Engineering 4-coumaroyl-CoA derived polyketide production through a \hat{I}^2 -oxidation mediated strategy

Metabolic Engineering 57, 174-181 DOI: 10.1016/j.ymben.2019.11.006

Citation Report

#	Article	IF	CITATIONS
1	De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 11, e00146.	1.9	16
2	Genome editing systems across yeast species. Current Opinion in Biotechnology, 2020, 66, 255-266.	3.3	15
3	Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metabolic Engineering, 2020, 62, 51-61.	3.6	74
4	De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microbial Cell Factories, 2020, 19, 143.	1.9	63
5	Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresource Technology, 2020, 317, 123991.	4.8	65
6	A roadmap to engineering antiviral natural products synthesis in microbes. Current Opinion in Biotechnology, 2020, 66, 140-149.	3.3	22
7	Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synthetic Biology, 2020, 5, ysaa012.	1.2	45
8	Current Challenges and Opportunities in Non-native Chemical Production by Engineered Yeasts. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594061.	2.0	12
9	Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metabolic Engineering, 2020, 61, 79-88.	3.6	70
10	Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 2020, 43, 107555.	6.0	62
11	Promoter-Library-Based Pathway Optimization for Efficient (2 <i>S</i>)-Naringenin Production from <i>p</i> -Coumaric Acid in <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 6884-6891.	2.4	75
12	The X-factor: Enhanced β-oxidation on intracellular triacylglycerols enabling overproduction of polyketide drug-like molecules in microorganisms. Synthetic and Systems Biotechnology, 2020, 5, 19-20.	1.8	3
13	Boosting polyketides production in cell factories. Synthetic and Systems Biotechnology, 2020, 5, 35-36.	1.8	0
14	Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Bioresource Technology, 2020, 314, 123726.	4.8	51
15	Engineering <i>Yarrowia lipolytica</i> as a Chassis for <i>De Novo</i> Synthesis of Five Aromatic-Derived Natural Products and Chemicals. ACS Synthetic Biology, 2020, 9, 2096-2106.	1.9	59
16	Current state of aromatics production using yeast: achievements and challenges. Current Opinion in Biotechnology, 2020, 65, 65-74.	3.3	35
17	Unlocking a new target for streptomycetes strain improvement. Synthetic and Systems Biotechnology, 2020, 5, 33-34.	1.8	6
18	Advanced Strategies for Production of Natural Products in Yeast. IScience, 2020, 23, 100879.	1.9	107

CITATION REPORT

#	Article	IF	CITATIONS
19	Unleashing the power of energy storage: Engineering Î ² -oxidation pathways for polyketide production. Synthetic and Systems Biotechnology, 2020, 5, 21-22.	1.8	3
20	Microbial Chassis Development for Natural Product Biosynthesis. Trends in Biotechnology, 2020, 38, 779-796.	4.9	84
21	Non-conventional hosts for the production of fuels and chemicals. Current Opinion in Chemical Biology, 2020, 59, 15-22.	2.8	22
22	Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnology Journal, 2020, 15, e1900432.	1.8	35
23	The disruption of the MAPKK gene triggering the synthesis of flavonoids in endophytic fungus Phomopsis liquidambaris. Biotechnology Letters, 2021, 43, 119-132.	1.1	14
24	Metabolic engineering of Yarrowia lipolytica for liquiritigenin production. Chemical Engineering Science, 2021, 230, 116177.	1.9	21
25	Recent advances in microbial production of phenolic compounds. Chinese Journal of Chemical Engineering, 2021, 30, 54-61.	1.7	8
26	Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces. Current Opinion in Biotechnology, 2021, 69, 26-34.	3.3	35
27	<i>Yarrowia lipolytica</i> chassis strains engineered to produce aromatic amino acids via the shikimate pathway. Microbial Biotechnology, 2021, 14, 2420-2434.	2.0	19
28	Yeast-Based Biosynthesis of Natural Products From Xylose. Frontiers in Bioengineering and Biotechnology, 2021, 9, 634919.	2.0	10
29	Harnessing the Natural Pool of Polyketide and Non-ribosomal Peptide Family: A Route Map towards Novel Drug Development. Current Molecular Pharmacology, 2022, 15, 265-291.	0.7	6
30	Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 2021, 47, 107695.	6.0	93
31	Recent Advances in Producing Sugar Alcohols and Functional Sugars by Engineering Yarrowia lipolytica. Frontiers in Bioengineering and Biotechnology, 2021, 9, 648382.	2.0	17
32	Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks. Microbial Cell Factories, 2021, 20, 68.	1.9	8
33	Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnology Advances, 2021, 47, 107694.	6.0	47
34	Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 <i>S</i>)-Naringenin in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1166-1175.	1.9	28
35	Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Critical Reviews in Biotechnology, 2021, 41, 1194-1208.	5.1	10
36	Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach. Microbial Cell Factories, 2021, 20, 121.	1.9	14

#	Article	IF	CITATIONS
37	Resveratrol Production in Yeast Hosts: Current Status and Perspectives. Biomolecules, 2021, 11, 830.	1.8	10
38	Compartmentalized biosynthesis of fungal natural products. Current Opinion in Biotechnology, 2021, 69, 128-135.	3.3	19
40	Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte <i>Phomopsis Liquidambaris</i> . ACS Synthetic Biology, 2021, 10, 2030-2039.	1.9	6
41	Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. Bioresources and Bioprocessing, 2021, 8, .	2.0	26
42	Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening. Metabolic Engineering, 2021, 67, 417-427.	3.6	15
43	Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
44	Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 732256.	1.6	15
45	Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnology Advances, 2021, 50, 107768.	6.0	17
46	Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends in Food Science and Technology, 2021, 115, 74-86.	7.8	32
47	Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metabolic Engineering, 2021, 67, 41-52.	3.6	63
48	Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. Industrial Crops and Products, 2021, 172, 114050.	2.5	32
49	Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresource Technology, 2021, 342, 125978.	4.8	35
50	Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metabolic Engineering Communications, 2021, 13, e00183.	1.9	1
51	Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in <i>Escherichia coli</i> . Journal of Microbiology and Biotechnology, 2020, 30, 1574-1582.	0.9	31
52	Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnology Advances, 2022, 54, 107853.	6.0	10
56	Biocompatible Materials Enabled by Biobased Production of Pyomelanin Isoforms Using an Engineered <i>Yarrowia lipolytica</i> . Advanced Functional Materials, 2022, 32, 2109366.	7.8	5
57	Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnology Advances, 2022, 54, 107866.	6.0	36
59	In Vitro Culture Techniques and Metabolite Engineering for Enhanced Antidiabetic Secondary Metabolite Production. , 2021, , 211-262.		1

CITATION REPORT

#	Article	IF	CITATIONS
60	Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 833920.	2.0	15
62	Improving (2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids. Enzyme and Microbial Technology, 2022, 156, 109991.	1.6	7
64	Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics, 2022, 11, 82.	1.5	8
65	Microbowls with Controlled Concavity for Accurate Microscale Mass Spectrometry. Advanced Materials, 2022, 34, e2108194.	11.1	3
66	A review on contemporary approaches in enhancing the innate lipid content of yeast cell. Chemosphere, 2022, 293, 133616.	4.2	14
67	Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology, 2022, 106, 1783-1798.	1.7	37
68	Engineering the Lipid and Fatty Acid Metabolism in <i>Yarrowia lipolytica</i> for Sustainable Production of High Oleic Oils. ACS Synthetic Biology, 2022, 11, 1542-1554.	1.9	24
69	Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules, 2022, 27, 2300.	1.7	33
70	Curcumin biosynthesis from ferulic acid by engineered <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2022, 17, e2100400.	1.8	9
71	Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in <i>Yarrowia lipolytica</i> . ACS Synthetic Biology, 2022, 11, 216-227.	1.9	14
72	Identification of genome integration sites for developing a CRISPRâ€based gene expression toolkit in <i>Yarrowia lipolytica</i> . Microbial Biotechnology, 2022, 15, 2223-2234.	2.0	18
73	Investigating Fungal Biosynthetic Pathways Using Pichia pastoris as a Heterologous Host. Methods in Molecular Biology, 2022, 2489, 115-127.	0.4	0
74	Construction of an <scp>l</scp> -Tyrosine Chassis in <i>Pichia pastoris</i> Enhances Aromatic Secondary Metabolite Production from Glycerol. ACS Synthetic Biology, 2022, 11, 2098-2107.	1.9	19
75	Metabolic engineering of Yarrowia lipolytica for scutellarin production. Synthetic and Systems Biotechnology, 2022, 7, 958-964.	1.8	12
77	Plant Flavonoid Production in Bacteria and Yeasts. Frontiers in Chemical Engineering, 0, 4, .	1.3	2
78	Biotechnological interventions in food waste treatment for obtaining value-added compounds to combat pollution. Environmental Science and Pollution Research, 2022, 29, 62755-62784.	2.7	7
79	Designing Microbial Cell Factories for the Production of Chemicals. Jacs Au, 2022, 2, 1781-1799.	3.6	50
80	Establishing an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system for improved pathway performance. Metabolic Engineering, 2022, 74, 1-10.	3.6	7

IF ARTICLE CITATIONS Microbial Production of Curcumin., 2022, , 1-35. 0 81 A <i>p</i>-Coumaroyl-CoA Biosensor for Dynamic Regulation of Naringenin Biosynthesis in <i>Saccharomyces cerevisiae</i>. ACS Synthetic Biology, 2022, 11, 3228-3238. Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms. 83 2.0 0 Frontiers in Bioengineering and Biotechnology, 0, 10, . Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. 84 Microbial Cell Factories, 2022, 21, . Biosynthesis of cannabinoid precursor olivetolic acid in genetically engineered Yarrowia lipolytica. 85 2.0 8 Communications Biology, 2022, 5, . Microbial Production of Resveratrol., 2022, , 1-34. Advanced one-pot deconstruction and valorization of lignocellulosic biomass into triacetic acid 87 1.9 3 lactone using Rhodosporidium toruloides. Microbial Cell Factories, 2022, 21, . Metabolic engineering of Rhodotorula toruloides for resveratrol production. Microbial Cell 88 Factories, 2022, 21, . Combining genetic engineering and bioprocess concepts for improved phenylpropanoid production. 89 1.7 3 Biotechnology and Bioengineering, 2023, 120, 613-628. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metabolic Engineering, 2023, 76, 3.6 50-62. Advances in pharmacology, biosynthesis, and metabolic engineering of <i>Scutellaria</i>-specialized 91 7 5.1metabolites. Critical Reviews in Biotechnology, 2024, 44, 302-318. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. Journal 2.4 of Agricultural and Food Chemistry, 2023, 71, 2211-2233. Biological valorization of lignin to flavonoids. Biotechnology Advances, 2023, 64, 108107. 93 6.0 8 Temporal sorting of microdroplets can identify productivity differences of itaconic acid from libraries of <i>Yarrowia lipolytica</i>. Lab on A Chip, 2023, 23, 2249-2256. 94 3.1 Yeast: A platform for the production of _{<i>L</i>} â€tyrosine derivatives. Yeast, 0, , . 95 0.8 2 Optimizing yeast for high-level production of kaempferol and quercetin. Microbial Cell Factories, 2023, 22, . Nonconventional yeast cell factories for the biosynthesis of plant-derived bioactive flavonoids., 113 0

CITATION REPORT

2024, , 185-213.