Three Dimensional Bioprinting of a Vascularized and Pe Keratinocytes, Fibroblasts, Pericytes, and Endothelial C

Tissue Engineering - Part A 26, 227-238 DOI: 10.1089/ten.tea.2019.0201

Citation Report

#	Article	IF	CITATIONS
1	Could 3D printing be the future for oral soft tissue regeneration?. Bioprinting, 2020, 20, e00100.	2.9	23
2	3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. Journal of Clinical Medicine, 2020, 9, 2238.	1.0	49
3	Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 2020, 12, 735.	2.0	569
4	In vivo evaluation of bioprinted prevascularized bone tissue. Biotechnology and Bioengineering, 2020, 117, 3902-3911.	1.7	26
5	Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines, 2020, 8, 441.	1.4	21
6	Overview of Current Advances in Extrusion Bioprinting for Skin Applications. International Journal of Molecular Sciences, 2020, 21, 6679.	1.8	37
7	Facilitated self-assembly of a prevascularized dermal/epidermal collagen scaffold. Regenerative Medicine, 2020, 15, 2273-2283.	0.8	3
8	Vascularization strategies for skin tissue engineering. Biomaterials Science, 2020, 8, 4073-4094.	2.6	69
9	Whole Organ Engineering: Approaches, Challenges, and Future Directions. Applied Sciences (Switzerland), 2020, 10, 4277.	1.3	24
10	A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro?. Cells, 2020, 9, 1622.	1.8	95
11	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.	3.7	54
12	3D bioprinting dermal-like structures using species-specific ulvan. Biomaterials Science, 2021, 9, 2424-2438.	2.6	19
13	Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts. International Journal of Molecular Sciences, 2021, 22, 796.	1.8	17
14	3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. Frontiers in Medical Technology, 2020, 2, 607648.	1.3	32
15	Bioactive Wound Dressings for the Management of Chronic Non Healing Ulcers (CNHU) – A Review of Clinical and Translational Studies. SSRN Electronic Journal, 0, , .	0.4	0
16	3D bioprinting. , 2021, , 599-633.		5
17	Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing. Tissue Engineering - Part B: Reviews, 2022, 28, 160-181.	2.5	19
18	The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System. Nanomaterials, 2021, 11, 457.	1.9	6

ATION RED

#	Article	IF	CITATIONS
19	Scale-up of a Composite Cultured Skin Using a Novel Bioreactor Device in a Porcine Wound Model. Journal of Burn Care and Research, 2021, 42, 1199-1209.	0.2	5
20	Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. Journal of Translational Medicine, 2021, 19, 83.	1.8	32
21	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2000088.	1.7	9
22	Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. Micromachines, 2021, 12, 294.	1.4	26
23	3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Scientific Reports, 2021, 11, 4876.	1.6	23
24	Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. International Journal of Bioprinting, 2021, 7, 337.	1.7	23
25	3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals, 2021, 14, 362.	1.7	32
26	The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release, 2021, 332, 460-492.	4.8	50
27	Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells. ACS Applied Bio Materials, 2021, 4, 4049-4070.	2.3	19
28	3D Bioprinting of Vascularized Tissues for in vitro and in vivo Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 664188.	2.0	48
29	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2170053.	1.7	4
30	Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. International Journal of Molecular Sciences, 2021, 22, 6746.	1.8	12
31	Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. Materials, 2021, 14, 3337.	1.3	25
32	Three-Dimensionally Printed Skin Substitute Using Human Dermal Fibroblasts and Human Epidermal Keratinocytes. Annals of Plastic Surgery, 2021, 86, S628-S631.	0.5	4
33	Bioprinting: A promising approach for tissue regeneration. Bioprinting, 2021, 22, e00130.	2.9	11
34	Vascularization Strategies in Bone Tissue Engineering. Cells, 2021, 10, 1749.	1.8	58
35	A review on biomaterials for ovarian tissue engineering. Acta Biomaterialia, 2021, 135, 48-63.	4.1	33
36	Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Medical Sciences (Basel, Switzerland), 2021, 9, 55.	1.3	14

#	Article	IF	CITATIONS
37	3D Bioprinting Constructs to Facilitate Skin Regeneration. Advanced Functional Materials, 2022, 32, 2105080.	7.8	35
38	The simpler, the better: tissue vascularization using the body's own resources. Trends in Biotechnology, 2022, 40, 281-290.	4.9	12
39	Automated fabrication of human skin substitutes: inherent advantages and fundamental challenges. Journal of 3D Printing in Medicine, 0, , .	1.0	0
40	Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation. Frontiers in Surgery, 2021, 8, 640879.	0.6	25
41	Perspective: 3D bioprinted skin - engineering the skin for medical applications. Annals of 3D Printed Medicine, 2021, 3, 100018.	1.6	0
42	Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines, 2021, 9, 1137.	1.4	30
43	Progress of 3D Bioprinting in Organ Manufacturing. Polymers, 2021, 13, 3178.	2.0	24
44	Regenerative Engineering Approaches to Scar-Free Skin Regeneration. Regenerative Engineering and Translational Medicine, 2022, 8, 225-247.	1.6	12
45	Vascularization in skin wound healing: where do we stand and where do we go?. Current Opinion in Biotechnology, 2022, 73, 253-262.	3.3	47
46	Pilot Study of the Biological Properties and Vascularization of 3D Printed Bilayer Skin Grafts. International Journal of Bioprinting, 2019, 6, 246.	1.7	28
47	3D skin bioprinting: future potential for skin regeneration. Postepy Dermatologii I Alergologii, 0, , .	0.4	0
48	Wound and Skin Healing in Space: The 3D Bioprinting Perspective. Frontiers in Bioengineering and Biotechnology, 2021, 9, 720217.	2.0	16
49	Impact of Cell Seeding Density and Cell Confluence on Human Tissue Engineered Skeletal Muscle. Tissue Engineering - Part A, 2022, 28, 420-432.	1.6	3
50	Emerging Technologies in Multiâ€Material Bioprinting. Advanced Materials, 2021, 33, e2104730.	11.1	100
51	Monitoring calcium-induced epidermal differentiation in vitro using multiphoton microscopy. Journal of Biomedical Optics, 2020, 25, 1.	1.4	5
52	Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS Applied Bio Materials, 2021, 4, 7738-7763.	2.3	12
53	Bioprinting Scaffolds for Vascular Tissues and Tissue Vascularization. Bioengineering, 2021, 8, 178.	1.6	14
54	Engineering Functional Skin Constructs: A Quantitative Comparison of Threeâ€Dimensional Bioprinting with Traditional Methods. Experimental Dermatology, 2021, , .	1.4	3

#	Article	IF	CITATIONS
55	Bioactive wound dressings for the management of chronic non healing ulcers (CNHU) – A review of clinical and translational studies. Materialia, 2022, 21, 101269.	1.3	4
56	Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules, 2021, 22, 4956-4966.	2.6	16
57	Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review. International Journal of Molecular Sciences, 2022, 23, 476.	1.8	24
58	Tissue engineering in dermatology - from lab to market. Tissue and Cell, 2022, 74, 101717.	1.0	14
59	Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. International Journal of Environmental Research and Public Health, 2022, 19, 1338.	1.2	74
60	Bioengineered Efficacy Models of Skin Disease: Advances in the Last 10 Years. Pharmaceutics, 2022, 14, 319.	2.0	4
61	Evolution of 3D bioprinting-from the perspectives of bioprinting companies. Bioprinting, 2022, 25, e00193.	2.9	11
62	3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Current Stem Cell Research and Therapy, 2022, 17, 415-439.	0.6	4
63	Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells. Journal of Microbiology and Biotechnology, 2022, 32, 238-247.	0.9	2
65	The 3D Bioprinted Scaffolds for Wound Healing. Pharmaceutics, 2022, 14, 464.	2.0	35
66	Bioinks Enriched with ECM Components Obtained by Supercritical Extraction. Biomolecules, 2022, 12, 394.	1.8	5
67	3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication, 2022, 14, 035002.	3.7	28
68	Cell-based dressings: A journey through chronic wound management. , 2022, 135, 212738.		10
70	Hybprinting for musculoskeletal tissue engineering. IScience, 2022, 25, 104229.	1.9	1
71	Tissue Engineering-Based Strategies for Diabetic Foot Ulcer Management. Advances in Wound Care, 2023, 12, 145-167.	2.6	5
72	3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synthetic Biology, 2022, 11, 26-38.	1.9	27
73	<scp>3D</scp> bioprinting of an implantable xenoâ€free vascularized human skin graft. Bioengineering and Translational Medicine, 2023, 8, .	3.9	9
74	Management of the diabetic foot. Seminars in Vascular Surgery, 2022, 35, 219-227.	1.1	5

#	Article	IF	CITATIONS
75	Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS Applied Bio Materials, 2022, 5, 2069-2106.	2.3	46
76	A 3D printable perfused hydrogel vascular model to assay ultrasound-induced permeability. Biomaterials Science, 2022, 10, 3158-3173.	2.6	3
77	Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. Journal of Tissue Engineering, 2022, 13, 204173142210885.	2.3	15
78	Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	1.6	5
79	Innovative Cell and Platelet Rich Plasma Therapies for Diabetic Foot Ulcer Treatment: The Allogeneic Approach. Frontiers in Bioengineering and Biotechnology, 2022, 10, 869408.	2.0	9
80	A Bioprinted Vascularized Skin Substitute with Fibroblasts, Keratinocytes, and Endothelial Progenitor Cells for Skin Wound Healing. SSRN Electronic Journal, 0, , .	0.4	Ο
81	Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
82	Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges. Biomacromolecules, 2022, 23, 2730-2751.	2.6	25
83	Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639.	5.7	67
84	A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomaterials Science, 2022, 10, 5054-5080.	2.6	20
85	Strategies of vascularized skin models in vitro. Biomaterials Science, 0, , .	2.6	4
86	Design of Hydrogel-Based Scaffolds for In Vitro Three-Dimensional Human Skin Model Reconstruction. SSRN Electronic Journal, 0, , .	0.4	Ο
87	Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
88	Living skin on a robot. Matter, 2022, 5, 2190-2208.	5.0	15
89	Planarâ€/Curvilinearâ€Bioprinted Triâ€Cellâ€Laden Hydrogel for Healing Irregular Chronic Wounds. Advanced Healthcare Materials, 2022, 11, .	3.9	12
90	3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers, 2022, 14, 3535.	1.7	6
91	Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells, 2022, 11, 2439.	1.8	57
92	Perspective Chapter: Design and Characterization of Natural and Synthetic Soft Polymeric Materials with Biomimetic 3D Microarchitecture for Tissue Engineering and Medical Applications. , 0, , .		Ο

#	Article	IF	Citations
93	A bioprinted vascularized skin substitute with fibroblasts, keratinocytes, and endothelial progenitor cells for skin wound healing. Bioprinting, 2022, 28, e00237.	2.9	1
94	Biological multiscale computational modeling: A promising tool for 3D bioprinting and tissue engineering. Bioprinting, 2022, 28, e00234.	2.9	1
95	Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. Journal of Tissue Engineering, 2022, 13, 204173142211253.	2.3	2
96	3D Printing and Bioprinting: Near Future Prospectives. , 2022, , 113-121.		0
97	Natural polymers for wound dressing applications. Studies in Natural Products Chemistry, 2022, , 367-441.	0.8	6
98	Electrospun Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Olive Leaf Extract Fiber Mesh as Prospective Bio-Based Scaffold for Wound Healing. Molecules, 2022, 27, 6208.	1.7	6
99	4D Biofabrication of Mechanically Stable Tubular Constructs Using Shape Morphing Porous Bilayers for Vascularization Application. Macromolecular Bioscience, 2023, 23, .	2.1	5
100	Properties of Collagen/Sodium Alginate Hydrogels for Bioprinting of Skin Models. Journal of Bionic Engineering, 2023, 20, 105-118.	2.7	8
101	Design of hydrogel-based scaffolds for in vitro three-dimensional human skin model reconstruction. Acta Biomaterialia, 2022, 153, 13-37.	4.1	15
103	3D bioprinted mesenchymal stromal cells in skin wound repair. Frontiers in Surgery, 0, 9, .	0.6	2
104	Spongy-like hydrogels prevascularization with the adipose tissue vascular fraction delays cutaneous wound healing by sustaining inflammatory cell influx. Materials Today Bio, 2022, 17, 100496.	2.6	0
105	3D Bioprinting for Pancreas Engineering/Manufacturing. Polymers, 2022, 14, 5143.	2.0	3
106	Organotypic cultures as aging associated disease models. Aging, 2022, 14, 9338-9383.	1.4	3
107	3Dâ€printed PLA/Gel hybrid in liver tissue engineering: Effects of architecture on biological functions. Biotechnology and Bioengineering, 2023, 120, 836-851.	1.7	2
108	Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nature Methods, 2023, 20, 149-161.	9.0	18
109	In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics, 2023, 15, 42.	2.0	13
111	Advances in 3D skin bioprinting for wound healing and disease modeling. International Journal of Energy Production and Management, 2023, 10, .	1.9	9
112	Advances and Innovations of 3D Bioprinting Skin. Biomolecules, 2023, 13, 55.	1.8	5

#	Article	IF	CITATIONS
113	CD146 expression profile in human skin and pre-vascularized dermo-epidermal skin substitutes in vivo. Journal of Biological Engineering, 2023, 17, .	2.0	1
114	3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes. Biomaterials Science, 2023, 11, 2461-2477.	2.6	11
115	Development and Evaluation of a Low ost LEGO 3D Bioprinter: From Buildingâ€Blocks to Building Blocks of Life. Advanced Materials Technologies, 2023, 8, .	3.0	2
116	Advances in skin-on-a-chip and skin tissue engineering. , 2023, , 123-166.		1
117	Engineering edgeless human skin with enhanced biomechanical properties. Science Advances, 2023, 9, .	4.7	6
118	Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Materials and Design, 2023, 229, 111885.	3.3	4
119	3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech, 2023, 24, .	1.5	12
120	Design and bioprinting for tissue interfaces. Biofabrication, 2023, 15, 022002.	3.7	3
121	Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. Medicine in Novel Technology and Devices, 2023, 17, 100211.	0.9	8
122	Current Advances in Wound Healing and Regenerative Medicine. Current Stem Cell Research and Therapy, 2024, 19, 277-291.	0.6	1
123	Engineering high throughput screening platforms of cervical cancer. Journal of Biomedical Materials Research - Part A, 2023, 111, 747-764.	2.1	7
124	Immunityâ€onâ€aâ€Chip: Integration of Immune Components into the Scheme of Organâ€onâ€aâ€Chip Systems Advanced Biology, 2023, 7, .	^{5.} 1.4	0
125	Modelling the Complexity of Human Skin In Vitro. Biomedicines, 2023, 11, 794.	1.4	11
126	Evaluation of the effect of <scp>3D</scp> â€bioprinted gingival fibroblastâ€encapsulated <scp>ADM</scp> scaffolds on keratinized gingival augmentation. Journal of Periodontal Research, 2023, 58, 564-574.	1.4	1
127	Point of care approaches to 3D bioprinting for wound healing applications. Progress in Biomedical Engineering, 2023, 5, 023002.	2.8	3
148	Basic Aspects of Skin Tissue Engineering: Cells, Biomaterials, Scaffold Fabrication Techniques, and Signaling Factors. Journal of Medical and Biological Engineering, 2023, 43, 508-521.	1.0	1
153	Bioprinting for Therapeutics. , 2023, , 245-268.		0
156	Skin Substitutes: An Overview of Current State of the Art. IFMBE Proceedings, 2024, , 14-21.	0.2	0

#	Article	IF	CITATIONS
160	Skin Regeneration: Methods and Directions for Clinical Application. , 2024, , .		0