Secrecy Energy Efficiency Maximization for UAV-Enabl

IEEE Transactions on Green Communications and Networking 4, 180-193

DOI: 10.1109/tgcn.2019.2949802

Citation Report

#	Article	IF	CITATIONS
1	Secure UAV Communication with Robust Communication and Trajectory Design. , 2019, , .		3
2	Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 2020, 24, 849-852.	2.5	81
3	Robust Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks in the Presence of Jammers. IEEE Access, 2020, 8, 2893-2905.	2.6	36
4	Multi-UAV Assisted Communication Networks: Towards Max-Min Secrecy Rate. , 2020, , .		2
5	Outage Performance of Multi-Antenna Mobile UAV-Assisted NOMA Relay Systems Over Nakagami- <i>m</i> Fading Channels. IEEE Access, 2020, 8, 215033-215043.	2.6	27
6	Softwarization of UAV Networks: A Survey of Applications and Future Trends. IEEE Access, 2020, 8, 98073-98125.	2.6	127
7	Robust Trajectory and Power Control for Cognitive UAV Secrecy Communication. IEEE Access, 2020, 8, 49338-49352.	2.6	23
8	Energy Efficiency Maximization for Full-Duplex UAV Secrecy Communication. IEEE Transactions on Vehicular Technology, 2020, 69, 4590-4595.	3.9	57
9	Joint Trajectory and Resource Allocation Design for Energy-Efficient Secure UAV Communication Systems. IEEE Transactions on Communications, 2020, 68, 4536-4553.	4.9	153
10	Security Enhancement for NOMA-UAV Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 3994-4005.	3.9	116
11	Resource Allocation for Secure Multi-UAV Communication Systems With Multi-Eavesdropper. IEEE Transactions on Communications, 2020, 68, 4490-4506.	4.9	45
12	Joint Resource and Trajectory Optimization for Security in UAV-Assisted MEC Systems. IEEE Transactions on Communications, 2021, 69, 573-588.	4.9	94
13	Energy-Efficient Trajectory Design for UAV-Enabled Communication Under Malicious Jamming. IEEE Wireless Communications Letters, 2021, 10, 206-210.	3.2	25
14	Intelligent Trajectory Design for Secure Full- Duplex MIMO-UAV Relaying Against Active Eavesdroppers: A Model-Free Reinforcement Learning Approach. IEEE Access, 2021, 9, 4447-4465.	2.6	30
15	Cooperative UAV Enabled Relaying Systems: Joint Trajectory and Transmit Power Optimization. IEEE Transactions on Green Communications and Networking, 2022, 6, 543-557.	3.5	29
16	Q-Learning-Based Power Allocation for Secure Wireless Communication in UAV-Aided Relay Network. IEEE Access, 2021, 9, 33169-33180.	2.6	12
17	Secure Throughput Optimization for Cache-Enabled Multi-UAVs Networks. IEEE Internet of Things Journal, 2022, 9, 7783-7801.	5.5	9
18	Joint Trajectory and Power Allocation Design for Secure Artificial Noise Aided UAV Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 2850-2855.	3.9	30

TATION REDO

#	Article	IF	Citations
19	A Game Theory Based Scheme for Secure and Cooperative UAV Communication. , 2021, , .		2
20	Energy Minimization for Robust Secure Transmission in UAV Networks With Multiple Colluding Eavesdroppers. IEEE Communications Letters, 2021, 25, 2353-2357.	2.5	4
22	Joint trajectory and power optimization for mobile jammer-aided secure UAV relay network. Vehicular Communications, 2021, 30, 100357.	2.7	2
23	Secrecy Energy-Efficient UAV Communication via Trajectory Design and Power Control. Wireless Communications and Mobile Computing, 2021, 2021, 1-10.	0.8	2
24	Joint Energy and Trajectory Optimization for UAV-Enabled Relaying Network With Multi-Pair Users. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 939-954.	4.9	23
25	Cellular-Connected UAV Trajectory Design With Connectivity Constraint: A Deep Reinforcement Learning Approach. IEEE Transactions on Green Communications and Networking, 2021, 5, 1369-1380.	3.5	12
26	UAV-Aided Wireless Power Transfer and Data Collection in Rician Fading. IEEE Journal on Selected Areas in Communications, 2021, 39, 3097-3113.	9.7	22
27	Robust 3D trajectory and power design in probabilistic LoS channel for UAV-enabled cooperative jamming. Vehicular Communications, 2021, 32, 100387.	2.7	4
28	Secrecy Energy Efficiency Maximization in UAV-Enabled Wireless Sensor Networks Without Eavesdropper's CSI. IEEE Internet of Things Journal, 2022, 9, 3346-3358.	5.5	16
29	Safeguarding unmanned aerial systems: an approach for identifying malicious aerial nodes. IET Communications, 2020, 14, 3000-3012.	1.5	5
30	Wireless UAV Rotary Wing Communication with Ground Nodes Using Successive Convex Approximation and Energy Saving Mode. IRO Journal on Sustainable Wireless Systems, 2020, 2, 100-107.	1.4	5
31	On the Physical Layer Security of the Cooperative Rate-Splitting-Aided Downlink in UAV Networks. IEEE Transactions on Information Forensics and Security, 2021, 16, 5018-5033.	4.5	20
32	Maximizing the latency fairness in UAVâ€assisted MEC system. IET Intelligent Transport Systems, 2022, 16, 434-444.	1.7	2
33	Characterization of the Human Body Impact on UAV-to-Ground Channels at Ultra-Low Altitudes. IEEE Transactions on Vehicular Technology, 2022, 71, 339-353.	3.9	2
34	Uav Relay Network Deployment Through the Area with Barriers. SSRN Electronic Journal, 0, , .	0.4	0
35	Robust Secure UAV-enabled Multiple User Communication with Fairness Consideration. , 2020, , .		3
36	Energy-Efficient Trajectory Optimization for UAV-Enabled Cellular Communications Based on Physical-Layer Security. Aerospace, 2022, 9, 50.	1.1	3
37	Secure UAV Relay Communication via Power Allocation and Trajectory Planning. IEEE Systems Journal, 2022, 16, 6243-6252.	2.9	3

CITATION REPORT

ARTICLE IF CITATIONS # Terahertz Meets Untrusted UAV-Relaying: Minimum Secrecy Energy Efficiency Maximization via Trajectory and Communication Co-Désign. IEEE Transactions on Véhicular Technology, 2022, 71, 38 3.9 14 4991-5006. Achieving Secrecy Energy Efficiency Fairness in UAV-Enabled Multi-User Communication Systems. IEEE 39 3.2 Wireless Communications Letters, 2022, 11, 918-922. Let Us Work Together: Cooperative Beamforming for UAV Anti-Jamming in Spaceâ€"Airâ€"Ground 40 5.5 6 Networks. IEEE Internet of Things Journal, 2022, 9, 15607-15617. Joint Optimization of Trajectory, Task Offloading, and CPU Control in UAV-Assisted Wireless Powered Fog Computing Networks. IEEE Transactions on Green Communications and Networking, 2022, 6, 1833-1845. Joint Optimization of Trajectory and Resource Allocation in Secure UAV Relaying Communications for 42 5.5 31 Internet of Things. IEEE Internet of Things Journal, 2022, 9, 16284-16296. Sum-rate maximization for UAV-enabled two-way relay systems. Digital Communications and Networks, 2022, 8, 1105-1114. Secure Communication in UAV-Enabled Mobile Relay Systems., 2021,,. 44 0 UAV-Aided Secure Communication With Deployment Optimization and Cooperative Jamming., 2021, , . An Efficient and Robust UAVs' Path Planning Approach for Timely Data Collection in Wireless Sensor 3 46 Networks., 2022,,. Energy-efficient communication for UAV-enabled mobile relay networks. Computer Networks, 2022, 3.2 213, <u>109071</u>. Joint Trajectory and Velocity-Time Optimization for Throughput Maximization in Energy-Constrained 4 48 5.5UAV. IEEE Internet of Thing's Journal, 2022, 9, 24516-24528. A survey on green unmanned aerial vehicles $\hat{a}\in$ based fog computing: Challenges and future perspective. 49 Transactions on Emerging Telecommunications Technologies, 2022, 33, . A Survey on Intelligent-Reflecting-Surface-Assisted UAV Communications. Energies, 2022, 15, 5143. 50 1.6 12 Secrecy Outage Performance Analysis of Energy Harvesting Enabled Two-tier UAV Assisted Cognitive Communication., 2022,,. Energy Efficiency Optimization of UAV-Assisted Wireless Powered Systems for Dependable Data 52 3.5 2 Collections in Internet of Things. IEEE Transactions on Reliability, 2023, 72, 472-482. GREEN: A Global Energy Efficiency Maximization Strategy for Multi-UAV Enabled Communication 3.9 Systems. IEEE Transactions on Mobile Computing, 2022, , 1-18. Maximizing the Secrecy Energy Efficiency of the Cooperative Rate-Splitting Aided Downlink in 54 3.9 6 Multi-Carrier UAV Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 11803-11819. Energy Efficiency Optimization for Massive MIMO Enabled UAV Communications., 2022, , .

CITATION REPORT

		CITATION	CITATION REPORT		
#	Article		IF	CITATIONS	
56	3D Position Scheduling of UAV Secure Communications with Multiple Constraints. , 2022, ,			1	
57	Joint User Scheduling and UAV Trajectory Design on Completion Time Minimization for UAV Collection. IEEE Transactions on Wireless Communications, 2023, 22, 3884-3898.	-Aided Data	6.1	9	
58	A Virtual Full-Duplex Relaying Scheme and Adjustment Algorithms for Enhancing Spectral Ef UAV-Aided Communication Networks. IEEE Access, 2023, 11, 12698-12709.	ficiency in	2.6	1	
59	A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conver Machine Learning Approaches. Drones, 2023, 7, 214.	itional to	2.7	15	
60	Jamming-Enhanced Secure UAV Communications With Propulsion Energy and Curvature Ra Constraints. IEEE Transactions on Vehicular Technology, 2023, 72, 10852-10866.	dius	3.9	0	
67	Secrecy Energy Efficiency Maximization for UAV Relay Communication System under Artific 2023, , .	ial Noise. ,		Ο	
71	Optimal Trajectory Design for UAV-Assisted Wireless Communication with Discrete Code R_i .	ites. , 2023, ,		0	
77	Joint Optimization for Energy Efficient UAV Relaying with Multiple User Pairs. , 2023, , .			0	