Photophysics Modulation in Photoswitchable Metalâ ${f \varepsilon}$ "

Chemical Reviews 120, 8790-8813

DOI: 10.1021/acs.chemrev.9b00350

Citation Report

#	Article	IF	CITATIONS
1	Controllable CO ₂ Capture in Metal–Organic Frameworks: Making Targeted Active Sites Respond to Light. Industrial & Engineering Chemistry Research, 2020, 59, 21894-21900.	1.8	18
2	Construction of Multifunctional Luminescent Lanthanide MOFs by Hydrogen Bond Functionalization for Picric Acid Detection and Fluorescent Dyes Encapsulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13497-13506.	3.2	57
3	Luminescent metal–organic frameworks and their potential applications. Journal of Chemical Sciences, 2020, 132, 1.	0.7	34
4	Functionalizing Luminescent Metal–Organic Frameworks for Enhanced Photoluminescence. ACS Energy Letters, 2020, 5, 2671-2680.	8.8	58
5	Composition-tuned metal–organic thin-film structures based on photoswitchable azobenzene by ALD/MLD. Dalton Transactions, 2020, 49, 11310-11316.	1.6	8
6	Photochemically Crushable and Regenerative Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 14069-14073.	6.6	21
7	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
8	ON/OFF Photoswitching and Thermoinduced Spin Crossover with Cooperative Luminescence in a 2D Iron(II) Coordination Polymer. Inorganic Chemistry, 2020, 59, 13009-13013.	1.9	37
9	Spiro-conjugated indenodiarylethenes: enabling steric-induced electronic tuning of photochromic and photoluminescent properties by spiro-conjugation. Science China Chemistry, 2020, 63, 1659-1665.	4.2	11
10	Energy Transfer in Metal–Organic Frameworks and Its Applications. Small Structures, 2020, 1, 2000019.	6.9	26
11	Three-component D–A hybrid heterostructures with enhanced photochromic, photomodulated luminescence and selective anion-sensing properties. Dalton Transactions, 2020, 49, 13083-13089.	1.6	24
12	Impact of diffusion methods and metal cations on photochromic three-component D–A hybrid heterostructures. Dalton Transactions, 2020, 49, 12411-12417.	1.6	11
13	Light-switchable Metal-Organic Cages. Chemistry Letters, 2020, 49, 609-615.	0.7	48
14	Photoresponsivity and antibiotic sensing properties of an entangled tris(pyridinium)-based metal–organic framework. Dalton Transactions, 2020, 49, 7488-7495.	1.6	31
15	Hierarchy in Metal–Organic Frameworks. ACS Central Science, 2020, 6, 359-367.	5.3	130
16	Band Alignment as the Method for Modifying Electronic Structure of Metalâ^'Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 17611-17619.	4.0	36
17	The Future of Molecular Machines. ACS Central Science, 2020, 6, 347-358.	5.3	220
18	A New Multifunctional Zinc–Organic Framework with Rare Interpenetrated Tripillared Bilayers as a Luminescent Probe for Detecting Ni ²⁺ and PO ₄ ^{3–} in Water.	1.4	35

#	Article	IF	CITATIONS
19	Easy Processing of Metal–Organic Frameworks into Pellets and Membranes. Applied Sciences (Switzerland), 2020, 10, 798.	1.3	6
20	Selective chemochromic and chemically-induced photochromic response of a metal–organic framework. Chemical Communications, 2020, 56, 5929-5932.	2.2	35
21	Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 â€MOF during the Lowâ€ŧemperature Waterâ€Gas Shift Reaction. ChemCatChem, 2021, 13, 1195-1200.	1.8	7
22	Photoresponsive porous materials. Nanoscale Advances, 2021, 3, 24-40.	2.2	62
23	Near-infrared (NIR-II) luminescence for the detection of cyclotetramethylene tetranitramine based on stable Nd-MOF. Journal of Solid State Chemistry, 2021, 294, 121789.	1.4	7
24	Thermo- and light-triggered reversible interconversion of dysprosium–anthracene complexes and their responsive optical, magnetic and dielectric properties. Chemical Science, 2021, 12, 929-937.	3.7	43
25	A dual-emitting mixed-lanthanide MOF with high water-stability for ratiometric fluorescence sensing of Fe ³⁺ and ascorbic acid. Journal of Materials Chemistry C, 2021, 9, 562-568.	2.7	80
26	Controlling molecular packing via diffusion methods for enhanced photochromic properties in D-A hybrid heterostructures. Dyes and Pigments, 2021, 186, 109027.	2.0	14
27	Photoswitchable Metal–Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. Langmuir, 2021, 37, 2-15.	1.6	29
28	Encoding Multilayer Complexity in Antiâ€Counterfeiting Heterometallic MOFâ€Based Optical Tags. Angewandte Chemie, 2021, 133, 1223-1231.	1.6	7
29	Encoding Multilayer Complexity in Antiâ€Counterfeiting Heterometallic MOFâ€Based Optical Tags. Angewandte Chemie - International Edition, 2021, 60, 1203-1211.	7.2	54
30	Let the light be a guide: Chromophore communication in metal-organic frameworks. Nano Research, 2021, 14, 338-354.	5.8	36
31	Photoresponsive frameworks: energy transfer in the spotlight. Faraday Discussions, 2021, 231, 266-280.	1.6	11
32	Achieving UV and X-ray Dual Photochromism in a Metal–Organic Hybrid via Structural Modulation. ACS Applied Materials & Interfaces, 2021, 13, 2745-2752.	4.0	24
33	Solar energy conversion and storage by photoswitchable organic materials in solution, liquid, solid, and changing phases. Journal of Materials Chemistry C, 2021, 9, 11444-11463.	2.7	46
34	Photo-induced variation of magnetism in coordination polymers with ligand-based electron transfer. Dalton Transactions, 2021, 50, 13124-13137.	1.6	9
35	Sunlight-activated phase change materials for controlled heat storage and triggered release. Journal of Materials Chemistry A, 2021, 9, 9798-9808.	5.2	61
36	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.	2.1	35

#	Article	IF	Citations
37	Micro-/nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. Journal of Materials Chemistry C, 2021, 9, 7310-7318.	2.7	14
38	Photochromic and photocontrolled luminescent rare-earth D–A hybrid crystals based on rigid viologen acceptors. CrystEngComm, 2021, 23, 6267-6275.	1.3	9
39	Transformable upconversion metal–organic frameworks for near-infrared light-programmed chemotherapy. Chemical Communications, 2021, 57, 7826-7829.	2.2	5
40	Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer. Chemical Science, 2021, 12, 7818-7838.	3.7	7
41	The first 2,6-di(1,6-naphthyridin-2-yl)pyridine-based redox photochromic coordination polymer platform with selective vapochromism for trolamine. Inorganic Chemistry Frontiers, 2021, 8, 4044-4051.	3.0	9
42	Inter-ligand charge-transfer interactions in a photochromic and redox active zinc–organic framework. CrystEngComm, 2021, 23, 5982-5988.	1.3	7
43	Concluding remarks: Cooperative phenomena in framework materials. Faraday Discussions, 2021, 225, 442-454.	1.6	2
44	Confinement-guided photophysics in MOFs, COFs, and cages. Chemical Society Reviews, 2021, 50, 4382-4410.	18.7	84
45	Reversible room-temperature phosphorescence in response to light stimulation based on a photochromic copolymer. Chemical Communications, 2021, 57, 3154-3157.	2.2	16
46	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
47	A Robust Cage-Based Metal–Organic Framework Showing Ultrahigh SO ₂ Uptake for Efficient Removal of Trace SO ₂ from SO ₂ /CO ₂ and SO ₂ /CO ₂ /N ₂ Mixtures. Inorganic Chemistry, 2021, 60, 3447-3451.	1.9	19
48	Heterometallic Actinide ontaining Photoresponsive Metalâ€Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angewandte Chemie - International Edition, 2021, 60, 8072-8080.	7.2	51
49	Heterometallic Actinideâ€Containing Photoresponsive Metalâ€Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angewandte Chemie, 2021, 133, 8152-8160.	1.6	9
50	Light-Harvesting "Antenna―Behavior in NU-1000. ACS Energy Letters, 2021, 6, 848-853.	8.8	40
51	Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection. Chinese Chemical Letters, 2021, 32, 3109-3112.	4.8	23
52	Polymerization-Induced Reassembly of Gemini Molecules toward Generating Porous Two-Dimensional Polymers. Journal of Physical Chemistry Letters, 2021, 12, 2340-2347.	2.1	5
53	Interpenetration Control in Thorium Metal–Organic Frameworks: Structural Complexity toward Iodine Adsorption. Inorganic Chemistry, 2021, 60, 5617-5626.	1.9	17
54	Structurally photo-active metal–organic frameworks: Incorporation methods, response tuning, and potential applications. Chemical Physics Reviews, 2021, 2, .	2.6	9

#	Article	IF	CITATIONS
55	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Interfaces, 2021, 13, 14239-14247.	4.0	73
56	Cobalt(II)â€dianthracene Frameworks: Assembly, Exfoliation and Properties. Chemistry - an Asian Journal, 2021, 16, 1456-1465.	1.7	8
57	Dynamically Controlled Electronic Behavior of Stimuliâ€Responsive Materials: Exploring Dimensionality and Connectivity. Advanced Energy Materials, 2022, 12, 2100441.	10.2	32
58	Ligand-Triggered Platinum(II) Metallacycle with Mechanochromic and Vapochromic Responses. Inorganic Chemistry, 2021, 60, 9387-9393.	1.9	75
59	Broadband Photoresponsive Bismuth Halide Hybrid Semiconductors Built with π-Stacked Photoactive Polycyclic Viologen. Inorganic Chemistry, 2021, 60, 5538-5544.	1.9	24
60	"On-The-Fly―Non-Adiabatic Dynamics Simulations on Photoinduced Ring-Closing Reaction of a Nucleoside-Based Diarylethene Photoswitch. Molecules, 2021, 26, 2724.	1.7	4
61	Ultra-high adsorption selectivity and affinity for CO2 over CH4, and luminescent properties of three new solvents induced Zn(II)-based metal-organic frameworks (MOFs). Journal of Solid State Chemistry, 2021, 297, 122054.	1.4	7
62	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
63	Exploiting Light Interferences to Generate Micrometerâ€High Superstructures from Monomeric Azo Materials with Extensive Orientational Mobility. Advanced Optical Materials, 2021, 9, 2100525.	3.6	4
64	High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal–Organic Framework via "Click―Reaction. Inorganic Chemistry, 2021, 60, 10089-10094.	1.9	17
65	Modulating the Optical Characteristics of Spiropyran@Metal–Organic Framework Composites as a Function of Spiropyran Substitution. Langmuir, 2021, 37, 7834-7842.	1.6	8
66	Multiâ€Lightâ€Responsive Upconversionâ€andâ€Downshiftingâ€Based Circularly Polarized Luminescent Switches in Chiral Metal–Organic Frameworks. Advanced Materials, 2021, 33, e2101797.	11.1	59
67	Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213891.	9.5	80
68	Fluorescence Photoswitching in a Series of Metalâ€Organic Frameworks Loaded with Different Anthracenes. European Journal of Inorganic Chemistry, 2021, 2021, 2986-2992.	1.0	4
69	Avoiding the Center‧ymmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Films. Advanced Materials, 2021, 33, e2103287.	11.1	14
70	Recent Progress in Externalâ€Stimulusâ€Responsive 2D Covalent Organic Frameworks. Advanced Materials, 2022, 34, e2101175.	11.1	148
71	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	6.6	73
72	Synthesis, crystal structure and magnetic properties of poly[[diaqua{Î1⁄4 ₆ -2-[bis(carboxylatomethyl)amino]terephthalato}dicobalt(II)] 1.6-hydrate]. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 939-943.	0.2	1

#	Article	IF	CITATIONS
73	Instant Photochromism Caused by Radical Formation in Photocatalytic Decarboxylation of Dihydrothiazole Derivative ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2774-2780.	2.6	2
74	Lightâ€Modulated Cationic and Anionic Transport across Protein Biopolymers**. Angewandte Chemie - International Edition, 2021, 60, 24676-24685.	7.2	10
75	Two Zn-viologen coordination polymers constructed from 1-carboxyethyl-4,4′-bipyridinium ligands: Crystal structures, photochromism and theoretical calculations. Polyhedron, 2021, 205, 115295.	1.0	4
76	Lightâ€modulated cationic and anionic transport across protein biopolymers. Angewandte Chemie, 2021, 133, 24881.	1.6	0
77	Efficient Electrocatalytic Switching of Azoheteroarenes in the Condensed Phases. Journal of the American Chemical Society, 2021, 143, 15250-15257.	6.6	36
78	A New Electrically Conducting Metal–Organic Framework Featuring U-Shaped cis-Dipyridyl Tetrathiafulvalene Ligands. Frontiers in Chemistry, 2021, 9, 726544.	1.8	4
79	Post-modification preparation of dual-emission Eu3+@ZnII MOFs-based hybrid material and its application in highly sensitive ratiometric sensing for asthma wonder drug-procaterol enhanced by HCO3- and temperature. Sensors and Actuators B: Chemical, 2021, 344, 130199.	4.0	12
80	Coordination driven self-assembly of donor-acceptor linkers in 3D supramolecular frameworks: Ground state charge transfer and tunable porosity. Materials Research Bulletin, 2021, 142, 111388.	2.7	3
81	Dithienylethene-containing cyclic and linear conjugated molecules: Synthesis, photochromism, and photoluminescence. Dyes and Pigments, 2021, 195, 109700.	2.0	3
82	Photochromism and photomagnetism in three cyano-bridged 3d–4f heterobimetallic viologen frameworks. Dalton Transactions, 2021, 50, 4959-4966.	1.6	31
83	Thermo- and photoinduced spin state switching in an iron(<scp>ii</scp>) 2D coordination network associated with large light-induced thermal hysteresis and tuning of dimensionality <i>via</i> ligand modulation. Dalton Transactions, 2021, 50, 7725-7735.	1.6	12
84	The modulation effect of electron-rich solvents on the supramolecular networks and photochromic properties of naphthalene diimide molecules. CrystEngComm, 2021, 23, 3356-3363.	1.3	14
85	Photoinduced <i>versus</i> spontaneous host–guest electron transfer within a MOF and chromic/luminescent response. Inorganic Chemistry Frontiers, 2021, 8, 4828-4837.	3.0	16
86	Photophysical Properties and Electrochromism of Viologen Encapsulated Viologen@ <scp>InBTB Metal–Organic</scp> Framework. Bulletin of the Korean Chemical Society, 2021, 42, 326-332.	1.0	8
87	Organic photoresponsive materials for information storage: a review. Advanced Photonics, 2020, 3, .	6.2	48
88	Self-recovering ultraviolet-sensitive photochromic naphthalenediimide-based coordination networks: rapid fluorescence recognition of <i>p</i> -substituted nitrobenzenes. Journal of Materials Chemistry C, 2021, 9, 14921-14937.	2.7	13
89	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	18.7	75
90	Active mechanisorption driven by pumping cassettes. Science, 2021, 374, 1215-1221.	6.0	88

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
91	MOFâ€Based Sustainable Memory Devices. Advanced Functional Materials, 2022, 32, 2107949.	7.8	31
92	Synthesis of copper-based metal-organic framework for sensing nitroaromatic compounds. Inorganic Chemistry Communication, 2021, 134, 109017.	1.8	8
93	Photochromic and Room Temperature Phosphorescent Donor–Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides. Inorganic Chemistry, 2021, 60, 16233-16240.	1.9	19
94	High-temperature enantiomeric azobenzene-based photoisomerized piezoelectrics: 2021, 5, 8371-8379.	3.2	5
95	Structural Chemistry of Metal–Organic Frameworks under Hydrostatic Pressures. , 2021, 3, 1635-1651.		16
96	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	1.7	13
97	Photoactive perylenediimide metal–organic framework for boosting iodoperfluoroalkylation of alkenes and oxidative coupling of amines. Inorganic Chemistry Frontiers, 2021, 9, 111-118.	3.0	13
98	Optical-switched proton logic gate: Indocyanine green decorated HSB-W5 MOFs nanosheets. Science China Materials, 0, , 1.	3.5	4
99	Multistimulus Response of Two Tautomeric Zn(II) Complexes and Their White-Light Emission Based on Different Mechanisms. Inorganic Chemistry, 2021, 60, 17677-17686.	1.9	4
100	A Metalâ€Organic Framework (MOF)â€Based Multifunctional Cargo Vehicle for Reactiveâ€Gas Delivery and Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
101	Highâ€Efficiency Wideband Excitable Mechanoluminescence from a Yellow MOF Phosphor as White LED and Multicolor Thin Films. Advanced Optical Materials, 2022, 10, .	3.6	15
102	Photoswitchable Zirconium MOF for Light-Driven Hydrogen Storage. Polymers, 2021, 13, 4052.	2.0	14
103	Symmetry-Guided Synthesis of <i>N,N′</i> -Bicarbazole and Porphyrin-Based Mixed-Ligand Metal–Organi Frameworks: Light Harvesting and Energy Transfer. Journal of the American Chemical Society, 2021, 143, 20411-20418.	C 6.6	37
104	A MOF Multifunctional Cargo Vehicle for Reactive Gas Delivery and Catalysis. Angewandte Chemie, 0, ,	1.6	0
105	MOFs in the time domain. Nature Reviews Chemistry, 2022, 6, 9-30.	13.8	34
106	Electron transfer photochromism of solid-state supramolecules constructed by cucurbit[<i>n</i>]uril (<i>n</i> = 5–8) and 1-(4-carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium chloride. New Journal of Chemistry, 2021, 45, 22249-22254.	1.4	7
107	Molecule in soft-crystal at ground and excited states: Theoretical approach. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100482.	5.6	5
108	Study on the relationship between structure and fluorescence properties of anthracene derivatives. Journal of Molecular Structure, 2022, 1252, 132029.	1.8	1

#	Article	IF	CITATIONS
109	Responsive luminescent MOF materials for advanced anticounterfeiting. Chemical Engineering Journal, 2022, 431, 134170.	6.6	64
110	Photoresponsive Metalâ€Organic Frameworks: Tailorable Platforms of Photoswitches for Advanced Functions. ChemNanoMat, 2022, 8, .	1.5	7
111	Anion-Afforded Functions of Ionic Metal–Organic Frameworks: Ionochromism, Anion Conduction, and Catalysis. Inorganic Chemistry, 2022, 61, 902-910.	1.9	15
112	Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. Trends in Chemistry, 2022, 4, 32-47.	4.4	11
113	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	23.0	121
114	Use of modulators and light to control crystallisation of a hydrogen bonded framework. Chemical Communications, 2021, 58, 306-309.	2.2	3
115	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	23.0	338
116	A critical review on the development of metal-organic frameworks for boosting photocatalysis in the fields of energy and environment. Journal of Cleaner Production, 2022, 333, 130164.	4.6	42
117	Light-Induced Color Switching of Single Metal–Organic Framework Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 777-783.	2.1	8
118	A Photochromic Organic–Inorganic Hybrid Schiff Base Metal Halide Ferroelectric. Chemistry of Materials, 2022, 34, 1737-1745.	3.2	10
119	Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal–Organic Polyhedron (MOP). Inorganic Chemistry, 2022, 61, 2813-2823.	1.9	24
120	Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100487.	5.6	76
121	Unveiling the new function of uranyl molecular clusters as fluorometric sensors for UV and X-ray dosimetry. Dalton Transactions, 2022, 51, 3041-3045.	1.6	2
122	General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nature Communications, 2022, 13, 776.	5.8	56
123	Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. Journal of the American Chemical Society, 2022, 144, 4457-4468.	6.6	37
124	Futureâ€Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Advanced Materials, 2022, 34, e2108289.	11.1	71
125	An unprecedented azobenzene-based organic single-component ferroelectric. Chemical Science, 2022, 13, 4936-4943.	3.7	12
126	Tailored metal–organic tetrahedral nanocages with aggregation-induced emission for an anti-counterfeiting ink and stimulus-responsive luminescence. New Journal of Chemistry, 2022, 46, 8062-8068.	1.4	11

#	Article	IF	CITATIONS
127	Recent advances in the applications of thorium-based metal–organic frameworks and molecular clusters. Dalton Transactions, 2022, 51, 7376-7389.	1.6	19
128	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9970-9986.	4.0	109
129	Turn-up Luminescent Sensing of Ultraviolet Radiation by Lanthanide Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 4561-4565.	1.9	10
130	Study on the preparation and performance of flexible sulfur dioxide gas sensors based on metal-organic framework. Journal of Polymer Research, 2022, 29, 1.	1.2	8
131	Two new isotypic Co(II)/Ni(II)-coordination polymers based on 5-(6-Carboxypyridin-2-yl)isophthalic acid: Synthesis, structure analysis and magnetism properties. Journal of Molecular Structure, 2022, 1261, 132927.	1.8	1
132	A two-fold interpenetrating Pb(II) coordination compound: synthesis, crystal structure, and luminescence properties. Inorganic and Nano-Metal Chemistry, 2023, 53, 19-22.	0.9	1
133	Stimuli-Responsive Porous Molecular Crystal with Reversible Modulation of Porosity. ACS Applied Materials & amp; Interfaces, 2022, 14, 1519-1525.	4.0	9
134	Solid-State Supramolecular Inclusion Complexes of β-Cyclodextrin with Carboxyphenyl Viologens Showing Photochromic Properties. Journal of Physical Chemistry C, 2022, 126, 844-850.	1.5	12
135	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. , 2022, 4, 128-135.		34
136	Recent advances of multiphoton absorption in metal–organic frameworks. Journal of Materials Chemistry C, 2022, 10, 6912-6934.	2.7	12
137	Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nature Communications, 2022, 13, 1951.	5.8	33
138	Polarized Laser Switching with Giant Contrast in MOFâ€Based Mixedâ€Matrix Membrane. Advanced Science, 2022, 9, e2200953.	5.6	12
139	Size Effect of Arylenediimide π-Conjugate Systems on the Photoresponsive Behaviors in Eu ³⁺ -Based Coordination Polymers. Inorganic Chemistry, 2022, 61, 6403-6410.	1.9	14
140	Toward real-world applications: promoting fast and efficient photoswitching in the solid state. Journal of Materials Chemistry C, 2022, 10, 13700-13716.	2.7	16
141	Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Advances, 2022, 12, 12878-12881.	1.7	1
142	Photochromic materials. , 2023, , 356-416.		3
143	Multifunctional AIEgen-based luminescent metal–organic frameworks with coordination-induced emission for chemical sensing. New Journal of Chemistry, 2022, 46, 9641-9649.	1.4	10
144	Facile Guest-Mediated Method for Gram-Scale Synthesis of Superhydrophilic Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4242-4247.	3.2	3

#	Article	IF	CITATIONS
145	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	7.2	12
146	Chiral Luminescent Liquid Crystal with Multiâ€Stateâ€Reversibility: Breakthrough in Advanced Antiâ€Counterfeiting Materials. Advanced Science, 2022, 9, e2201565.	5.6	51
147	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal‒Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0
148	Hydrolytically Stable Zr-Based Metal–Organic Framework as a Highly Sensitive and Selective Luminescent Sensor of Radionuclides. Inorganic Chemistry, 2022, 61, 7467-7476.	1.9	15
149	A metastable-state photoacid-based metal organic framework with multi-stimuli-responsive chromism. Dyes and Pigments, 2022, 203, 110365.	2.0	7
150	An electron-deficient MOF as an efficient electron-transfer catalyst for selective oxidative carbon–carbon coupling of 2,6-di- <i>tert</i> butylphenol. Dalton Transactions, 2022, 51, 8234-8239.	1.6	3
151	Interpenetration of Donor–Acceptor Hybrid Frameworks for Highly Sensitive Thermal Sensors. ACS Applied Materials & Interfaces, 2022, 14, 24575-24582.	4.0	8
152	<i>In situ</i> ligand-induced Ln-MOFs based on a chromophore moiety: white light emission and turn-on detection of trace antibiotics. CrystEngComm, 2022, 24, 4187-4200.	1.3	15
153	The effect of dicarboxylic acid isomer on the photochromism of naphthalenediimide-based metal-organic frameworks. Journal of Molecular Structure, 2022, 1265, 133346.	1.8	3
154	Stimuli-Responsive Organic Phase Change Materials: Molecular Designs and Applications in Energy Storage. Accounts of Materials Research, 2022, 3, 634-643.	5.9	20
155	Tunable fluorescence emission based on multi-layered MOF-on-MOF. Dalton Transactions, 2022, 51, 9397-9403.	1.6	7
156	Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. Journal of Solid State Chemistry, 2022, 313, 123346.	1.4	2
157	Rare earth luminescence, MOFs luminescence, rare earth MOFs hybrid materials luminescence, luminescence response, and chemical sensing. , 2022, , 41-71.		0
158	Two Coordination Polymers Based on Co(II) Ions: Application Value in the Treatment of Diabetic Retinopathy via the Regulation of Vascular Endothelial Growth Factor Release. Science of Advanced Materials, 2022, 14, 492-498.	0.1	1
159	Photoresponsive Metal-Organic Frameworks as Adjustable Scaffolds in Reticular Chemistry. International Journal of Molecular Sciences, 2022, 23, 7121.	1.8	6
160	Azobenzene-Based Solar Thermal Fuels: A Review. Nano-Micro Letters, 2022, 14, .	14.4	28
161	Rational Design of Smart Metal–Organic Frameworks for Light-Modulated Gas Transport. ACS Applied Materials & Interfaces, 2022, 14, 32009-32017.	4.0	5
162	Stimuliâ€Responsive Electrochemical Energy Storage Devices. Chemical Record, 2022, 22, .	2.9	8

#	Article	IF	CITATIONS
163	Electroactive Covalent Organic Framework Enabling Photostimulus-Responsive Devices. Journal of the American Chemical Society, 2022, 144, 16093-16100.	6.6	14
164	Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. Nano Letters, 2022, 22, 6972-6981.	4.5	18
165	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	13.8	24
166	Naphthalenediimide-based coordination compound with air-stable organic radicals and photochromism. Dyes and Pigments, 2022, 207, 110747.	2.0	3
167	Light-controlled friction realized by a photorheological fluid. Tribology International, 2022, 176, 107914.	3.0	5
168	Selective krypton uptake through trap confinement, formation of Kr2 dimer, and light response in a photochromic and radiation-resistant thorium-diarylethene-framework. Chemical Engineering Journal, 2023, 451, 139004.	6.6	6
169	Phototriggered color modulation of perovskite nanoparticles for high density optical data storage. Chemical Science, 2022, 13, 10315-10326.	3.7	6
170	An inclusion complex of cucurbit[7]uril with benzimidazolyl benzyl viologen exhibits fluorescence and photochromic properties. Physical Chemistry Chemical Physics, 2022, 24, 25930-25936.	1.3	10
171	Synthesis and shaping of metal–organic frameworks: a review. Chemical Communications, 2022, 58, 11488-11506.	2.2	39
172	Photoresponsive gadolinium–anthracene complexes: tuning the orientation and π–π stacking of anthracene groups <i>via</i> alkyl ester substituents of phosphonate ligands. CrystEngComm, 2022, 24, 6882-6890.	1.3	2
173	Unraveling the timescale of the structural photo-response within oriented metal–organic framework films. Chemical Science, 2022, 13, 11869-11877.	3.7	9
174	CO ₂ -Driven reversible transfer of amine-functionalized ZIF-90 between organic and aqueous phases. Chemical Communications, 2022, 58, 10372-10375.	2.2	8
175	Luminescent MOFs (LMOFs): recent advancement towards a greener WLED technology. Chemical Communications, 2022, 58, 10768-10788.	2.2	20
176	SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW. Journal of Structural Chemistry, 2022, 63, 1453-1483.	0.3	1
177	Reversible light ontrolled CO adsorption via tuning π omplexation of Cu+ sites in azobenzeneâ€decorated metalâ€organic framework s. Angewandte Chemie, 0, , .	1.6	0
178	Photoinduced reversible phase transition in a phenothiazine-based metal-organic framework. Cell Reports Physical Science, 2022, 3, 101074.	2.8	5
179	Photoinduced Electron Transfer in Multicomponent Truxene-Quinoxaline Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 8437-8445.	3.2	9
180	Reversible Lightâ€Controlled CO Adsorption via Tuning Ï€â€Complexation of Cu ⁺ Sites in Azobenzeneâ€Decorated Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61,	7.2	19

#	Article	IF	CITATIONS
181	Light-Responsive Solid–Solid Phase Change Materials for Photon and Thermal Energy Storage. ACS Materials Au, 2023, 3, 37-42.	2.6	11
182	Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm, 2022, 24, 7881-7901.	1.3	29
183	A photo-switchable molecular capsule: sequential photoinduced processes. Chemical Science, 2022, 13, 13732-13740.	3.7	3
184	Synthesis of a naphthalenediimide with photo-induced fluorescence enhancement and its visual dual-response to highly polar solvents. Materials Today Communications, 2022, 33, 104699.	0.9	0
185	Photoresponsive Supramolecular Polymers: From Lightâ€Controlled Small Molecules to Smart Materials. Advanced Materials, 2023, 35, .	11.1	51
186	Photo-switchable Cu+ sites in metal-organic frameworks for adsorptive desulfurization. Nano Research, 2023, 16, 3333-3338.	5.8	7
187	Inclusion Complexes of Cyclodextrins with 1-(4-Carboxybenzyl)-4-[2-(4-pyridyl)vinyl]pyridinium Chloride: Photochromism, Erasable Inkless Printing, and Color Tuning. Journal of Physical Chemistry C, 2022, 126, 18900-18906.	1.5	8
188	Photoinduced movement: how photoirradiation induced the movements of matter. Science and Technology of Advanced Materials, 2022, 23, 796-844.	2.8	1
189	Photochromic crystalline hybrid materials with switchable properties: Recent advances and potential applications. Coordination Chemistry Reviews, 2023, 475, 214918.	9.5	44
190	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
191	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie, 2023, 135, .	1.6	1
192	Adapting UFF4MOF for Heterometallic Rare-Earth Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 54101-54110.	4.0	4
193	Multiple Effects of an Anionic Cyclodextrin Macrocycle on the Reversible Isomerization of a Photoactive Guest Dye. Langmuir, 2022, 38, 14819-14826.	1.6	1
194	Photo-induced organic radical species in naphthalenediimide-based metal-organic framework for reversible photochromism and near-infrared photothermal conversion. Materials Today Chemistry, 2023, 27, 101324.	1.7	3
195	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	3.7	2
196	The literature of heterocyclic chemistry, Part XX, 2020. Advances in Heterocyclic Chemistry, 2023, , 201-274.	0.9	1
197	Photoresponsive Polymer and Polymer Composite Membranes for Gas Separation. ACS Applied Polymer Materials, 2023, 5, 1-30.	2.0	3
198	Stepwise Crystallization of Millimeter Scale Thorium Cluster Single Crystals as a Bifunctional Platform for Xâ€ray Detection and Shielding. Small, 2023, 19, .	5.2	1

#	Article	IF	CITATIONS
199	Metal–Photoswitch Friendship: From Photochromic Complexes to Functional Materials. Journal of the American Chemical Society, 2022, 144, 23249-23263.	6.6	30
200	Photoresponsive reversible self-assembly of rod-coil amphiphiles containing spiropyran groups. Soft Matter, 2023, 19, 1540-1548.	1.2	6
201	Reversible Regulation of Polar Gas Molecules by Azobenzene-Based Photoswitchable Metal–Organic Framework Thin Films. Molecules, 2023, 28, 877.	1.7	3
202	Two Calcium Coordination Polymers with Multiâ€Stimuliâ€Responsive Properties. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	1
203	Charge transfer in metal–organic frameworks. Chemical Communications, 2023, 59, 1569-1588.	2.2	12
204	Enhancing Dynamic Spectral Diffusion in Metal–Organic Frameworks through Defect Engineering. Journal of the American Chemical Society, 2023, 145, 1072-1082.	6.6	16
205	Photoâ€Assisted Electrochemical CO ₂ Reduction to CH ₄ Using a Coâ€Porphyrinâ€Based Metal–Organic Framework. Solar Rrl, 2023, 7, .	3.1	5
206	Photo-controllable heterostructured crystals of metal–organic frameworks <i>via</i> reversible photocycloaddition. Chemical Science, 2023, 14, 1852-1860.	3.7	5
207	Photoswitchable Copper(I) and Copper(II) Complexes of Phenylazoâ€3,5â€dimethylpyrazole Incorporated Ligands. ChemPhotoChem, 2023, 7, .	1.5	2
208	Switching photochromism in coordination polymers by forcing lanthanide contraction. Cell Reports Physical Science, 2023, 4, 101306.	2.8	5
209	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	7.0	14
210	Photoâ€Stimuliâ€Responsive Dualâ€Emitting Luminescence of a Spiropyranâ€Encapsulating Metal–Organic Framework for Dynamic Information Encryption. Advanced Materials, 2023, 35, .	11.1	39
211	Approach of Electronic Structure Calculations to Crystal. The Materials Research Society Series, 2023, , 209-255.	0.2	0
212	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
213	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie, 2023, 135, .	1.6	0
214	Highly Boosting Circularly Polarized Luminescence of Chiral Metal–Imidazolate Frameworks. Advanced Science, 2023, 10, .	5.6	7
215	Photoexcited Anhydrous Proton Conductivity in Coordination Polymer Glass. Journal of the American Chemical Society, 2023, 145, 9808-9814.	6.6	4
234	A viologen-based Cd(<scp>ii</scp>) coordination polymer as a multifunctional platform for photochromism, chemochromism and a broad range of fluorescence pH sensing. Dalton Transactions, 2023, 52, 11773-11779.	1.6	3

#	Article	IF	CITATIONS
239	Simulating excited states in metal organic frameworks: from light-absorption to photochemical CO ₂ reduction. Materials Advances, 0, , .	2.6	0
258	Photoinduced radical Formation in Hydrogen-bonded Organic Frameworks. Chemical Communications, 0, , .	2.2	Ο
273	New Dimensions of Flexible MOFs: Toward Complex Systems and Devices. , 2024, , 304-367.		0