Formation and Reactions of NH₄NO<sub>3 Steady-State NH₃-SCR of NO<sub><i>x</i>Spectroscopic and Theoretical Studies

ACS Catalysis 10, 2334-2344 DOI: 10.1021/acscatal.9b05151

Citation Report

#	Article	IF	CITATIONS
1	Controlling Catalytic Selectivity Mediated by Stabilization of Reactive Intermediates in Small-Pore Environments: A Study of Mn/TiO ₂ in the NH ₃ -SCR Reaction. ACS Catalysis, 2020, 10, 12017-12030.	5.5	40
2	Structural parameters governing low temperature activity of small pore copper zeolites in NH3-SCR. Journal of Catalysis, 2020, 390, 224-236.	3.1	21
3	Distinct NO ₂ Effects on Cu-SSZ-13 and Cu-SSZ-39 in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Environmental Science & Technology, 2020, 54, 15499-15506.	4.6	48
4	Promoting Effect of Mn on In Situ Synthesized Cu-SSZ-13 for NH3-SCR. Catalysts, 2020, 10, 1375.	1.6	12
5	The Synthesis of YNU-5 Zeolite and Its Application to the Catalysis in the Dimethyl Ether-to-Olefin Reaction. Materials, 2020, 13, 2030.	1.3	11
6	Fe-Doped Mn ₃ O ₄ Spinel Nanoparticles with Highly Exposed Fe _{oct} –O–Mn _{tet} Sites for Efficient Selective Catalytic Reduction (SCR) of NO with Ammonia at Low Temperatures. ACS Catalysis, 2020, 10, 6803-6809.	5.5	82
7	Understanding the nature of NH ₃ -coordinated active sites and the complete reaction schemes for NH ₃ -SCR using Cu-SAPO-34 catalysts. Physical Chemistry Chemical Physics, 2021, 23, 4700-4710.	1.3	8
8	Selective catalytic reduction of NO with NH3 over Cu-exchanged CHA, GME, and AFX zeolites: a density functional theory study. Catalysis Science and Technology, 2021, 11, 1780-1790.	2.1	12
9	Selective catalytic reduction of NO <i>x</i> with NH3: opportunities and challenges of Cu-based small-pore zeolites. National Science Review, 2021, 8, nwab010.	4.6	137
10	High-performance Fe _a Ti _b O _x catalyst loaded on ceramic filter for NO _x x reduction. Materials Research Express, 2021, 8, 045509.	0.8	4
11	In Situ/Operando IR and Theoretical Studies on the Mechanism of NH ₃ –SCR of NO/NO ₂ over H–CHA Zeolites. Journal of Physical Chemistry C, 2021, 125, 13889-13899.	1.5	23
12	Direct catalytic nitrogen oxide removal using thermal, electrical or solar energy. Chinese Chemical Letters, 2022, 33, 1117-1130.	4.8	8
13	N ₂ O Formation Mechanism During Low-Temperature NH ₃ -SCR over Cu-SSZ-13 Catalysts with Different Cu Loadings. Industrial & Engineering Chemistry Research, 2021, 60, 10083-10093.	1.8	29
14	Facet-dependent catalytic activity of anatase TiO2 for the selective catalytic reduction of NO with NH3: A dispersion-corrected density functional theory study. Applied Catalysis A: General, 2021, 623, 118250.	2.2	9
15	Synthesis and characterization of nano-hydroxyapatite added with magnesium obtained by wet chemical precipitation. Progress in Natural Science: Materials International, 2021, 31, 575-582.	1.8	27
16	Influence of ZCuOH, Z ₂ Cu, and Extraframework Cu <i>_x</i> O <i>_y</i> Species in Cu-SSZ-13 on N ₂ O Formation during the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Catalysis, 2021, 11, 10362-10376.	5.5	18
17	Mechanism of NH ₃ –Selective Catalytic Reduction (SCR) of NO/NO ₂ (Fast SCR) over Cu-CHA Zeolites Studied by <i>In Situ/Operando</i> Infrared Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2021, 125, 21975-21987.	1.5	21
18	Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate. , 0, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
19	Cost-effective fast-synthesis of chabazite zeolites for the reduction of NOx. Applied Catalysis B: Environmental, 2021, 292, 120163.	10.8	37
20	Unexpected increase in low-temperature NH3-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging. Applied Catalysis B: Environmental, 2021, 294, 120237.	10.8	40
21	Microkinetic study of NO oxidation, standard and fast NH3-SCR on CeWO at low temperatures. Chemical Engineering Journal, 2021, 423, 130128.	6.6	34
22	Lean NO _{<i>x</i>} Capture and Reduction by NH ₃ <i>via</i> NO ⁺ Intermediates over H-CHA at Room Temperature. Journal of Physical Chemistry C, 2021, 125, 1913-1922.	1.5	15
23	Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR. Applied Catalysis B: Environmental, 2020, 275, 119105.	10.8	71
24	Elucidating the Significance of Copper and Nitrate Speciation in Cu-SSZ-13 for N ₂ O Formation during NH ₃ -SCR. ACS Catalysis, 2021, 11, 13091-13101.	5.5	21
25	N ₂ O Formation during NH ₃ -SCR over Different Zeolite Frameworks: Effect of Framework Structure, Copper Species, and Water. Industrial & Engineering Chemistry Research, 2021, 60, 17826-17839.	1.8	24
26	Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports. Journal of Environmental Chemical Engineering, 2022, 10, 107167.	3.3	48
27	Contrasting Catalytic Functions of Metal Vanadates and Their Oxide Composite Analogues for NH ₃ -Assisted, Selective NO _X Transformation. Chemistry of Materials, 2022, 34, 1078-1097.	3.2	10
28	Understanding the dual-acting of iron and sulfur dioxide over Mn-Fe/AC catalysts for low-temperature SCR of NO. Molecular Catalysis, 2022, 519, 112150.	1.0	14
29	Efficient NO _{<i>x</i>} Abatement over Alkali-Resistant Catalysts via Constructing Durable Dimeric VO _{<i>x</i>} Species. Environmental Science & Technology, 2022, 56, 2647-2655.	4.6	35
30	The effect of the presence of a hydroxyl group on the vibration frequencies of NO and NH3 adsorbates on Cu-Zn bimetallic nanoparticles in ZSM-5 and FAU zeolite – a DFT study. Journal of Molecular Structure, 2022, 1255, 132440.	1.8	2
31	Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeoliteÂXÂsupported catalysts. Fuel, 2022, 320, 123969.	3.4	63
32	Understanding the influence of hydrothermal treatment on NH3-SCR of NO activity over Cu -SSZ-16. Chemical Engineering Journal, 2022, 441, 136021.	6.6	15
33	<i>In situ</i> DRIFT studies on N ₂ O formation over Cu-functionalized zeolites during ammonia-SCR. Catalysis Science and Technology, 2022, 12, 3921-3936.	2.1	4
34	Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance. Chemical Engineering Journal, 2022, 445, 136530.	6.6	20
35	Understanding the Water Effect for Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Cu-SSZ-13 Catalysts. ACS ES&T Engineering, 2022, 2, 1684-1696.	3.7	7
36	Steady-state kinetic modeling of NH3-SCR by monolithic Cu-CHA catalysts. Catalysis Today, 2023, 411-412, 113797.	2.2	2

#	Article	IF	CITATIONS
37	Computational Screening and Synthesis of M (M = Mo and Cu)-Doped CeO ₂ /silicalite-1 for Medium-/Low-Temperature NH ₃ –SCR. Industrial & Engineering Chemistry Research, 2022, 61, 10091-10105.	1.8	8
38	Strikingly distinctive NH3-SCR behavior over Cu-SSZ-13 in the presence of NO2. Nature Communications, 2022, 13, .	5.8	34
39	<i>In Situ</i> / <i>Operando</i> Spectroscopic Studies on the NH ₃ –SCR Mechanism over Fe–Zeolites. ACS Catalysis, 2022, 12, 9983-9993.	5.5	14
40	Insight into the N2O formation mechanism on the β-MnO2 (1 1 0) during low-temperature NH3-SCR: Reaction pathway and electronic analysis of different intermediates. Applied Surface Science, 2023, 607, 154981.	3.1	4
41	Highlights on Key Roles of Y on the Hydrothermal Stability at 900 °C of Cu/SSZ-39 for NH ₃ -SCR. ACS Catalysis, 2022, 12, 14026-14039.	5.5	16
42	Si/Al Ratio Determines the SCR Performance of Cu-SSZ-13 Catalysts in the Presence of NO ₂ . Environmental Science & Technology, 2022, 56, 17946-17954.	4.6	10
43	Mechanistic insight into low temperature SCR by ceria–manganese mixed oxides incorporated into zeolites. Catalysis Science and Technology, 2023, 13, 1111-1118.	2.1	5
44	Synergistic effect of V2O5-WO3/TiO2 and H-ZSM-5 catalysts prepared by physical mixing on the selective catalytic reduction of NOx with NH3. Applied Surface Science, 2023, 614, 156159.	3.1	5
45	N ₂ O Catalytic Decomposition and NH ₃ -SCR Coupling Reactions over Fe-SSZ-13 Catalyst: Mechanisms and Interactions Unraveling via Experiments and DFT Calculations. ACS Catalysis, 2023, 13, 934-947.	5.5	11
46	Low-temperature NOx capture and reduction via NO oxidation by O3 on Cu-CHA. Applied Catalysis A: General, 2023, 655, 119099.	2.2	0
47	Mechanistic insights into the cobalt promotion on low-temperature NH3-SCR reactivity of Cu/SSZ-13. Separation and Purification Technology, 2023, 315, 123617.	3.9	6
48	Establishment of a novel Fenton-like enhanced low-temperature selective catalytic reduction over FeVO4 catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109634.	3.3	5
49	Direct synthesis of high silica SSZ-16 zeolite with extraordinarily superior performance in NH3-SCR reaction. Applied Catalysis B: Environmental, 2023, 332, 122746.	10.8	5
50	Unraveling the influence of the topological structure and protonation of zeolites on the adsorption of nitrogen-containing waste gas. Chemical Engineering Science, 2023, 269, 118492.	1.9	3
51	NH ₃ and HNO _{<i>x</i>} Formation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma. ACS Sustainable Chemistry and Engineering, 2023, 11, 4289-4298.	3.2	13
66	Microwave-Irradiation-Assisted Synthesis of Bismuth Ferrite Nanoparticles: Investigating Fuel-to-Oxidant Ratios. , 0, , .		0