Healthcare Applications. Advanced NanoBiomed Research, 2022, 2, .	1.7	8
178	In Situ Study of Molecular Aggregation in Conjugated Polymer/Elastomer Blends toward Stretchable Electronics. Macromolecules, 2022, 55, 297-308.	2.2	30
179	Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nature Communications, 2021, 12, 7038.	5.8	23
180	Optical coherence tomography-guided confocal Raman microspectroscopy for rapid measurements in tissues. Biomedical Optics Express, 2022, 13, 344.	1.5	2
181	Elastic Properties and Deformation Mechanisms in the van der Waals Singleâ€Crystalline Indium Selenide. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100418.	1.2	1
182	Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Letters, 2022, 7, 267-281.	8.8	31
183	Microfluidic-Supported Synthesis of Anisotropic Polyvinyl Methacrylate Nanoparticles via Interfacial Agents Polymer Chemistry, 0, , .	1.9	0

#	Article	IF	CITATIONS
184	Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. Science Advances, 2022, 8, eabn1646.	4.7	25
185	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	4.5	19
186	Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 1366.	1.9	33
187	Indenofluorenes for organic optoelectronics: the dance of fused five- and six-membered rings enabling structural versatility. Journal of Materials Chemistry C, 2022, 10, 8496-8535.	2.7	12
188	Surface passivation engineering approach to fluoroacrylate-incorporated polytetrafluoroethylene for highly reliable a-IGZO TFTs. Journal of Materials Chemistry C, 2022, 10, 9114-9123.	2.7	2
189	Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers, 2022, 14, 1709.	2.0	7
190	Materials and device design for advanced phototherapy systems. Advanced Drug Delivery Reviews, 2022, 186, 114339.	6.6	24
191	Micro/nanofiber fabrication technologies for wearable sensors: a review. Journal of Micromechanics and Microengineering, 2022, 32, 064002.	1.5	5
192	Integrated Analytical System for Clinical Single ell Analysis. Advanced Science, 2022, 9, e2200415.	5.6	5
193	Fast Selfâ€Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. Small Methods, 2022, 6, e2200461.	4.6	32
194	Optical flexible biosensors: From detection principles to biomedical applications. Biosensors and Bioelectronics, 2022, 210, 114328.	5.3	18
195	Plataformização da pele? Tatuagens biométricas, dataÃsmo e a datificação do consumidor. Cadernos EBAPE BR, 2022, 20, 207-217.	0.1	0
196	Platformization of the skin? Biometric tattoos, dataism, and consumer datification. Cadernos EBAPE BR, 2022, 20, 207-217.	0.1	0
197	Polymer Optical Fiber Multimaterial: Flexible and Customizable Approach in Sensors Development. IEEE Photonics Technology Letters, 2022, 34, 611-614.	1.3	2
198	Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chemical Communications, 2022, 58, 6982-6997.	2.2	7
199	Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication. Materials Horizons, 2022, 9, 2180-2190.	6.4	15
200	Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy, 2022, 99, 107444.	8.2	22
201	A Personalized Electronic Tattoo for Healthcare Realized by Onâ€theâ€Spot Assembly of an Intrinsically Conductive and Durable Liquidâ€Metal Composite. Advanced Materials, 2022, 34, .	11.1	45

#	Article	lF	CITATIONS
202	Highly elastic energy storage device based on intrinsically super-stretchable polymer lithium-ion conductor with high conductivity. Fundamental Research, 2024, 4, 140-146.	1.6	19
203	Persistent luminescent behavior of rare-earth-activated phosphors. , 2022, , 363-375.		0
204	Recent progress in electrospun nanomaterials for wearables. APL Bioengineering, 2022, 6, 021505.	3.3	13
205	46â€3: <i>Invited Paper:</i> Skinâ€like Organic Optoelectronic System for Realâ€time Heart Rate Monitoring. Digest of Technical Papers SID International Symposium, 2022, 53, 585-588.	0.1	1
206	Highâ€Barrierâ€Height Ti ₃ C ₂ T <i>_x</i> /Si Microstructure Schottky Junctionâ€Based Selfâ€Powered Photodetectors for Photoplethysmographic Monitoring. Advanced Materials Technologies, 2022, 7, .	3.0	15
207	Inorganic–Organic Hybrid Phototransistor Array with Enhanced Photogating Effect for Dynamic Near-Infrared Light Sensing and Image Preprocessing. Nano Letters, 2022, 22, 5434-5442.	4.5	19
208	Chemical synthesis and materials discovery. , 2022, 1, 514-520.		15
209	Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nature Communications, 2022, 13, .	5.8	47
210	Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Advanced Drug Delivery Reviews, 2022, 188, 114419.	6.6	11
211	Comparison between Piezoelectric and Piezoresistive Wearable Gait Monitoring Techniques. Materials, 2022, 15, 4837.	1.3	2
212	Flexible passive integrated photonic devices with superior optical and mechanical performance. Optics Express, 2022, 30, 26534.	1.7	2
213	Recent Advances in Flexible RF MEMS. Micromachines, 2022, 13, 1088.	1.4	6
214	Bendingâ€insensitive Intrinsically Flexible Ultraviolet Encoding Devices Based on Piezoelectric Nanogenerator‣upplied Liquid Crystalline Polymer Fabrics. Small, 2022, 18, .	5.2	6
215	Highly Deformable and Durable Hydrogels through Synergy of Covalent Crosslinks and Nanosheetâ€Reinforced Dynamic Interactions toward Flexible Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	12
216	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
217	Wireless Standâ€Alone Trimodal Interactive Display Enabled by Direct Capacitive Coupling. Advanced Materials, 2022, 34, .	11.1	9
218	Hyaluronate–Black Phosphorus–Upconversion Nanoparticle Complex for Non-invasive Theranosis of Skin Cancer. Biomacromolecules, 2022, 23, 3602-3611.	2.6	6
219	Multi-channel AgNWs-doped interdigitated organic electrochemical transistors enable sputum-based device towards noninvasive and portable diagnosis of lung cancer. Materials Today Bio, 2022, 16, 100385.	2.6	3

#	Article	IF	CITATIONS
220	Novel adamantane substituted polythiophenes as competitors to Poly(3-Hexylthiophene). Polymer, 2022, 258, 125274.	1.8	0
221	Dynamics and coherence of photoexcited states in polyfluorene films with ordered chain phases. Journal of Materials Chemistry C, 2022, 10, 11801-11809.	2.7	4
222	Ferroptosis promotes sonodynamic therapy: a platinum(<scp>ii</scp>)–indocyanine sonosensitizer. Chemical Science, 2022, 13, 9921-9926.	3.7	22
223	Arrayed Heterostructures of MoS ₂ Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors. ACS Nano, 2022, 16, 14951-14962.	7.3	33
225	Iontronics: Aqueous ion-based engineering for bioinspired functionalities and applications. Chemical Physics Reviews, 2022, 3, .	2.6	6
227	Ultra-Stable, Endurable, and Flexible Sb ₂ Te _{<i>x</i>} Se _{3–<i>x</i>} Phase Change Devices for Memory Application and Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 45600-45610.	4.0	4
228	Ultraflexible and Ultrasensitive Nearâ€Infrared Organic Phototransistors for Hemispherical Biomimetic Eyes. Advanced Functional Materials, 2022, 32, .	7.8	14
229	Machine Learning for Bioelectronics on Wearable and Implantable Devices: Challenges and Potential. Tissue Engineering - Part A, 2023, 29, 20-46.	1.6	15
230	Mussel Byssus Inspired Ionic Skin with Damageâ€Resistant Signal for Human–Machine Interaction. Advanced Materials Interfaces, 2022, 9, .	1.9	2
231	Soft Human–Machine Interface Sensing Displays: Materials and Devices. Advanced Materials, 2023, 35, .	11.1	12
232	A Photoactivated Sorafenib-Ruthenium(II) Prodrug for Resistant Hepatocellular Carcinoma Therapy through Ferroptosis and Purine Metabolism Disruption. Journal of Medicinal Chemistry, 2022, 65, 13041-13051.	2.9	27
233	Optogenetic Stimulation and Spatial Localization of Neurons Using a Multi-OLED Approach. ACS Photonics, 2022, 9, 3279-3290.	3.2	1
234	Light-emitting materials for wearable electronics. Nature Reviews Materials, 2022, 7, 839-840.	23.3	16
235	Wearable Surfaceâ€Lighting Microâ€Lightâ€Emitting Diode Patch for Melanogenesis Inhibition. Advanced Healthcare Materials, 2023, 12, .	3.9	8
236	Transfer printing technologies for soft electronics. Nanoscale, 2022, 14, 16749-16760.	2.8	9
237	Paradigm shift in future biophotonics for imaging and therapy: Miniature living lasers to cellular scale optoelectronics. Theranostics, 2022, 12, 7335-7350.	4.6	5
238	Self-Healing Polymers for Electronics and Energy Devices. Chemical Reviews, 2023, 123, 558-612.	23.0	48
239	Mapping of Spatiotemporal Auricular Electrophysiological Signals Reveals Human Biometric Clusters. Advanced Healthcare Materials, 0, , 2201404.	3.9	1

	CHANON R		
# 240	ARTICLE Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022, 7, 935-952.	IF 23.3	Citations 153
241	Bimetallic Electrocatalyst of Hyaluronate-Au@Pt for Durable Oxygen Reduction in Biofuel Cells. ACS Applied Energy Materials, 2022, 5, 12475-12484.	2.5	1
242	Wearable Photomedicine for Neonatal Jaundice Treatment Using Blue Organic Lightâ€Emitting Diodes (OLEDs): Toward Textileâ€Based Wearable Phototherapeutics. Advanced Science, 2022, 9, .	5.6	18
243	Biotechnological advancements towards water, food and medical healthcare: A review. Chemosphere, 2023, 312, 137185.	4.2	6
244	NIR Light-Mediated Photocuring of Adhesive Hydrogels for Noninvasive Tissue Repair <i>via</i> Upconversion Optogenesis. Biomacromolecules, 2022, 23, 5007-5017.	2.6	11
245	Fully Transparent, Ultrathin Flexible Organic Electrochemical Transistors with Additive Integration for Bioelectronic Applications. Advanced Science, 2023, 10, .	5.6	13
246	Perovskite Solar Cellâ€Gated Organic Electrochemical Transistors for Flexible Photodetectors with Ultrahigh Sensitivity and Fast Response. Advanced Materials, 2023, 35, .	11.1	16
248	Smart Contact Lenses for the New Era of IoT: Integrated Biosensors, Circuits, and Human–Machine Interface Systems. Advanced Materials Technologies, 2023, 8, .	3.0	6
249	Intrinsically Stretchable Electroluminescent Elastomers with Selfâ€Confinement Effect for Highly Efficient Nonâ€Blended Stretchable OLEDs. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
250	Intrinsically Stretchable Electroluminescent Elastomers with Self onfinement Effect for Highly Efficient Nonâ€Blended Stretchable OLEDs. Angewandte Chemie, 2023, 135, .	1.6	6
251	Emerging biotransduction strategies on soft interfaces for biosensing. Nanoscale, 2022, 15, 80-91.	2.8	0
252	Unveiling the correlation between structural and magnetic ordering in nano Co _{1â^'<i>x</i>} Ni _{<i>x</i>} TeO ₄ . Physical Chemistry Chemical Physics, 2023, 25, 3144-3150.	1.3	2
253	Data-driven design of carbon-based materials for high-performance flexible energy storage devices. Journal of Power Sources, 2023, 556, 232522.	4.0	5
254	Portable, Automated and Deepâ€Learningâ€Enabled Microscopy for Smartphoneâ€Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review. Small Methods, 2023, 7, .	4.6	7
255	Au and Pt Nanoparticles Grown on Flexible Carbon Fiber Cloth Supports Decorated with Cerium Metal Organic Frameworks for the Real-Time Detection of H ₂ O ₂ in Live Cancer Tissue. ACS Applied Nano Materials, 2022, 5, 18328-18336.	2.4	7
256	Optical Wireless Power Transfer for Clothing-Covered Wearables. , 2022, , .		1
257	Ultraflexible and Energyâ€Efficient Artificial Synapses Based on Molecular/Atomic Layer Deposited Organic–Inorganic Hybrid Thin Films. Advanced Electronic Materials, 2023, 9, .	2.6	0
258	Electrochemical biomaterials for self-powered implantable "tissue batteries― A tutorial review. Nano Research, 2023, 16, 5447-5463.	5.8	2

#	Article	IF	CITATIONS
259	Structural Phase Modulation in Lanthanum―and Tin osubstituted Pb(Zr,Ti)O ₃ Ceramics and its Energy and Pyroenergy Storage Properties. Physica Status Solidi (A) Applications and Materials Science, 0, , 2200421.	0.8	0
260	Multilevel Structure Engineered Leadâ€Free Piezoceramics Enabling Breakthrough in Energy Harvesting Performance for Bioelectronics. Advanced Functional Materials, 2023, 33, .	7.8	8
261	Knowledge Base Materials Sustainable Science Communication on Advanced Materials. Smart Innovation, Systems and Technologies, 2023, , 33-42.	0.5	0
262	Solution-Processed Organic–Inorganic Semiconductor Heterostructures for Advanced Hybrid Phototransistors. ACS Applied Electronic Materials, 2023, 5, 578-592.	2.0	5
263	Achieving Fast Charge Separation by Ferroelectric Ultrasonic Interfacial Engineering for Rapid Sonotherapy of Bacteriaâ€Infected Osteomyelitis. Advanced Materials, 2023, 35, .	11.1	28
264	2D conjugated microporous polyacetylenes synthesized via halogen-bond-assisted radical solid-phase polymerization for high-performance metal-ion absorbents. Nature Communications, 2023, 14, .	5.8	2
265	Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth. Nano Research, 2023, 16, 7164-7170.	5.8	2
266	Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles. Chemical Research in Chinese Universities, 2023, 39, 133-138.	1.3	2
267	Free-Standing Carbon Nanotube Thin Film for Multifunctional Halide-Perovskite Optoelectronics. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, S127-S130.	0.1	0
268	Smart Skinâ€Adhesive Patches: From Design to Biomedical Applications. Advanced Functional Materials, 2023, 33, .	7.8	16
269	Rapid photonic curing effects of xenon flash lamp on ITO–Ag–ITO multilayer electrodes for high throughput transparent electronics. Scientific Reports, 2023, 13, .	1.6	1
270	Water-soluble conjugated polymers for bioelectronic systems. Materials Horizons, 2023, 10, 1210-1233.	6.4	16
271	Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nature Reviews Materials, 2023, 8, 241-260.	23.3	33
272	An implantable ionic therapeutic platform for photodynamic therapy with wireless capacitive power transfer. Materials Horizons, 2023, 10, 2215-2225.	6.4	1
273	2D Rhenium Dichalcogenides: From Fundamental Properties to Recent Advances in Photodetector Technology. Advanced Functional Materials, 2023, 33, .	7.8	11
274	Selfâ€powered transparent photodetector for subretinal visual functions of wideâ€fieldâ€ofâ€view and broadband perception. InformaÄnÃ-Materiály, 2023, 5, .	8.5	14
275	Manipulation of ferroelectric polarization and light absorption in non-noble metal/Aurivillius ferroelectric hybrid to enhance self-driven photodetection by coupling ferro-pyro-phototronic and plasmonic effect. Nano Energy, 2023, 110, 108330.	8.2	10
276	Emerging ultrasonic bioelectronics for personalized healthcare. Progress in Materials Science, 2023, 136, 101110.	16.0	10

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
277	Bioelectronic devices for light-based diagnostics and therapies. Biophysics Reviews, 2023, 4, .	1.0	2
278	Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. International Journal of Molecular Sciences, 2023, 24, 3221.	1.8	10
279	Advanced light delivery materials and systems for photomedicines. Advanced Drug Delivery Reviews, 2023, 194, 114729.	6.6	1
280	Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	11
281	Recent Advances in Perceptive Intelligence for Soft Robotics. Advanced Intelligent Systems, 2023, 5, .	3.3	7
282	New techniques and methods for prevention and treatment of symptomatic traumatic neuroma: A systematic review. Frontiers in Neurology, 0, 14, .	1.1	0
283	Skin-Like Near-Infrared II Photodetector with High Performance for Optical Communication, Imaging, and Proximity Sensing. Chemistry of Materials, 2023, 35, 2114-2124.	3.2	8
284	Helical long period fiber grating sensor for non-invasive measurement of vital signs. Optics and Laser Technology, 2023, 162, 109293.	2.2	1
285	Specific and Longâ€Term Luminescent Monitoring of Hydrogen Peroxide in Tumor Metastasis. Advanced Materials, 2023, 35, .	11.1	4
286	Responsive Liquid rystal Microlaser Arrays with Tactile Perception. Advanced Optical Materials, 2023, 11, .	3.6	3
287	A photo-responsive organic electrochemical transistor. Journal of Materials Chemistry C, 2023, 11, 7982-7988.	2.7	2
288	Fabrication of practical deformable displays: advances and challenges. Light: Science and Applications, 2023, 12, .	7.7	11
289	Flexible Quantum Dot Lightâ€Emitting Device for Emerging Multifunctional and Smart Applications. Advanced Materials, 2023, 35, .	11.1	13
290	Noninvasive measurement of local stress inside soft materials with programmed shear waves. Science Advances, 2023, 9, .	4.7	5
291	Recent Advances in Cardiovascular Disease Biosensors and Monitoring Technologies. ACS Sensors, 2023, 8, 956-973.	4.0	17
292	Towards Digital Twin Implementation in Roll-To-Roll Gravure Printed Electronics: Overlay Printing Registration Error Prediction Based on Printing Process Parameters. Nanomaterials, 2023, 13, 1008.	1.9	0
293	Flexible bioelectronic innovation for personalized health management. , 2023, 2, 167-171.		0
294	A wearable alternating current electroluminescent device based on imidazole chloride ionogel films with high conductivity, stretchability and transmittance. Journal of Materials Chemistry C, 2023, 11, 5882-5889.	2.7	2

#	Article	IF	Citations
295	A Degradable Sensor Based on Insect Protein for Postsurgical Diagnosis of Joint Health. Advanced Materials Technologies, 0, , .	3.0	0
296	Adhesive Properties of Semiconducting Polymers: Poly(3-alkylthiophene) as an Ersatz Glue. Chemistry of Materials, 2023, 35, 3329-3342.	3.2	3
297	Ion implantation in multifunctional materials. Materials Letters, 2023, 342, 134347.	1.3	1
298	Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems. Chemical Society Reviews, 2023, 52, 3326-3352.	18.7	7
299	Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. Advanced Materials, 2023, 35, .	11.1	5
300	Multifunctionality of luminescent molecular nanomagnets based on lanthanide complexes. Chemical Communications, 2023, 59, 5961-5986.	2.2	9
301	Supercooled Water Induced Hysteretic Transition in H ₂ SO ₄ -treated PEDOT:PSS. Journal of Materials Chemistry C, 0, , .	2.7	0
302	Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nature Reviews Materials, 2023, 8, 498-517.	23.3	39
304	Bioadhesives for clinical applications – a mini review. Materials Advances, 2023, 4, 2062-2069.	2.6	5
314	Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 2023, 123, 6891-6952.	23.0	137
315	Recent developments in implantable neural probe technologies. MRS Bulletin, 2023, 48, 484-494.	1.7	2
324	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
326	Aggregation-Induced Emission (AIE), Life and Health. ACS Nano, 2023, 17, 14347-14405.	7.3	48
336	Internet of things in Healthcare: a conventional literature review. Health and Technology, 2023, 13, 699-719.	2.1	3
340	InP colloidal quantum dots for visible and near-infrared photonics. Nature Reviews Materials, 2023, 8, 742-758.	23.3	5
351	Recent advances in smart wearable sensors as electronic skin. Journal of Materials Chemistry B, 2023, 11, 10332-10354.	2.9	0
370	Microneedle biomedical devices. , 0, , .		1
374	Body-conformable light-emitting materials and devices. Nature Photonics, 2024, 18, 114-126.	15.6	1

#	Article	IF	CITATIONS
376	Development of Optical Sensors Using LED as Photodetector: LED Apogee Detector Example. , 2023, , .		0
380	Wearable and Implantable Light-Emitting Diodes and Their Biomedical Applications. Korean Journal of Chemical Engineering, 2024, 41, 1-24.	1.2	0
381	Plastic and bioplastic-based nanocomposite materials for food packaging and preservation. , 2024, , 53-65.		0
384	Implantable soft electronics and sensors. , 2024, , 393-435.		0
388	Thermal release tape–enabled transfer printing techniques. , 2024, , 63-78.		0