Tariff-based load shifting for domestic cascade heat pur efficiency and reduced wind power curtailment

Applied Energy 257, 113976 DOI: 10.1016/j.apenergy.2019.113976

Citation Report

#	Article	IF	CITATIONS
1	Sequential Tasks Shifting for Participation in Demand Response Programs. Energies, 2020, 13, 4879.	3.1	5
2	Design, Valuation and Comparison of Demand Response Strategies for Congestion Management. Energies, 2020, 13, 6085.	3.1	12
3	RED WoLF: Combining a battery and thermal energy reservoirs as a hybrid storage system. Applied Energy, 2020, 274, 115209.	10.1	18
4	A Review of Thermochemical Energy Storage Systems for Power Grid Support. Applied Sciences (Switzerland), 2020, 10, 3142.	2.5	45
5	The importance of energy storage in solar and wind energy, hybrid renewable energy systems. , 2021, , 377-403.		1
6	An Optimized Method of Wind Speed Prediction with Support Vector Machine and Genetic Algorithm. International Journal of Circuits, Systems and Signal Processing, 2021, 15, 212-217.	0.3	1
7	Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation. Applied Energy, 2021, 287, 116536.	10.1	16
8	RED WoLF hybrid storage system: Comparison of CO2 and price targets. Journal of Cleaner Production, 2021, 321, 128926.	9.3	6
9	Energy analysis of different configurations for a reversible ground source heat pump using a new flexible TRNSYS Type. Applied Thermal Engineering, 2021, 197, 117413.	6.0	21
10	RED WoLF hybrid storage system: Adaptation of algorithm and analysis of performance in residential dwellings. Renewable Energy, 2021, 179, 1036-1048.	8.9	5
11	Towards a sustainable electricity grid: Market and policy for demand-side storage and wind resources. Utilities Policy, 2020, 67, 101116.	4.0	7
12	Energy management optimisation using a combined Long Short-Term Memory recurrent neural network – Particle Swarm Optimisation model. Journal of Cleaner Production, 2021, 326, 129246.	9.3	15
13	Load shifting potential assessment of building thermal storage performance for building design. Energy, 2022, 243, 123036.	8.8	19
14	Experimental investigation on a novel wind-to-heat system with high efficiency. Renewable and Sustainable Energy Reviews, 2022, 158, 112143.	16.4	5
16	Real-Time Grid Signal-Based Energy Flexibility of Heating Generation: A Methodology for Optimal Scheduling of Stratified Storage Tanks. Energies, 2022, 15, 1793.	3.1	1
17	Value of demand flexibility for managing wind energy constraint and curtailment. Renewable Energy, 2022, 190, 487-500.	8.9	19
18	Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints. Applied Energy, 2022, 317, 119107.	10.1	5
19	Load pattern recognition based optimization method for energy flexibility in office buildings. Energy, 2022, 254, 124475.	8.8	7

ATION RED

#	Article	IF	CITATIONS
20	Optimal day-ahead scheduling for distributed cleaning heating system with minimal carbon emissions. , 2022, , .		1
21	A comprehensive model and its optimal dispatch of an integrated electrical-thermal system with multiple heat sources. Energy, 2022, 261, 125205.	8.8	11
22	Fully Parallel Algorithm for Energy Storage Capacity Planning Under Joint Capacity and Energy Markets. IEEE Transactions on Automation Science and Engineering, 2024, 21, 257-268.	5.2	1
23	Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps. Applied Energy, 2023, 332, 120528.	10.1	9
24	Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability. Applied Energy, 2023, 341, 121111.	10.1	3
25	RED WoLF hybrid energy storage system: Algorithm case study and green competition between storage heaters and heat pump. Energy and Al, 2023, 14, 100287.	10.6	2
26	Impact of Smart Hydronic System with Heat Pump on Electricity Load of a Typical Queensland Household. Green Energy and Technology, 2023, , 163-172.	0.6	0
27	Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions. Energy, 2024, 288, 129700.	8.8	0
28	Development of a surrogate model of a trans-critical CO ₂ heat pump for use in operations optimization using an artificial neural network. IOP Conference Series: Materials Science and Engineering, 2023, 1294, 012060.	0.6	0
29	Stochastic multi-energy management schemes with deferrable loads. , 2024, , 147-169.		0
30	Operational cost and wind power integration capacities of the integrated heat and power dispatch (IHPD) system under different heating regulation modes and time steps. Indoor and Built Environment, 0, , .	2.8	0

CITATION REPORT