A review on exploration of Fe2O3 photocatalyst toward contaminants

Journal of Environmental Management 258, 110050

DOI: 10.1016/j.jenvman.2019.110050

Citation Report

#	Article	IF	CITATIONS
1	Polymer Nanocompositeâ€based Coatings for Corrosion Protection. Chemistry - an Asian Journal, 2020, 15, 3915-3941.	1.7	58
2	Surface functionalized magnetic α-Fe2O3 nanoparticles: Synthesis, characterization and Hg2+ ion removal in water. Surfaces and Interfaces, 2020, 21, 100680.	1.5	12
3	Aerobic Oil-Phase Cyclic Magnetic Adsorption to Synthesize 1D Fe2O3@TiO2 Nanotube Composites for Enhanced Visible-Light Photocatalytic Degradation. Nanomaterials, 2020, 10, 1345.	1.9	15
4	Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?. Journal of Colloid and Interface Science, 2020, 580, 503-514.	5.0	412
5	Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue. Dalton Transactions, 2020, 49, 17725-17736.	1.6	70
6	The unforeseen relationship of Fe2O3 and ZnO on fibrous silica KCC-1 catalyst for fabricated Z-scheme extractive-photooxidative desulphurization. Powder Technology, 2020, 375, 397-408.	2.1	30
7	Immobilization of Fe2O3/TiO2 photocatalyst on the metallic substrate via plasma electrolytic oxidation process: degradation efficiency. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	12
8	Crystallization time in ZnO: the role of surface OH groups in its photoactivity. New Journal of Chemistry, 2020, 44, 18216-18224.	1.4	12
9	B-site Substitution Effects on The Catalytic Activity of Perovskites Compounds towards Oxidative Degradation of Orange II Solutions. IOP Conference Series: Materials Science and Engineering, 2020, 864, 012001.	0.3	0
10	Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 279-292.	2.7	35
11	An efficiently heterogeneous photocatalyst for degradation of cation and neutral dyes under UV light based on size-dependent effects of tetracarboxyate complex. Journal of Solid State Chemistry, 2020, 292, 121681.	1.4	3
12	Re-collectable and recyclable epichlorohydrin-crosslinked humic acid with spinel cobalt ferrite core for simple magnetic removal of cationic triarylmethane dyes in polluted water. Journal of Environmental Chemical Engineering, 2020, 8, 104004.	3.3	11
13	Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin–FeOOH system for the degradation of organic dyes. RSC Advances, 2020, 10, 18704-18714.	1.7	28
14	Enhanced Photocatalytic and Antibacterial Activities of K2Ti6O13 Nanowires Induced by Copper Doping. Crystals, 2020, 10, 400.	1.0	8
15	Z-scheme heterojunction nanocomposite fabricated by decorating magnetic MnFe2O4 nanoparticles on BiOBr nanosheets for enhanced visible light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and Rhodamine B. Separation and Purification Technology, 2020, 250, 117186.	3.9	92
16	Updates on the Roadmap for Photocatalysis. ACS Catalysis, 2020, 10, 5493-5501.	5.5	293
17	2-Methylimidazole-modulated UiO-66 as an effective photocatalyst to degrade Rhodamine B under visible light. Journal of Materials Science, 2021, 56, 1577-1589.	1.7	7
18	Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chemical Engineering Journal, 2021, 421, 127845.	6.6	85

#	Article	IF	Citations
19	Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. Journal of Materials Science and Technology, 2021, 78, 202-222.	5.6	60
20	Adding value to aluminosilicate solid wastes to produce adsorbents, catalysts and filtration membranes for water and wastewater treatment. Journal of Materials Science, 2021, 56, 1039-1063.	1.7	20
21	Surface plasmon resonance triggered promising visible light photocatalysis of LiNbO ₃ ceramic supported Ag nanoparticles. Journal of the American Ceramic Society, 2021, 104, 1237-1246.	1.9	10
22	Preparation of zinc tellurides quantum dots and zinc tellurides/multi-walled carbon nanotubes nanocomposites and photocatalytic activity. Inorganic and Nano-Metal Chemistry, 2021, 51, 1047-1053.	0.9	2
23	Photocatalysis for removal of environmental pollutants and fuel production: a review. Environmental Chemistry Letters, 2021, 19, 441-463.	8.3	140
24	The effect of calcogenate sulfur on the performance of the S-TiO2/Ti electrode as a photoelectrocatalytic sensor for phenolic compounds. Journal of Physics: Conference Series, 2021, 1763, 012069.	0.3	2
25	Photocatalytic degradation of organic dyes using heterogeneous catalysts. , 2021, , 43-90.		5
26	Visible light-driven self-powered aptasensors for ultrasensitive Microcystin-LR detection based on the carrier density effect of N-doped graphene hydrogel/hematite Schottky junctions. Analyst, The, 2021, 146, 6220-6227.	1.7	7
27	HPO ₄ ^{2â^'} enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co ₉ S ₈ nanoparticles for organic pollutants degradation <i>via</i> peroxymonosulfate activation: critical roles of superoxide radical, singlet oxygen and electron transfer. Physical Chemistry Chemical Physics, 2021, 23, 5283-5297.	1.3	13
28	Photocatalytic degradation of dyes in textile effluent: A green approach to eradicate environmental pollution. , 2021, , 199-214.		7
29	Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. Metals, 2021, 11, 80.	1.0	204
30	Nanostructured Photocatalysts for Degradation of Environmental Pollutants. , 2021, , 823-863.		Ο
31	Gold nanoparticles decorated biguanidine modified mesoporous silica KIT-5 as recoverable heterogeneous catalyst for the reductive degradation of environmental contaminants. Scientific Reports, 2021, 11, 2734.	1.6	37
32	Solid-State Synthesis of Direct Z-Scheme Cu2O/WO3 Nanocomposites with Enhanced Visible-Light Photocatalytic Performance. Catalysts, 2021, 11, 293.	1.6	23
33	Synthesis and application of Au NPs-chitosan nanocomposite in the treatment of acute myeloid leukemia in vitro and in vivo. Arabian Journal of Chemistry, 2021, 14, 102929.	2.3	4
34	Enhancing the Photocatalytic Properties of ZrO2/ZnO Nanocomposite Supported on Montmorillonite Clay for Photodegradation of Congo Red. Journal of Electronic Materials, 2021, 50, 2870-2878.	1.0	7
35	Cu2O/ZnO-PANI ternary nanocomposite as an efficient photocatalyst for the photodegradation of Congo Red dye. Journal of Environmental Chemical Engineering, 2021, 9, 105065.	3.3	49
36	Employment of advanced oxidation processes in the degradation of a textile dye mixture: evaluation of reaction parameters, kinetic study, toxicity and modeling by artificial neural networks. Revista Eletrônica Em Gest£o Educaç£o E Tecnologia Ambiental, 0, 25, e12.	0.0	5

#	Article	IF	CITATIONS
37	Synthetize of Nano Particles a-Fe2O3 Material from Waste Magnetic Filter Ceramic Tile Industry Prepare by Calcination Method as Photocatalyst Degradation of Methylene Blue. Journal of Physics: Conference Series, 2021, 1912, 012020.	0.3	0
38	Bio-waste-derived few-layered graphene/SrTiO3/PAN as efficient photocatalytic system for water splitting. Applied Surface Science, 2021, 549, 149176.	3.1	37
39	Preparation of carbon dots-hematite quantum dots-loaded hydroxypropyl cellulose-chitosan nanocomposites for drug delivery, sunlight catalytic and antimicrobial application. Journal of Photochemistry and Photobiology B: Biology, 2021, 219, 112201.	1.7	42
40	An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation. Journal of Environmental Chemical Engineering, 2021, 9, 105199.	3.3	71
41	Z-scheme BiVO4/g-C3N4 heterojunction: an efficient, stable and heterogeneous catalyst with highly enhanced photocatalytic activity towards Malachite Green assisted by H2O2 under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126445.	2.3	40
42	Magnetic MgFe2O4–CaFe2O4 S-scheme photocatalyst prepared from recycling of electric arc furnace dust. Journal of Environmental Management, 2021, 290, 112609.	3.8	18
43	Simultaneous remediation of hexavalent chromium and organic pollutants in wastewater using period 4 transition metal oxide-based photocatalysts: a review. Environmental Chemistry Letters, 2021, 19, 4489-4517.	8.3	25
44	Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 88-114.	2.7	29
45	Tragacanth gum mediated green fabrication of mesoporous titania nanomaterials: Application in photocatalytic degradation of crystal violet. Journal of Environmental Management, 2021, 291, 112680.	3.8	13
46	Enhanced photocatalytic performance of CuFeO2-ZnO heterostructures for methylene blue degradation under sunlight. Journal of Materials Science: Materials in Electronics, 2021, 32, 22256-22269.	1.1	5
47	Photocatalytic degradation of methylene blue dye by porous zinc oxide nanofibers prepared via electrospinning: When defects become merits. Applied Surface Science, 2021, 557, 149830.	3.1	22
48	Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Materials Today, 2021, 50, 533-569.	8.3	95
49	Morphology controlled synthesis of α-Fe2O3-x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis. Applied Catalysis B: Environmental, 2021, 291, 120129.	10.8	105
50	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e967" altimg="si55.svg"> <mml:msup><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup> : Study of isotherm, kinetic models, and phenomenology. Environmental Technology and Innovation,	3.0	7
51	2021, 23, 101723. CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126729.	2.3	32
52	The photocatalytic potential of BiOBr for wastewater treatment: A mini-review. Journal of Environmental Chemical Engineering, 2021, 9, 105404.	3.3	53
53	Photo-electrochemical and enhanced photocatalytic activity of CdS/rGO nanocomposites prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2021, 32, 22093-22105.	1.1	2
54	Low-cost and facile fabrication of recyclable and reusable waste-based geopolymer for visible-light photocatalysis degradation. Journal of Cleaner Production, 2021, 310, 127434.	4.6	26

#	Article	IF	CITATIONS
55	Recent progress in green and biopolymer based photocatalysts for the abatement of aquatic pollutants. Environmental Research, 2021, 199, 111324.	3.7	24
56	Adsorptive removal and visible-light photocatalytic degradation of large cationic and anionic dyes induced by air-bubbles in the presence of a magnetic porphyrinic metal-organic framework (Fe3O4@SiO2@PCN-222(Fe)). Journal of Physics and Chemistry of Solids, 2021, 155, 110126.	1.9	26
57	Effects of precursors on the phase, magnetic and photocatalytic properties of nano Fe2O3 synthesized by low temperature calcination. Colloids and Interface Science Communications, 2021, 44, 100504.	2.0	7
58	Application of Magnetic Composites in Removal of Tetracycline through Adsorption and Advanced Oxidation Processes (AOPs): A Review. Processes, 2021, 9, 1644.	1.3	21
59	La2Sn2O7/g-C3N4 nanocomposites: Rapid and green sonochemical fabrication and photo-degradation performance for removal of dye contaminations. Ultrasonics Sonochemistry, 2021, 77, 105678.	3.8	18
60	Predicting the trend and utility of different photocatalysts for degradation of pharmaceutically active compounds: A special emphasis on photocatalytic materials, modifications, and performance comparison. Journal of Environmental Management, 2021, 293, 112858.	3.8	23
61	Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: A comparison of composite and coreâ d'shell structures. Chemosphere, 2021, 281, 130970.	4.2	63
62	PVDF-TiO2 core-shell fibrous membranes by microwave-hydrothermal method: Preparation, characterization, and photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9, 106250.	3.3	24
63	Improved photocatalytic activities of recyclable porous Fe2O3 nanotubes by modifying with nano-sized SiO2 and g-C3N4 for degrading 2-chlorophenol. Materials Research Bulletin, 2021, 142, 111416.	2.7	3
64	Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: A review. Chemosphere, 2021, 282, 131059.	4.2	43
65	Step towards the sustainable toxic dyes removal and recycling from aqueous solution- A comprehensive review. Resources, Conservation and Recycling, 2021, 175, 105849.	5.3	152
66	A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere, 2022, 286, 131651.	4.2	147
67	Elucidation of a mechanism for the heterogeneous electro-fenton process and its application in the green treatment of azo dyes. Chemosphere, 2022, 286, 131832.	4.2	11
68	Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. Environmental Research, 2022, 204, 111964.	3.7	17
69	Nanostructured Fe ₂ O ₃ /TiO ₂ composite particles with enhanced NIR reflectance for application to LiDAR detectable cool pigments. RSC Advances, 2021, 11, 16834-16840.	1.7	12
70	An activated carbon fiber supported Fe ₂ O ₃ @bismuth carbonate heterojunction for enhanced visible light degradation of emerging pharmaceutical pollutants. Reaction Chemistry and Engineering, 2021, 6, 2029-2041.	1.9	17
71	Double hydrothermal synthesis of iron oxide/silver oxide nanocomposites with antibacterial activity ^{**} . Journal of the Mechanical Behavior of Materials, 2021, 30, 207-212.	0.7	6
72	Tailoring the morphology of BiNbO4 of polymorph in 2D nanosheets for enhancement of photocatalytic activity in the visible range. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 115009.	1.3	4

#	Article	IF	CITATIONS
73	2D/2D Heterojunction systems for the removal of organic pollutants: A review. Advances in Colloid and Interface Science, 2021, 297, 102540.	7.0	51
74	Selective ethanol sensor based on α-Fe2O3 nanoparticles. Inorganic Chemistry Communication, 2021, 133, 108961.	1.8	13
75	Analysis of Fe-doped ZnO thin films for degradation of rhodamine b, methylene blue, and Escherichia coli under visible light. Materials Research Express, 2021, 8, 116402.	0.8	15
76	Insight into the activity of TiO2@nitrogen-doped hollow carbon spheres supported on g-C3N4 for robust photocatalytic performance. Chemosphere, 2022, 288, 132392.	4.2	17
77	Composition-dependent structure evolution of FeVO4 nano-oxide and its visible-light photocatalytic activity for degradation of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127856.	2.3	17
78	Effect of cycle numbers on the structural, linear and nonlinear optical properties in Fe2O3 thin films deposited by SILAR method, Current Applied Physics, 2022, 34, 7-18.	1.1	36
79	altimg="sil67.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e869"</mml:math 	3.4	3
80	Cambene Ligand-Doped Fe2O3 Composite for Rapid Removal of Multiple Dyes under Sunlight. Sustainability, 2021, 13, 12669.	1.6	2
81	Hafnium oxide nanoparticles synthesized via sol-gel route for an efficient detection of volatile organic compounds at room temperature. Materials Science in Semiconductor Processing, 2022, 139, 106336.	1.9	9
82	Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system. Journal of Alloys and Compounds, 2022, 898, 162829.	2.8	15
83	Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A: General, 2022, 630, 118460.	2.2	26
84	Morphology-controlled hydrothermal synthesis and photocatalytic Cr(VI) reduction properties of α-Fe2O3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128069.	2.3	43
85	Morphology/facet-dependent photo-Fenton-like degradation of pharmaceuticals and personal care products over hematite nanocrystals. Chemical Engineering Journal, 2022, 432, 134429.	6.6	18
86	Effect of calcination temperature on photocatalytic activity of magnetic Fe-based composites recycled from hazardous EAF dust. Materials Research Bulletin, 2022, 148, 111688.	2.7	2
87	MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coordination Chemistry Reviews, 2022, 456, 214392.	9.5	86
88	Fe-doped Al2O3 nanoplatforms as efficient and recyclable photocatalyst for the dyes remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113733.	2.0	6
89	Synthesis, Characterization, and Photocatalytic Activity of Ba-Doped BiFeO3 Thin Films. Materials, 2022, 15, 961.	1.3	12
90	Green sonochemistry fabrication of pure Gd2Sn2O7 nanoparticles with advanced photocatalytic efficiency for elimination of dye pollutions. International Journal of Hydrogen Energy, 2022, 47, 5269-5280	3.8	1

#	Article	IF	CITATIONS
91	A simple and highly efficient composite based on g-C ₃ N ₄ for super rapid removal of multiple organic dyes from water under sunlight. Catalysis Science and Technology, 2022, 12, 786-798.	2.1	9
92	A new approach to study the degradation of the organic pollutants by A-doped MxOy/B photocatalysts. Environmental Science and Pollution Research, 2022, 29, 39139-39163.	2.7	2
93	Integrating ZnO/CdS Schottky junction for remarkably enhanced photocatalytic performance under solar spectrum. Applied Nanoscience (Switzerland), 2022, 12, 1613-1626.	1.6	4
94	Recent developments in photocatalysis of industrial effluents Ö‰ A review and example of phenolic compounds degradation. Chemosphere, 2022, 296, 133688.	4.2	43
95	A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. Journal of Environmental Management, 2022, 307, 114533.	3.8	43
96	Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. Environmental Pollution, 2022, 299, 118871.	3.7	86
97	Enhanced photocatalytic activity of chemically deposited ZnO nanowires using doping and annealing strategies for water remediation. Applied Surface Science, 2022, 582, 152323.	3.1	15
98	Room temperature synthesis of GO/Ag2O nanocomposite: Broad spectral ranged solar photocatalyst and high efficacy antibiotic for waste water treatment. Journal of Environmental Chemical Engineering, 2022, 10, 107175.	3.3	7
99	Using egg ovalbumin to synthesize pure α-Fe2O3 and cobalt doped α-Fe2O3: structural, morphological, optical and photocatalytic properties. Heliyon, 2022, 8, e08953.	1.4	16
100	Excellent photocatalytic degradation and antibiosis of WO ₃ /Fe ₂ O ₃ heterojunction. Materials Research Express, 2022, 9, 055010.	0.8	2
101	Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods, 2022, 6, e2101395.	4.6	69
102	Treatment of petroleum wastewater using solar power-based photocatalysis. , 2022, , 161-170.		0
103	A Novel Magnetic Carbon Based Catalyst Synthesized from Reed Straw and Electric Furnace Dust for Biodiesel Production. Journal of Renewable Materials, 2022, 10, 2099-2115.	1.1	3
104	Synthesis, Analysis and Visible-Light-Driven Photocatalysis of 0–5% Pr-Doped ZnO Nanoparticles. Russian Journal of Inorganic Chemistry, 2022, 67, 721-731.	0.3	1
105	An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water (Switzerland), 2022, 14, 825.	1.2	8
106	Morphologically Controllable Hierarchical ZnO Microspheres Catalyst and Its Photocatalytic Activity. Nanomaterials, 2022, 12, 1124.	1.9	8
107	Investigation on photocatalytic activity of g-C3N4 decorated α-Fe2O3 nanostructure synthesized by hydrothermal method for the visible-light assisted degradation of organic pollutant. Diamond and Related Materials, 2022, 125, 109021.	1.8	14
108	Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications. Journal of Environmental Chemical Engineering, 2022, 10, 107427.	3.3	21

#	Article	IF	CITATIONS
109	Ultrasound-assisted fabrication and characterization of a novel UV-light-responsive Er2Cu2O5 semiconductor nanoparticle Photocatalyst. Arabian Journal of Chemistry, 2022, 15, 103826.	2.3	2
110	Photocatalytic Activity Enhancement in Methylene Blue Degradation by Loading Ag Nanoparticles onto α-Fe2O3. Russian Journal of Inorganic Chemistry, 2021, 66, 1995-2003.	0.3	6
111	Recent advances on visible light active non-typical stoichiometric oxygen-rich Bi12O17Cl2 photocatalyst for environment pollution remediation. Journal of Environmental Chemical Engineering, 2022, 10, 107688.	3.3	11
112	Recent Advancements in Doped Titanium Dioxide (TiO2) Nanostructures for Photocatalytic Dye Degradation. Nanobiotechnology Reports, 2022, 17, 39-58.	0.2	3
113	In situ stable growth of Bi2WO6 on natural hematite for efficient antibiotic wastewater purification by photocatalytic activation of peroxymonosulfate. Chemical Engineering Journal, 2022, 446, 136704.	6.6	8
114	Photoreduction of CO2 to CH4 over Efficient Z-Scheme <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>γ</mi> -Fe2O3/g-C3N4 Composites. Journal of Analytical Methods in Chemistry, 2022, 2022, 1-10.</math 	0.7	3
115	Effect of a new tungsten trioxide-based bactericide on the environment of piggeries and piglet health. Environmental Technology and Innovation, 2022, , 102628.	3.0	1
116	Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: A review. Science of the Total Environment, 2022, 835, 155482.	3.9	29
117	Synergistically enhanced solar lightâ€driven degradation of hazardous food colorants by ultrasonically derived MgFe ₂ O ₄ /Sâ€doped g ₃ N ₄ nanocomposite: A Zâ€scheme systemâ€based heterojunction approach. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
118	Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 2022, 316, 115295.	3.8	131
119	Ultrasonic-assisted synthesis Zn0.78Cd0.22S/Bi2MoO6 heterojunction to improve photocatalytic performance for hexavalent chromium removal and hydrogen peroxide production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129363.	2.3	9
120	Metal-Doped Graphitic Carbon Nitride Nanomaterials for Photocatalytic Environmental Applications—A Review. Nanomaterials, 2022, 12, 1754.	1.9	24
121	<i>Ab Initio</i> Calculation of Surface-Controlled Photocatalysis in Multiple-Phase BiVO₄ . Journal of Physical Chemistry C, 2022, 126, 9541-9550.	1.5	6
122	High-activity and excellent-reusability γ-Fe2O3/SiO2 coating on TC4 titanium alloy by plasma electrolytic oxidation for enhanced photo-Fenton degradation. Chemosphere, 2022, 303, 135105.	4.2	10
123	Fabrication of Zn1â~`xNixWO4 nanorods with superior photoelectrochemical and photocatalytic performances. Ceramics International, 2022, 48, 29438-29444.	2.3	3
124	Efficient Prevention of <i>Aspergillus flavus</i> Spores Spread in Air Using Plasmonic Ag-AgCl/α-Fe ₂ O ₃ under Visible Light Irradiation. ACS Applied Materials & Interfaces, 2022, 14, 28021-28032.	4.0	10
125	A powerful and multifunctional catalyst for organic synthesis, transformation, and environmental remediation: A polyImidazole supported trimetallic catalyst. Applied Catalysis B: Environmental, 2022, 316, 121629.	10.8	5
126	Ultrasound assisted synthesis of starch-capped Cu2O NPs towards the degradation of dye and its anti-lung carcinoma properties. Arabian Journal of Chemistry, 2022, , 104121.	2.3	1

#	Article	IF	CITATIONS
127	Vertically Aligned Cu-Doped ZnO Nanorods for Photocatalytic Activity Enhancement. International Journal of Electrochemical Science, 2022, 17, 220813.	0.5	3
128	Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. Advanced Powder Technology, 2022, 33, 103708.	2.0	35
129	Construction and preparation of coated Z-scheme NaGdF4:Nd3+,Yb3+,Tm3+@CdS-Pd@NiO photocatalyst with core-shell structure for organic pollutant degradation with synchronous hydrogen evolution. Applied Catalysis A: General, 2022, 643, 118758.	2.2	3
130	Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: A review of recent advances. Journal of Environmental Chemical Engineering, 2022, 10, 108329.	3.3	29
131	Hematite Fe2O3@nitrogen-doped graphene core-shell photocatalyst for efficient cephalexin degradation under visible light irradiation. Ceramics International, 2022, 48, 34533-34542.	2.3	4
132	Sonochemical-assisted synthesis of α-Fe2O3 nanoparticles and their photocatalytic activity toward methylene blue and methyl orange dyes. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
134	Synthesis and application of titanium dioxide photocatalysisÂfor energy, decontamination and viral disinfection: a review. Environmental Chemistry Letters, 2023, 21, 339-362.	8.3	70
135	One-pot preparation of pectin encapsulated Cu2O nanoparticles under ultrasound condition: Investigation of its catalytic, cytotoxicity, antioxidant, and anti-colorectal cancer properties. Inorganic Chemistry Communication, 2022, 143, 109772.	1.8	0
136	Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. Scientific African, 2022, 17, e01305.	0.7	13
137	TiO2/BiVO4 composite from preformed nanoparticles for heterogeneous photocatalysis. Materials Chemistry and Physics, 2022, 290, 126588.	2.0	2
138	Dyeâ€Sensitizationâ€Enhanced Photocatalytic Activity of BiOCl/Sulfur Quantum Dot Heterojunction under Visibleâ€Light Irradiation. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	4
139	Natural-sunlight-driven synchronous degradation of 4-nitrphenol and rhodamine B over S-scheme heterojunction of α-Fe2O3 nanoparticles decorated CuBi2O4 rods. Journal of Environmental Chemical Engineering, 2022, 10, 108565.	3.3	5
140	Treatment of oily wastewater using photocatalytic membrane reactors: A critical review. Journal of Environmental Chemical Engineering, 2022, 10, 108539.	3.3	35
141	Recent advances of nanotechnology in water remediation. , 2022, , 311-333.		1
142	Development and Investigation of Photoactive WO3 Nanowire-Based Hybrid Membranes. Catalysts, 2022, 12, 1029.	1.6	0
143	Facile and Novel Route for the Preparation of ZnO Nanoparticles with Different Cr Loadings for Opto-Photocatalysis Applications. Catalysts, 2022, 12, 1093.	1.6	7
144	Controlled Synthesis of Europium-Doped SnS Quantum Dots for Ultra-Fast Degradation of Selective Industrial Dyes. Catalysts, 2022, 12, 1128.	1.6	5
145	Utilization of Photocatalysis and Pyroelectric Catalysis to Enhance Catalytic Properties in Pb(Zr _{0.52} Ti _{0.48}) O ₃ Nanocubes: A Study on Pyroâ€/photoâ€biâ€catalysis Degradation of Dye Wastewater. ChemistrySelect, 2022, 7, .	0.7	6

#	Article	IF	CITATIONS
146	Synthesis of cesium lead halide perovskite/zinc oxide (CsPbX3/ZnO, X= Br, I) as heterostructure photocatalyst with improved activity for heavy metal degradation. Frontiers in Chemistry, 0, 10, .	1.8	3
147	A Generalized Method for the Synthesis of Carbon-Encapsulated Fe3O4 Composites and Its Application in Water Treatment. Molecules, 2022, 27, 6812.	1.7	2
148	Constructing a ZnO/CuCo2O4 p-n heterojunction photocatalyst for efficiently hexavalent chromium–phenol detoxification and nitrogen fixation. Journal of Physics and Chemistry of Solids, 2023, 172, 111057.	1.9	11
149	Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere, 2023, 310, 136835.	4.2	23
150	Porous Ag3VO4/KIT-6 composite: Synthesis, characterization and enhanced photocatalytic performance for degradation of Congo Red. Chemosphere, 2023, 311, 137180.	4.2	25
151	Low-cost and resource-efficient monolithic photocatalyst with enhanced solar light utilization for the photocatalytic treatment of organic wastewater. Chemosphere, 2023, 312, 137052.	4.2	8
152	Virus and bacterial removal ability of TiO2 nanowire-based self-supported hybrid membranes. Arabian Journal of Chemistry, 2023, 16, 104388.	2.3	4
153	Design of novel M(MnNi)V2O6 NPs via combution synthesis for photocatalytic performance on dual dye and dopamine biosensing. Optik, 2023, 272, 170231.	1.4	1
154	Solid waste derived nanocomposite of Ag (0) loaded Fe2O3-SiO2 for solar power degradation of antibiotics. Journal of Molecular Liquids, 2022, 368, 120673.	2.3	1
155	Facile Synthesis of Cr ₂ O ₃ Embedded g-C ₃ N ₄ Composites with Excellent Visible-Light Photocatalytic. Nano, 0, , .	0.5	0
156	Ag-decorated BiOCl anchored onto the g-C3N4 sheets for boosted photocatalytic and antimicrobial activities. Optical Materials, 2023, 135, 113336.	1.7	24
157	Extra-modification of zirconium dioxide for potential photocatalytic applications towards environmental remediation: A critical review. Journal of Environmental Management, 2023, 327, 116869.	3.8	12
158	Mesoporous LaVO4/MCM-48 nanocomposite with visible-light-driven photocatalytic degradation of phenol in wastewater. Environmental Research, 2023, 218, 114983.	3.7	18
159	Green synthesis and characterization of Mn3O4 nanoparticles for photocatalytic and supercapacitors. Ionics, 2023, 29, 733-749.	1.2	6
160	Checking the Efficiency of a Magnetic Graphene Oxide–Titania Material for Catalytic and Photocatalytic Ozonation Reactions in Water. Catalysts, 2022, 12, 1587.	1.6	4
161	Synthesis of α-Fe ₂ O ₃ rhombus nanoplates for photocatalytic investigation of cationic and anionic dyes and antibacterial aspect. Journal of Taibah University for Science, 2022, 16, 1192-1201.	1.1	4
162	Two-dimensional Ga2S3/g-C3N4 heterojunction composites with highly enhanced photocatalytic activity and stability. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	9
163	Multifunctional photocatalyst of graphitic carbon embedded with Fe ₂ O ₃ /Fe ₃ O ₄ nanocrystals derived from lichen for efficient photodegradation of tetracycline and methyl blue. Environmental Technology (United) Tj ETQq1 1 0.78	34314 [°] rgB	Г/Överlock]

#	ARTICLE	IF	CITATIONS
164	Novel FeO Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater. Arabian Journal for Science and Engineering, 2023, 48, 8957-8969.	1.7	3
165	Nonreducing terminal chimeric isomaltomegalosaccharide and its integration with azoreductase for the remediation of soil-contaminated lipophilic azo dyes. Carbohydrate Polymers, 2023, 305, 120565.	5.1	Ο
166	Comprehensive Review on g-C3N4-Based Photocatalysts for the Photocatalytic Hydrogen Production under Visible Light. International Journal of Molecular Sciences, 2023, 24, 346.	1.8	16
167	Mixed–metal–oxide photocatalysts generated by high–temperature calcination of CaAlFe, hydrocalumite–LDHs prepared from an aluminum salt–cake. Catalysis Today, 2023, 423, 114008.	2.2	5
168	CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye. Polymers, 2023, 15, 553.	2.0	3
169	Preparation of MnO2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. Nanomaterials, 2023, 13, 541.	1.9	6
171	Recyclable ferroferric oxide@titanium dioxide@molybdenum disulfide with enhanced enzyme-like activity under visible light for effectively inhibiting the growth of drug-resistant bacteria in sewage. Journal of Materials Chemistry B, 2023, 11, 3434-3444.	2.9	2
172	Iron oxide/hydroxide–nitrogen doped graphene-like visible-light active photocatalytic layers for antibiotics removal from wastewater. Scientific Reports, 2023, 13, .	1.6	6
173	Comparative influence of adsorption assisted magnetic mesoporous TiO2 photocatalyst for the removal of methylene blue and rhodamine B. Reaction Kinetics, Mechanisms and Catalysis, 2023, 136, 1049-1065.	0.8	1
174	Photoelectrochemical water oxidation and methylene blue degradation enhanced by Nb doping and CoPi modification for hematite photoanodes. Journal of Alloys and Compounds, 2023, 947, 169673.	2.8	2
175	Facile synthesis of hierarchical S-scheme In2S3/Bi2WO6 heterostructures with enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2023, 11, 109832.	3.3	1
176	Synergistic behavior between the plasmonic Ag metal and the mesoporous Î ² -Bi2O3/SiO2 heterostructure for the photocatalytic destruction of bacterial cells under simulated sunlight illumination: Schottky junction electron-transfer pathway. Environmental Nanotechnology, Monitoring and Management 2023 20, 100811	1.7	4
177	SiC Foams for the Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation. Materials, 2023, 16, 1328.	1.3	4
178	Photocatalytic degradation of crystal violet and benzimidazole using Ag-CoFe2O4 and its composite with graphitic carbon nitride. Macromolecular Research, 2023, 31, 91-104.	1.0	2
179	Using a promising biomass-based biochar in photocatalytic degradation: highly impressive performance of RHB/SnO2/Fe3O4 for elimination of AO7. Photochemical and Photobiological Sciences, 2023, 22, 1445-1462.	1.6	5
180	Rapid degradation of RhB using mesoporous α-Fe2O3 nanowires incorporated in SBA-15 under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
181	Solar light–based advanced oxidation processes for degradation of methylene blue dye using novel Zn-modified CeO2@biochar. Environmental Science and Pollution Research, 2023, 30, 53887-53903.	2.7	16
182	A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences, 2024, 139, 389-417.	3.2	27

#	Article	IF	Citations
183	Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environmental Chemistry Letters, 2023, 21, 1315-1379.	8.3	27
184	Materials design of edge-modified polymeric carbon nitride nanoribbons for the photocatalytic CO ₂ reduction reaction. Physical Chemistry Chemical Physics, 2023, 25, 9901-9908.	1.3	3
185	Ultrasonic synthesis of perovskite-type BaCeO3/Fe2O3 composites with enhanced photocatalytic degradation of Rhodamine B. Functional Materials Letters, 2023, 16, .	0.7	2
186	Metal oxide single-component light-powered micromotors for photocatalytic degradation of nitroaromatic pollutants. Npj Clean Water, 2023, 6, .	3.1	8
187	Metal Oxidesâ€Based Nano/Microstructures for Photodegradation of Microplastics. Advanced Sustainable Systems, 2023, 7, .	2.7	8
188	Sb-Substituted Cs ₂ AgBiBr ₆ /g-C ₃ N ₄ Composite for Photocatalytic C(sp ³)–H Bond Activation in Toluene. Chemistry of Materials, 2023, 35, 3105-3114.	3.2	10
189	Recent Advances in Nano-metal Oxide-Biochar Composites for Efficient Removal of Environmental Contaminants. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	0
190	A pragmatic review on photocatalytic degradation of methyl orange dye pollutant using greenly biofunctionalized nanometallic materials: A focus on aquatic body. Applied Organometallic Chemistry, 2023, 37, .	1.7	12
191	Performance and mechanism of natural chalcopyrite for photocatalytic activation of peroxymonosulfate towards tetracycline degradation. Materials Research Bulletin, 2023, 164, 112275.	2.7	5
193	Preparation of Alloy and the Application for Photocatalytic Degradation Under Solar/UV and Visible Light Irradiation. Green Chemistry and Sustainable Technology, 2023, , 41-57.	0.4	0
199	Potential Application of Biological Treatment Methods in Textile Dyes Removal. , 2023, , 137-180.		0
206	Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Advances, 2023, 13, 18404-18442.	1.7	17
211	Discovery of Novel Photocatalysts Using Machine Learning Approach. , 2023, , 233-261.		0
222	Advancements in Photocatalytic Applications of Metal Ferrites for Water Pollution Remediation: A Focus on Biosynthesis and Innovations. Chemistry Africa, 0, , .	1.2	0
227	Advances in ultrasound-assisted photocatalyst synthesis and piezo-photocatalysts. Journal of Materials Chemistry A, 2023, 11, 22608-22630.	5.2	0
229	Effect of Eu3+ on the Luminescence and Photocatalytic Properties of ZnS Nanoparticles. Advances in Sustainability Science and Technology, 2023, , 13-28.	0.4	0
231	A review on nanoparticles as photo catalyst for the treatment of wastewater. AIP Conference Proceedings, 2023, , .	0.3	1
256	Photocatalytic Degradation of Aqueous Organic Pollutants Using Iron Oxide-Based Photocatalysts. Nanostructure Science and Technology, 2024, , 53-76.	0.1	0

IF

CITATIONS

- # ARTICLE
- Advances in photocatalytic ceramic coatings. , 2024, , 171-211.