Photoelectrochemical Conversion of Carbon Dioxide (C Value-Added Products

ACS Energy Letters 5, 486-519 DOI: 10.1021/acsenergylett.9b02585

Citation Report

#	Article	IF	CITATIONS
1	Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photoâ€Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 2020, 10, 2002105.	10.2	44
2	Solarâ€Driven Electrochemical CO ₂ Reduction with Heterogeneous Catalysts. Advanced Energy Materials, 2021, 11, 2002652.	10.2	67
3	Electrochemical Production of Sustainable Hydrocarbon Fuels from CO ₂ Co-electrolysis in Eutectic Molten Melts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12877-12890.	3.2	82
4	Biohybrid electrodes for photoelectrochemical solar energy conversion. Journal of Renewable and Sustainable Energy, 2020, 12, 044701.	0.8	0
5	Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy and Environment, 2022, 7, 545-553.	4.7	13
6	Formation of C–C bonds during electrocatalytic CO ₂ reduction on non-copper electrodes. Journal of Materials Chemistry A, 2020, 8, 23162-23186.	5.2	36
7	Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts, 2020, 10, 495.	1.6	89
8	Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality. ACS Energy Letters, 2020, 5, 1996-2014.	8.8	173
9	Impact of the Dissolved Anion on the Electrocatalytic Reduction of CO 2 to CO with Ruthenium CNC Pincer Complexes. ChemCatChem, 2020, 12, 4879-4885.	1.8	7
10	Supercritical CO ₂ -constructed intralayer [Bi ₂ O ₂] ²⁺ structural distortion for enhanced CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 13320-13327.	5.2	29
11	Pure CuBi ₂ O ₄ Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi ₂ O ₃ /CuO Grown by Pulsed Laser Deposition. Advanced Functional Materials, 2020, 30, 1910832.	7.8	54
12	Sustainable at both ends: electrochemical CO ₂ utilization paired with electrochemical treatment of nitrogenous waste. Green Chemistry, 2020, 22, 4456-4462.	4.6	55
13	Si Microwire-Array Photocathodes Decorated with Cu Allow CO ₂ Reduction with Minimal Parasitic Absorption of Sunlight. ACS Energy Letters, 2020, 5, 2528-2534.	8.8	33
14	Abiotic–Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels. Transactions of Tianjin University, 2020, 26, 237-247.	3.3	15
15	Electrochemical Reactors for CO2 Conversion. Catalysts, 2020, 10, 473.	1.6	72
16	Nickel and indium core-shell co-catalysts loaded silicon nanowire arrays for efficient photoelectrocatalytic reduction of CO2 to formate. Journal of Energy Chemistry, 2021, 54, 422-428.	7.1	38
17	Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO ₂ Reduction. Energy & Fuels, 2021, 35, 7-24.	2.5	100
18	C3-symmetric zinc complexes as sustainable catalysts for transforming carbon dioxide into mono- and multi-cyclic carbonates. Applied Catalysis B: Environmental. 2021, 280, 119395.	10.8	39

	CITATION R	EPORT	
#	Article	IF	CITATIONS
19	Photoinduced Electron Transfer in Axially Coordinated Supramolecular Zinc Tetrapyrrole Bis(styryl)BODIPY Donorâ€Acceptor Conjugates. ChemPhotoChem, 2021, 5, 260-269.	1.5	4
20	Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chemical Engineering Science, 2021, 229, 116142.	1.9	26
21	Photocatalytic Carbon Dioxide Reduction Using Nickel Complexes as Catalysts. ChemPhotoChem, 2021, 5, 512-520.	1.5	15
22	A high-pressure artificial photosynthetic device: pumping carbon dioxide as well as achieving selectivity. Journal of Materials Chemistry A, 2021, 9, 3961-3967.	5.2	16
23	Highly selective and active Cu-In2O3/C nanocomposite for electrocatalytic reduction of CO2 to CO. Journal of Colloid and Interface Science, 2021, 586, 528-537.	5.0	26
24	Photocatalytic membranes and membrane reactors for CO2 valorization. , 2021, , 523-539.		0
25	Shedding light on <scp>CO₂</scp> : Catalytic synthesis of solar methanol. EcoMat, 2021, 3, e12078.	6.8	13
26	Recent Developments in the Use of Heterogeneous Semiconductor Photocatalyst Based Materials for a Visible-Light-Induced Water-Splitting System—A Brief Review. Catalysts, 2021, 11, 160.	1.6	34
27	An efficient and stable solar flow battery enabled by a single-junction GaAs photoelectrode. Nature Communications, 2021, 12, 156.	5.8	22
28	Bio-inspired nanoparticles for artificial photosynthesis. Materials Today: Proceedings, 2021, 45, 3825-3832.	0.9	9
29	Entrapped Molecular Photocatalyst and Photosensitizer in Metal–Organic Framework Nanoreactors for Enhanced Solar CO ₂ Reduction. ACS Catalysis, 2021, 11, 871-882.	5.5	65
30	Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels <i>via</i> CO ₂ reduction. RSC Advances, 2021, 11, 87-113.	1.7	9
31	Probing the Effects of Electron Deficient Aryl Substituents and a Ï€â€System Extended NHC Ring on the Photocatalytic CO ₂ Reduction Reaction with Reâ€pyNHCâ€Aryl Complexes**. ChemPhotoChem, 2021, 5, 353-361.	1.5	4
32	Non-precious metal carbamates as catalysts for the aziridine/CO2 coupling reaction under mild conditions. Dalton Transactions, 2021, 50, 5351-5359.	1.6	17
33	Impact of structure, doping and defect-engineering in 2D materials on CO ₂ capture and conversion. Reaction Chemistry and Engineering, 2021, 6, 1701-1738.	1.9	22
34	Overcoming Phaseâ€Purity Challenges in Complex Metal Oxide Photoelectrodes: A Case Study of CuBi ₂ O ₄ . Advanced Energy Materials, 2021, 11, 2003474.	10.2	23
35	Standâ€Alone Photoelectrochemical Energy Conversions. Solar Rrl, 2021, 5, 2000517.	3.1	1
36	Photoelectrochemical reduction of carbon dioxide. , 2021, , 197-210.		0

\sim		· ·	Repc	
		ON	I R F D C	1121
\sim	/			

#	Article	IF	CITATIONS
37	Understanding entrapped molecular photosystem and metal–organic framework synergy for improved solar fuel production. Faraday Discussions, 2021, 231, 281-297.	1.6	18
38	Target-Dependent Gating of Nanopores Integrated with H-Cell: Toward A General Platform for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2021, 93, 5001-5004.	3.2	22
39	Research Progress in Organic Synthesis by Means of Photoelectrocatalysis. Chemical Record, 2021, 21, 841-857.	2.9	60
40	Manifestation of Cu-MOF-templated TiO2 nanocomposite for synergistic photoreduction of CO2 to methanol production. Emergent Materials, 2021, 4, 503-514.	3.2	19
41	Hybrid Photocathodes for Carbon Dioxide Reduction: Interfaces for Charge Separation and Selective Catalysis. ChemPhotoChem, 2021, 5, 595-610.	1.5	6
42	Nanoarray Structures for Artificial Photosynthesis. Small, 2021, 17, e2006530.	5.2	32
43	The Role of Carbon Capture and Storage in the Energy Transition. Energy & Fuels, 2021, 35, 7364-7386.	2.5	116
44	Electrochemical and photochemical CO2 reduction using diamond. Carbon, 2021, 175, 440-453.	5.4	24
45	Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites. ACS Nano, 2021, 15, 7860-7878.	7.3	40
46	Electrochemically Driven Reduction of Carbon Dioxide Mediated by Monoâ€Reduced Moâ€Diimine Tetracarbonyl Complexes: Electrochemical, Spectroelectrochemical and Theoretical Studies. ChemElectroChem, 2021, 8, 1899-1910.	1.7	2
47	An overview of effect of process parameters for removal of CO2 using biomass-derived adsorbents. Biomass Conversion and Biorefinery, 2023, 13, 4495-4513.	2.9	6
48	Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 2021, 271, 129506.	4.2	132
49	Platinum Nanoparticles with Low Content and High Dispersion over Exfoliated Layered Double Hydroxide for Photocatalytic CO ₂ Reduction. Energy & Fuels, 2021, 35, 10820-10831.	2.5	23
50	Accelerating Electronâ€Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO ₂ Reduction. Small, 2021, 17, e2100496.	5.2	40
51	Recent advances in the rational design of <scp>2D MXenes</scp> in energy conversion and storage systems. International Journal of Energy Research, 2021, 45, 17563-17576.	2.2	4
52	The Holeâ€Tunneling Heterojunction of Hematiteâ€Based Photoanodes Accelerates Photosynthetic Reaction. Angewandte Chemie - International Edition, 2021, 60, 16009-16018.	7.2	37
54	Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. Nano Materials Science, 2021, 3, 344-367.	3.9	47
55	(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 767-791.	1.5	21

#	Article	IF	CITATIONS
56	The Holeâ€Tunneling Heterojunction of Hematiteâ€Based Photoanodes Accelerates Photosynthetic Reaction. Angewandte Chemie, 2021, 133, 16145-16154.	1.6	2
57	Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction. Renewable and Sustainable Energy Reviews, 2021, 145, 111047.	8.2	28
58	Molecular Dye-Sensitized Photocatalysis with Metal-Organic Framework and Metal Oxide Colloids for Fuel Production. Energies, 2021, 14, 4260.	1.6	11
59	Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60. Journal of Chemical Sciences, 2021, 133, 1.	0.7	3
60	Mott–Schottky Analysis of Photoelectrodes: Sanity Checks Are Needed. ACS Energy Letters, 2021, 6, 2549-2551.	8.8	111
61	Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2101568.	11.1	96
62	Highly selective electrocatalysis for carbon dioxide reduction to formic acid by a Co(II) complex with an equatorial N4 ligand. Electrochimica Acta, 2021, 387, 138545.	2.6	4
63	Combination of Cu-Pt-Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction. Journal of Environmental Chemical Engineering, 2021, 9, 105803.	3.3	12
64	Recent advances in the rational design of <scp>2D MXenes</scp> in energy conversion and storage systems. International Journal of Energy Research, 2021, 45, 20448-20462.	2.2	5
65	Revisiting photo and electro-catalytic modalities for sustainable conversion of CO2. Applied Catalysis A: General, 2021, 623, 118248.	2.2	13
66	Unique Dualâ€ S ites Boosting Overall CO ₂ Photoconversion by Hierarchical Electron Harvesters. Small, 2021, 17, e2103796.	5.2	38
67	MoS ₂ –Nanosheets-Based Catalysts for Photocatalytic CO ₂ Reduction: A Review. ACS Applied Nano Materials, 2021, 4, 8644-8667.	2.4	63
68	Anti-Electrostatic Main Group Metal–Metal Bonds That Activate CO ₂ . Journal of Physical Chemistry Letters, 2021, 12, 7545-7552.	2.1	2
69	Hydrogen from Sunlight and Water: A Side-by-Side Comparison between Photoelectrochemical and Solar Thermochemical Water-Splitting. ACS Energy Letters, 2021, 6, 3096-3113.	8.8	45
70	Multisample Correlation Reveals the Origin of the Photocurrent of an Unstable Cu ₂ O Photocathode during CO ₂ Reduction. Journal of Physical Chemistry Letters, 2021, 12, 8157-8163.	2.1	4
71	Manipulating Intermediates at the Au–TiO ₂ Interface over InP Nanopillar Array for Photoelectrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 11416-11428.	5.5	48
72	In-situ fabrication of Cu3(MoO4)2(OH)2 films decorated with MO (M=Zn, Cu, and Ni) for CO2 photoconversion into value-added compounds. Journal of Alloys and Compounds, 2021, 873, 159846.	2.8	8
73	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330

#	Article	IF	CITATIONS
74	A novel photoelectrochemical system to disrupt microalgae for maximizing lipid-extraction efficiency. Chemical Engineering Journal, 2021, 420, 130517.	6.6	20
75	Prolonging the Triplet State Lifetimes of Rhenium Complexes with Imidazoleâ€Pyridine Framework for Efficient CO ₂ Photoreduction. Chemistry - A European Journal, 2021, 27, 15536-15544.	1.7	9
76	2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021, 13, 100073.	1.9	54
77	Design Principles for Multinary Metal Chalcogenides: Toward Programmable Reactivity in Energy Conversion. Chemistry of Materials, 2021, 33, 7133-7147.	3.2	13
78	Design of transition metal oxides nanosheets for the direct electrocatalytic oxidation of glucose. Materials Chemistry and Physics, 2021, 269, 124770.	2.0	11
79	(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 766-766.	1.5	0
80	Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 2021, 790, 148081.	3.9	67
81	CH3OH selective oxidation to HCHO on Z-scheme Fe2O3/g-C3N4 hybrid: The rate-determining step of C–H bond scission. Chemical Engineering Journal, 2021, 422, 130086.	6.6	68
82	Improved photocatalytic CO2 conversion efficiency on Ag loaded porous Ta2O5. Applied Surface Science, 2021, 563, 150273.	3.1	27
83	Efficient photothermal catalytic CO2 reduction to CH3CH2OH over Cu2O/g-C3N4 assisted by ionic liquids. Applied Surface Science, 2021, 565, 150448.	3.1	35
84	Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 2022, 427, 130884.	6.6	192
85	Catalytic Technologies for the Conversion and Reuse of CO2. , 2021, , 1-50.		0
86	Atomically-dispersed cobalt ions on polyphenol-derived nanocarbon layers to improve charge separation, hole storage, and catalytic activity of water-oxidation photoanodes. Journal of Materials Chemistry A, 2021, 9, 13874-13882.	5.2	11
87	Lanthanum bismuth oxide photocatalysts for CO ₂ reduction to CO with high selectivity. Sustainable Energy and Fuels, 2021, 5, 2688-2694.	2.5	6
88	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	16.1	132
89	Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction. APL Materials, 2020, 8, .	2.2	23
90	Coordination engineering of the hybrid Co-C and Co-N active sites for efficient catalyzing CO2 electroreduction. Journal of Catalysis, 2022, 405, 634-640.	3.1	10
91	Photodriven Catalytic Hydrogenation of CO ₂ to CH ₄ with Nearly 100% Selectivity over Ag ₂₅ Clusters. Nano Letters, 2021, 21, 8693-8700.	4.5	27

#	Article	IF	CITATIONS
92	Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. Journal of CO2 Utilization, 2021, 53, 101748.	3.3	15
93	Separation of microplastics from water - What next?. Journal of Water Process Engineering, 2021, 44, 102332.	2.6	7
94	Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst. Journal of CO2 Utilization, 2021, 54, 101765.	3.3	27
95	Simultaneous Heteroatom Doping and Microstructure Construction by Solid Thermal Melting Method for Enhancing Photoelectrochemical Property of g-C3N4 Electrodes. Separation and Purification Technology, 2021, , 120005.	3.9	7
97	Comprehensive Mechanism of CO ₂ Electroreduction on Nonâ€Noble Metal Singleâ€Atom Catalysts of Mo ₂ CS ₂ â€MXene. Chemistry - A European Journal, 2021, 27, 17900-17909.	1.7	16
98	Designing Catalytic Systems Using Binary Solvent Mixtures: Impact of Mole Fraction of Water on Hydride Transfer. Inorganic Chemistry, 2021, 60, 17132-17140.	1.9	2
99	Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency?. Journal of CO2 Utilization, 2021, 54, 101767.	3.3	13
100	Carbon dioxide reduction mechanism on Ru-based electrocatalysts [Ru(bpy) ₂ (CO) ₂] ²⁺ : insights from first-principles theory. Sustainable Energy and Fuels, 2021, 5, 6066-6076.	2.5	3
101	Recent Advances on Electrolysis for Simultaneous Generation of Valuable Chemicals at both Anode and Cathode. Advanced Energy Materials, 2021, 11, 2102292.	10.2	129
102	Photo-Driven Reduction of Carbon Dioxide: A Sustainable Approach Towards Achieving Carbon Neutrality Goal. Frontiers in Chemical Engineering, 2021, 3, .	1.3	4
103	Fuel Generation from CO2. Advances in Science, Technology and Innovation, 2022, , 63-78.	0.2	0
104	Light assisted nickel(II) grafted-g-carbon nitride molecular hybrid promoted hydrocarboxylation of olefins with CO2 at atmospheric pressure condition. Journal of CO2 Utilization, 2022, 55, 101812.	3.3	2
105	Photocatalytic and Photoelectrochemical Carbon Dioxide Reductions toward Value-Added Multicarbon Products. ACS ES&T Engineering, 2022, 2, 975-988.	3.7	22
106	Novel and Sustainable Solventâ€Free Synthesis of 2â€Oxazolidinones Using Periodic Mesoporous Organosilica‧upported Triazolium Ionic Liquids as Highly Active Catalysts. ChemistrySelect, 2021, 6, 12466-12471.	0.7	1
107	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	1.4	35
108	Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. Journal of CO2 Utilization, 2022, 55, 101810.	3.3	15
109	Numerical analysis of NOX formation in CO2 diluted biogas premixed combustion. EUREKA, Physics and Engineering, 2021, , 57-64.	0.4	1
110	Harnessing visible-light energy for unbiased organic photoelectrocatalysis: synthesis of <i>N</i> -bearing fused rings. Green Chemistry, 2022, 24, 837-845.	4.6	10

#	Article	IF	CITATIONS
111	Open-Framework Chalcogenide Materials - from isolated clusters to highly ordered structures - and their photocalytic applications. Coordination Chemistry Reviews, 2022, 453, 214243.	9.5	11
112	Fabrication of Pd/MnFe2O4 bifunctional 2-D nanosheets to enhance the yield of HCOOH from CO2 cathodic reduction paired with anodic oxidation to CH3OH. Fuel, 2022, 311, 122619.	3.4	22
113	Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 2022, 89, 100965.	15.8	200
114	Rationalâ€Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO ₂ to Valueâ€Added Chemicals. Advanced Science, 2022, 9, e2105204.	5.6	75
115	Circular bioeconomy approaches for sustainability and carbon mitigation in microalgal biorefinery. , 2022, , 557-598.		4
116	Hands-on Electrochemical Reduction of CO ₂ : Understanding Electrochemical Principles through Active Learning. Journal of Chemical Education, 2022, 99, 1036-1043.	1.1	10
117	Progress and perspectives for engineering and recognizing active sites of two-dimensional materials in CO2 electroreduction. Science China Chemistry, 2022, 65, 428-440.	4.2	19
118	Sodium borohydride hydrolysis-mediated hydrogenation of carbon dioxide, towards a two-step production of formic acid. International Journal of Hydrogen Energy, 2022, 47, 26490-26500.	3.8	3
119	Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies, 2022, 15, 887.	1.6	150
120	Photo- and Electrocatalytic Reduction of CO ₂ over Metal–Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure. Inorganic Chemistry, 2022, 61, 2476-2489.	1.9	31
121	A Hybrid Photo-Electro Catalytic Conversion of Carbon dioxide Using CuO–MgO Nanocomposite. Topics in Catalysis, 0, , 1.	1.3	3
122	Nanostructure engineering of Cu electrocatalyst for the selective C2+Âhydrocarbons in electrochemical CO2 reduction. Applied Surface Science, 2022, 584, 152518.	3.1	21
123	An iron-porphyrin grafted metal–organic framework as a heterogeneous catalyst for the photochemical reduction of CO2. Journal of Photochemistry and Photobiology, 2022, 10, 100111.	1.1	23
124	Photoelectrocatalysis for high-value-added chemicals production. Chinese Journal of Catalysis, 2022, 43, 595-610.	6.9	27
125	Photocatalytic reduction of CO2 to methanol using Zr(IV)-based MOF composite with g-C3N4 quantum dots under visible light irradiation. Journal of CO2 Utilization, 2022, 57, 101905.	3.3	34
126	CO2 conversion via coupled plasma-electrolysis process. Journal of CO2 Utilization, 2022, 57, 101904.	3.3	13
127	Silver Halide Catalysts on GaN Nanowires/Si Heterojunction Photocathodes for CO ₂ Reduction to Syngas at High Current Density. ACS Catalysis, 2022, 12, 2671-2680.	5.5	16
128	Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2022, 109, 1-20.	2.9	9

#	Article	IF	CITATIONS
129	Desalination and Detoxification of Textile Wastewater by Novel Photocatalytic Electrolysis Membrane Reactor for Ecosafe Hydroponic Farming. Membranes, 2022, 12, 10.	1.4	3
130	Noble metal-free bis-tridentate benzimidazole zinc(<scp>ii</scp>) and iron(<scp>ii</scp>) complexes for selective CO ₂ photoreduction. Dalton Transactions, 2022, 51, 4052-4057.	1.6	9
132	Operando Photo-Electrochemical Catalysts Synchrotron Studies. Nanomaterials, 2022, 12, 839.	1.9	4
133	Tailoring Inorganic Halide Perovskite Photocatalysts toward Carbon Dioxide Reduction. Solar Rrl, 2022, 6, .	3.1	19
134	Construction of Heterostructured Sn/TiO ₂ /Si Photocathode for Efficient Photoelectrochemical CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	11
135	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	11.1	52
136	Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. Catalysis Reviews - Science and Engineering, 2024, 66, 119-173.	5.7	27
137	Reaction Kinetics of Photoelectrochemical CO ₂ Reduction on a CuBi ₂ O ₄ -Based Photocathode. ACS Applied Materials & Interfaces, 2022, 14, 17509-17519.	4.0	15
138	Fixation of carbon dioxide to aryl/aromatic carboxylic acids. Journal of CO2 Utilization, 2022, 59, 101939.	3.3	19
139	The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. Journal of CO2 Utilization, 2022, 60, 101993.	3.3	13
140	Toward the understanding of surface phenomena involved in the photocatalytic performance of amorphous TiO2/SiO2 catalyst – A theoretical and experimental study. Applied Surface Science, 2022, 588, 152920.	3.1	9
141	Efficient photoelectrochemical conversion of CO2 to ethylene and methanol using a Cu cathode and TiO2 nanoparticles synthesized in supercritical medium as photoanode. Journal of Environmental Chemical Engineering, 2022, 10, 107441.	3.3	21
142	Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere, 2022, 298, 134299.	4.2	45
143	Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review. Journal of Environmental Management, 2022, 313, 114955.	3.8	32
144	Nanocatalysts as potential candidates in transforming CO2 into valuable fuels and chemicals: A review. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100671.	1.7	1
145	Laser-Induced Chemical Liquid-Phase Deposition Plasmonic Gold Nanoparticles on Porous TiO2 Film with Great Photoelectrochemical Performance. Applied Sciences (Switzerland), 2022, 12, 30.	1.3	1
146	Do <i>Sacrificial Donors</i> Donate H ₂ in Photocatalysis?. ACS Energy Letters, 2022, 7, 242-246.	8.8	54
147	Artificial photosynthesis for highâ€valueâ€added chemicals: Old material, new opportunity. , 2022, 4, 21-44.		49

	CITATION REPOR	т
ARTICLE Lightâ€Fueled Organic Photoelectrochemical Transistor for Probing Membrane Protein in ar	IF n Hâ €€ ell	CITATIONS
Advanced Materials Interfaces, 2022, 9, .	1.9	6
Effect of the Defect Modulator and Ligand Length of Metal–Organic Frameworks on Carb Photoreduction. ACS Applied Materials & Interfaces, 2021, 13, 61578-61586.	oon Dioxide 4.0) 21
Metal–organic frameworks and their composites for fuel and chemical production <i>via< CO₂ conversion and water splitting. RSC Advances, 2022, 12, 11686-11707.</i>	>	12
Understanding the Role of Copper Vacancies in Photoelectrochemical CO ₂ Red Cuprous Oxide. Journal of Physical Chemistry Letters, 2022, 13, 3667-3673.	duction on 2.1	10
Electrochemical CO ₂ Reduction Catalyzed by Copper Molecular Complexes: Th of Ligand Structure. Energy & Fuels, 2022, 36, 4653-4676.	he Influence 2.5	19
Cu Cluster-Promoted Charge Separation and Transfer in Z-Scheme Wox/Cu-G-C3n4 Heteroj Towards Efficient Full Solar-Spectrum Photocatalysis. SSRN Electronic Journal, 0, , .	unctions 0.4	0
Dehydrogenase-Functionalized Interfaced Materials in Electroenzymatic and Photoelectroer CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 6141-0		7
Decarbonization roadmaps for ASEAN and their implications. Energy Reports, 2022, 8, 6000	0-6022. 2.5	28
Boosting High Added-Value Chemicals Formation By Means Of Photoelectrocatalysis. Journa Photocatalysis, 2022, 3, .	al of 0.4	+ 1
High–efficiency photoreduction of CO2 in low vacuum. Physical Chemistry Chemical Phys	sics, 0, , . 1.3	0
Optimizing the CO2 reduction to produce CH3OH using flexible NiMoO4 coatings as a pho Journal of Alloys and Compounds, 2022, 918, 165549.	tocatalyst. 2.8	10
Catalytic Technologies for the Conversion and Reuse of CO2. , 2022, , 1803-1852.		1
A heterostructured ZnAl-LDH@ZIF-8 hybrid as a bifunctional photocatalyst/adsorbent for CC reduction under visible light irradiation. Chemical Engineering Journal, 2022, 446, 137003.	02 6.6	27
Ultrathin Ti-doped WO ₃ nanosheets realizing selective photoreduction of CO ₂ to CH ₃ OH. Nanoscale, 2022, 14, 14023-14028.	2.8	12
Thiadiazol-BasedÂConjugated Organic Polymer Anchoring Ag Nanoparticles for Efficient Co Co2 into Oxazolidinones from Propargylic Amines. SSRN Electronic Journal, 0, , .	nversion of 0.4	0
Efficient photoelectrocatalytic conversion of CO2 to formic acid using Ag-TiO2 nanoparticle on the surface of nanoporous structured Ti foil. Journal of Industrial and Engineering Chemis 2022, 113, 124-131.	es formed stry, 2.9	5
Redoxâ€Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxida CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	ation and 1.6	6

#

#	Article	IF	CITATIONS
168	The Block-Localized Wavefunction (BLW) Method and Its Applications. , 2024, , 481-500.		0
169	Conversion of CO ₂ to epoxides or oxazolidinones enabled by a Cu ^I /Cu ^{II} -organic framework bearing a tri-functional linker. Inorganic Chemistry Frontiers, 2022, 9, 4425-4432.	3.0	8
170	Zinc-Based Materials for Photoelectrochemical Reduction of Carbon Dioxide. Energy & Fuels, 2022, 36, 11380-11393.	2.5	11
171	Powering the World with Solar Fuels from Photoelectrochemical CO ₂ Reduction: Basic Principles and Recent Advances. Advanced Energy Materials, 2022, 12, .	10.2	44
172	Synergistic Interaction of MoS ₂ Nanoflakes on La ₂ Zr ₂ O ₇ Nanofibers for Improving Photoelectrochemical Nitrogen Reduction. ACS Applied Materials & Interfaces, 2022, 14, 31889-31899.	4.0	21
173	Solar-Driven Carbon Dioxide Reduction: A Fair Evaluation of Photovoltaic-Biased Photoelectrocatalysis and Photovoltaic-Powered Electrocatalysis. Frontiers in Energy Research, 0, 10, .	1.2	4
174	An Overview of Solar-Driven Photoelectrochemical CO ₂ Conversion to Chemical Fuels. ACS Catalysis, 2022, 12, 9023-9057.	5.5	51
175	Energy <i>Versus</i> Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal–Molecular Hybrids. Chemical Reviews, 2022, 122, 12475-12494.	23.0	50
176	Effective photoelectrocatalytic reduction of CO2 to formic acid using controllably annealed TiO2 nanoparticles derived from porous structured Ti foil. Journal of CO2 Utilization, 2022, 63, 102152.	3.3	1
177	Unveiling the mechanism of the photocatalytic reduction of CO ₂ to formate promoted by porphyrinic Zr-based metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 18103-18115.	5.2	21
178	CHAPTER 5. Two-dimensional Metal Oxide Nanomaterials for Electrochemical Conversion of CO2 Into Energy-rich Chemicals. , 2022, , 171-195.		0
179	Ammonia borane-based reactive mixture for trapping and converting carbon dioxide. Frontiers of Materials Science, 2022, 16, .	1.1	1
180	1D α-Fe ₂ O ₃ /ZnO Junction Arrays Modified by Bi as Photocathode: High Efficiency in Photoelectrochemical Reduction of CO ₂ to HCOOH. Journal of Physical Chemistry Letters, 2022, 13, 6867-6874.	2.1	43
181	Solarâ€Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. ChemSusChem, 2022, 15, .	3.6	9
182	Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochemical Energy Reviews, 2022, 5, .	13.1	49
183	Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. Advanced Science, 2022, 9,	5.6	17
184	Transformation of carbon dioxide, a greenhouse gas, into useful components and reducing global warming: A comprehensive review. International Journal of Energy Research, 2022, 46, 17926-17951.	2.2	9
185	Inventions, innovations and new technologies – Solar thermochemical fuels. Solar Compass, 2022, 2, 100024.	0.5	2

#	Article	IF	Citations
186	Recent advances on Z-scheme engineered BiVO4-based semiconductor photocatalysts for CO2 reduction: A review. Applied Surface Science Advances, 2022, 11, 100289.	2.9	5
187	Thiadiazol-based conjugated organic polymer anchoring Ag nanoparticles for efficient conversion of CO2 into oxazolidinones from propargylic amines. Applied Surface Science, 2022, 604, 154566.	3.1	4
188	Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design. Journal of CO2 Utilization, 2022, 65, 102211.	3.3	14
189	CO2 metallothermic conversion to valuable nanocarbons by mixed Mg/Ca reductant. Journal of CO2 Utilization, 2022, 65, 102200.	3.3	2
190	Co2ÂActivation and Dissociation Over Ag(111) Surfaces in the Presence of Surface Charge Density: A Static Gas Phase Dft Study. SSRN Electronic Journal, 0, , .	0.4	0
191	CHAPTER 14. CO2 Capture and Conversion Using Different Renewable Sources. , 2022, , 374-391.		0
192	Selective CO ₂ -to-CO photoreduction over an orthophosphate semiconductor <i>via</i> the direct Z-scheme heterojunction of Ag ₃ PO ₄ quantum dots decorated on SnS ₂ nanosheets. Sustainable Energy and Fuels, 2022, 6, 4418-4428.	2.5	1
193	Copper ternary oxides as photocathodes for solar-driven CO ₂ reduction. Reviews on Advanced Materials Science, 2022, 61, 430-457.	1.4	5
194	Topology- and wavelength-governed CO ₂ reduction photocatalysis in molecular catalyst-metal–organic framework assemblies. Chemical Science, 2022, 13, 12164-12174.	3.7	13
195	TiO2-based photocatalysts for CO2 reduction and solar fuel generation. Chinese Journal of Catalysis, 2022, 43, 2500-2529.	6.9	31
196	Advances in Thermo-, Photo-, and Electrocatalytic Continuous Conversion of Carbon Dioxide into Liquid Chemicals. ACS Sustainable Chemistry and Engineering, 2022, 10, 12906-12932.	3.2	8
197	Amino Acid-Assisted Preparation of Homogeneous PbS/CsPbBr ₃ Nanocomposites for Enhanced Photoelectrocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 15744-15751.	1.5	6
199	Toward Excellence in Photocathode Engineering for Photoelectrochemical CO ₂ Reduction: Design Rationales and Current Progress. Advanced Energy Materials, 2022, 12, .	10.2	30
200	Effect of Halide Anions on the Electroreduction of CO 2 Âto C 2 H 4 : A Density Functional Theory Study. ChemPhysChem, 0, , .	1.0	3
201	Optoelectrical Regulation of CuBi ₂ O ₄ Photocathode via Photonic Crystal Structure for Solar–Fuel Conversion. ACS Applied Materials & Interfaces, 2022, 14, 43946-43954.	4.0	4
202	Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review. Energies, 2022, 15, 7061.	1.6	11
203	Ligandâ€Free Silver Nanoparticles for CO ₂ Electrocatalytic Reduction to CO. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
204	CO2 adsorption and activation on Ag(1 1 1) surfaces in the presence of surface charge density: A static gas phase DFT study. Applied Surface Science, 2023, 610, 155498.	3.1	5

#	Article	IF	CITATIONS
205	Light, Heat and Electricity Integrated Energy Conversion System: Photothermalâ€assisted Coâ€electrolysis of CO2 and Methanol. Angewandte Chemie, 0, , .	1.6	3
206	Bromide-Mediated Photoelectrochemical Epoxidation of Alkenes Using Water as an Oxygen Source with Conversion Efficiency and Selectivity up to 100%. Journal of the American Chemical Society, 2022, 144, 19770-19777.	6.6	23
207	Light, Heat and Electricity Integrated Energy Conversion System: Photothermalâ€Assisted Coâ€Electrolysis of CO ₂ and Methanol. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
208	Synergistic Effect between CO ₂ Chemisorption Using Amino-Modified Carbon Nitride and Epoxide Activation by High-Energy Electrons for Plasmon-Assisted Synthesis of Cyclic Carbonates. ACS Applied Materials & Interfaces, 2022, 14, 51029-51040.	4.0	3
209	A tunable bioinspired process of SnO2 NPs synthesis for electrochemical CO2-into-formate conversion. Journal of CO2 Utilization, 2022, 66, 102263.	3.3	6
210	Simultaneous manipulation of scalable absorbance and the electronic bridge for efficient CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 25661-25670.	5.2	15
211	Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation. Separation and Purification Technology, 2023, 306, 122521.	3.9	19
212	A Critical Review of the Use of Bismuth Halide Perovskites for CO2 Photoreduction: Stability Challenges and Strategies Implemented. Catalysts, 2022, 12, 1410.	1.6	11
213	Asymmetric bipolar membrane electrodialysis for acid and base production. AICHE Journal, 2023, 69, .	1.8	16
214	<i>N</i> -Heterocyclic Carbene Gold Complexes in a Photocatalytic CO ₂ Reduction Reaction. Inorganic Chemistry, 2022, 61, 18802-18809.	1.9	8
215	Microbial electrosynthesis: carbonaceous electrode materials for CO ₂ conversion. Materials Horizons, 2023, 10, 292-312.	6.4	9
216	Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chemical Engineering Journal, 2023, 455, 140654.	6.6	17
217	Advanced energy materials: Current trends and challenges in electro- and photo-catalysts for H2O splitting. Journal of Industrial and Engineering Chemistry, 2023, 119, 90-111.	2.9	8
218	Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere, 2022, 13, 1958.	1.0	9
219	Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. Bioresources and Bioprocessing, 2022, 9, .	2.0	5
220	Photoelectrochemical energy conversion using hybrid photoelectrodes. Materials for Renewable and Sustainable Energy, 2022, 11, 251-258.	1.5	0
221	Divergent Functionalization of Styrenes via Radical/Polar Crossover with CO ₂ and Sodium Sulfinates. Chemistry - A European Journal, 2023, 29, .	1.7	5
222	Photocatalytic CO2 Conversion to Ethanol: A Concise Review. Catalysts, 2022, 12, 1549.	1.6	1

#	Article	IF	CITATIONS
223	Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction. Chemical Engineering Journal, 2023, 457, 141179.	6.6	8
225	Photoelectrochemical CO2 Reduction: Perspective and Challenges. , 2023, , 1-27.		0
226	Review on Metal Chalcogenides and Metal Chalcogenide-Based Nanocomposites in Photocatalytic Applications. Chemistry Africa, 2023, 6, 1127-1143.	1.2	6
227	Mechanistic Study of Plasmon-Assisted <i>In Situ</i> Photoelectrochemical CO ₂ Reduction to Acetate with a Ag/Cu ₂ O Nanodendrite Electrode. ACS Catalysis, 2023, 13, 1638-1648.	5.5	11
228	Nanomaterials as catalysts for CO2 transformation into value-added products: A review. Science of the Total Environment, 2023, 868, 161547.	3.9	28
229	Microbial assemblage for solid waste bioremediation and valorization with an essence of bioengineering. Environmental Science and Pollution Research, 2023, 30, 16797-16816.	2.7	2
230	Photoelectrocatalytic organic synthesis: a versatile method for the green production of building-block chemicals. Journal of Materials Chemistry A, 2023, 11, 3281-3296.	5.2	8
231	Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO ₂ to C ₂₊ Products. Small, 2023, 19, .	5.2	30
232	Photovoltaic-Powered Electrochemical CO ₂ Reduction: Benchmarking against the Theoretical Limit. ACS Energy Letters, 2023, 8, 981-987.	8.8	3
233	Z-scheme WOx/Cu-g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. Journal of Colloid and Interface Science, 2023, 636, 646-656.	5.0	66
234	Ethanol formation via CO2 electroreduction at low overvoltage over exposed (111) plane of CuO thin film. Electrochimica Acta, 2023, 441, 141791.	2.6	4
235	Sustainable biodiesel production from Madhuca indica oil using a functionalized industrial waste as a catalyst: Ready to scale-up approach. Industrial Crops and Products, 2023, 193, 116233.	2.5	7
236	The Chemistry of CO2 Reduction Processes: Mechanisms, Challenges, and Perspectives. , 2022, , 1-25.		0
237	Photoelectrocatalytic CO2 reduction. , 2023, , 335-359.		0
238	Bioelectrochemical systems: Understanding the basics and overcoming the challenges. , 2023, , 79-98.		1
239	Fundamentals of photoelectrocatalysis. , 2023, , 7-81.		1
240	Photoelectrochemical reduction of CO ₂ catalyzed by a 3D core–shell NiMoO ₄ @ZnO heterojunction with bicentre at the (111) plane and thermal electron assistance. Journal of Materials Chemistry A, 2023, 11, 4230-4237.	5.2	11
241	Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chemical Communications, 2023, 59, 3005-3023.	2.2	8

#	Article	IF	CITATIONS
242	Multi-enzyme cascade in carbon dioxide electroreduction fuel cell. Materials Today Sustainability, 2023, 21, 100333.	1.9	0
243	Structure, materials, and preparation of photoelectrodes. , 2023, , 83-174.		1
244	Investigating the interfacial properties of halide perovskite/TiO _{<i>x</i>} heterostructures for versatile photocatalytic reactions under sunlight. Nanoscale, 2023, 15, 7710-7714.	2.8	2
245	A novel Sunflower-like MOF@COF for improved photocatalytic CO2 reduction. Separation and Purification Technology, 2023, 311, 123322.	3.9	16
246	Biomimetic photocatalysts for the transformation of CO2: design, properties, and mechanistic insights. Materials Today Energy, 2023, 34, 101310.	2.5	1
247	Photoelectrocatalytic CO2 reduction with ternary nanocomposite of MXene (Ti3C2)-Cu2O-Fe3O4: Comprehensive utilization of electrolyte and light-wavelength. Chemical Engineering Journal, 2023, 464, 142716.	6.6	6
248	Modulating light absorption and charge recombination in photoelectrochemical water oxidation with spin-coated MoS2 co-catalyst on ZnO nanorods. Surfaces and Interfaces, 2023, 37, 102663.	1.5	4
249	Photoelectrochemical behaviors and photocatalytic activities of mixed CuO and CuFeO2 films with Ti and Ni underlayers for CO2 conversion. Applied Catalysis A: General, 2023, 654, 119071.	2.2	6
250	Lead-Free Halide Perovskite Cs ₂ AgBiBr ₆ /Bismuthene Composites for Improved CH ₄ Production in Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2023, 6, 10193-10204.	2.5	11
251	Ceria-based photocatalysts in water-splitting for hydrogen production and carbon dioxide reduction. Catalysis Reviews - Science and Engineering, 0, , 1-78.	5.7	7
252	Heterojunction nanoarchitectonics of WOx/Au-g-C3N4 with efficient photogenerated carrier separation and transfer toward improved NO and benzene conversion. Materials Today Advances, 2023, 17, 100355.	2.5	7
253	GaN nanowires/Si photocathodes for CO2 reduction towards solar fuels and chemicals: advances, challenges, and prospects. Science China Chemistry, 0, , .	4.2	1
254	Electronic modulation of two-dimensional bismuth-based nanosheets for electrocatalytic CO2 reduction to formate: A review. Materials Reports Energy, 2023, 3, 100181.	1.7	1
255	The Effect of SnO ₂ Surface Properties on CO ₂ Photoreduction to Higher Hydrocarbons. ChemCatChem, 2023, 15, .	1.8	3
256	Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nature Communications, 2023, 14, .	5.8	30
257	Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO ₂ Reduction with a Supramolecular Photocatalyst. ACS Applied Materials & Margin Science, 2023, 15, 13205-13218.	4.0	7
258	Solar driven CO ₂ reduction: from materials to devices. Journal of Materials Chemistry A, 2023, 11, 12499-12520.	5.2	7
259	Retrospective insights into recent MXene-based catalysts for CO ₂ electro/photoreduction: how far have we gone?. Nanoscale, 2023, 15, 6536-6562.	2.8	16

#	ARTICLE	IF	CITATIONS
260	Multidisciplinary Approaches to Solar-driven Water Splitting and Carbon Dioxide Conversion. , 2023, , 1-24.		0
261	Sb-doped SnS2 nanosheets enhance electrochemical reduction of carbon dioxide to formate. Journal of Industrial and Engineering Chemistry, 2023, 123, 33-40.	2.9	3
262	A Review on the Progress in Chemo-Enzymatic Processes for CO2 Conversion and Upcycling. Catalysts, 2023, 13, 611.	1.6	2
263	CsPbBr3/platinum and CsPbBr3/graphite hybrid photoelectrodes for carbon dioxide conversion to oxalic acid. Solar Energy, 2023, 254, 213-222.	2.9	3
264	Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. Fire, 2023, 6, 128.	1.2	11
265	Photoelectrochemical water oxidation by a MOF/semiconductor composite. Chemical Science, 0, , .	3.7	2
266	Bioremediation by MFC technology. , 2023, , 373-418.		1
267	Soil and Ocean Carbon Sequestration, Carbon Capture, Utilization, and Storage as Negative Emission Strategies for Global Climate Change. Journal of Soil Science and Plant Nutrition, 2023, 23, 1421-1437.	1.7	3
268	Emerging Single-Atom Catalysts and Nanomaterials for Photoelectrochemical Reduction of Carbon Dioxide to Value-Added Products: A Review of the Current State-of-the-Art and Future Perspectives. Energy & Fuels, 2023, 37, 5712-5742.	2.5	11
269	Photoelectrochemical CO2 Reduction: Perspective and Challenges. , 2023, , 613-639.		0
285	Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications. Springer Series in Materials Science, 2023, , 103-136.	0.4	4
286	Artificial Photosynthesis an Alternative Source of Renewable Energy: Potential and Limitations. Physiology, 0, , .	4.0	0
298	Artificial Photosynthesis Using Nanotechnology. , 2023, , 639-667.		0
308	Advancing metal–organic frameworks' materials chemistry. Advances in Inorganic Chemistry, 2023, , 69-118.	0.4	0
319	Advances in CO ₂ activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chemical Science, 2023, 14, 13661-13695.	3.7	1
320	A critical review of current conversion facilities and research output on carbon dioxide utilization. MRS Energy & Sustainability, 0, , .	1.3	0
329	Tailoring co-catalysts on Si photocathodes for efficient photoelectrochemical CO ₂ reduction: recent progress and prospects of deposition methods. Inorganic Chemistry Frontiers, 2024, 11, 998-1018.	3.0	0
331	Electrocatalytic Reactors for Syngas Production From Natural Gas. , 2024, , .		0

IF

#	Article
#	ARTICLE

Nanomaterials in artificial photosynthesis. , 2024, , 655-683.

CITATIONS