A Survey on LoRa Networking: Research Problems, Cur

IEEE Communications Surveys and Tutorials 22, 371-388 DOI: 10.1109/comst.2019.2949598

Citation Report

#	Article	IF	Citations
1	Orchestrating Service Function Chains with Joint Resource Optimization in NFV Networks. , 2019, , .		0
2	Unsupervised Learning Clustering and Dynamic Transmission Scheduling for Efficient Dense LoRaWAN Networks. IEEE Access, 2020, 8, 191495-191509.	2.6	11
3	A Slotted Transmission with Collision Avoidance for LoRa Networks. Procedia Computer Science, 2020, 177, 94-101.	1.2	8
4	A Knowledge Distillation-based Transportation System for Sensory data sharing using LoRa. IEEE Sensors Journal, 2020, , 1-1.	2.4	3
5	FTrack: Parallel Decoding for LoRa Transmissions. IEEE/ACM Transactions on Networking, 2020, 28, 2573-2586.	2.6	52
6	High-Performance Long Range-Based Medium Access Control Layer Protocol. Electronics (Switzerland), 2020, 9, 1273.	1.8	5
7	LoRaWAN Mesh Networks: A Review and Classification of Multihop Communication. Sensors, 2020, 20, 4273.	2.1	58
8	Energy Constrained Optimization for Spreading Factor Allocation in LoRaWAN. Sensors, 2020, 20, 4417.	2.1	23
9	A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. Sensors, 2020, 20, 5044.	2.1	101
10	Success Probability Characterization of Long-Range in Low-Power Wide Area Networks. Sensors, 2020, 20, 6861.	2.1	4
11	A Survey on the Viability of Confirmed Traffic in a LoRaWAN. IEEE Access, 2020, 8, 9296-9311.	2.6	45
12	Scalability Analysis of LoRa Network for SNR-Based SF Allocation Scheme. IEEE Transactions on Industrial Informatics, 2021, 17, 6709-6719.	7.2	12
13	A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 273-302.	8.5	187
14	A Framed Slotted ALOHA-Based MAC for Eliminating Vain Wireless Power Transfer in Wireless Powered IoT Networks. Electronics (Switzerland), 2021, 10, 9.	1.8	9
15	A Lightweight Secure and Resilient Transmission Scheme for the Internet of Things in the Presence of a Hostile Jammer. IEEE Internet of Things Journal, 2021, 8, 4373-4388.	5.5	34
16	EWS: Exponential Windowing Scheme to Improve LoRa Scalability. IEEE Transactions on Industrial Informatics, 2022, 18, 252-265.	7.2	5
17	Principles and Applications of Narrowband IoT. Advances in Wireless Technologies and Telecommunication Book Series, 2021, , 46-85.	0.3	0
18	LoRa-RL: Deep Reinforcement Learning for Resource Management in Hybrid Energy LoRa Wireless Networks. IEEE Internet of Things Journal, 2022, 9, 6458-6476.	5.5	23

ATION REDO

#	Article	IF	CITATIONS
19	LoRa Network Planning and Deployment: A Terrestrial Navigation Application. IEEE Access, 2021, 9, 126670-126683.	2.6	5
20	Further Results on Detection and Channel Estimation for Hardware Impaired Signals. IEEE Transactions on Communications, 2021, , 1-1.	4.9	1
21	Performance Determinants in LoRa Networks: A Literature Review. IEEE Communications Surveys and Tutorials, 2021, 23, 1721-1758.	24.8	46
22	A Survey on Attacks and Defences on LoRaWAN Gateways. Advances in Computational Intelligence and Robotics Book Series, 2021, , 19-38.	0.4	1
23	Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. Electronics (Switzerland), 2021, 10, 77.	1.8	18
24	Survey on Network Slicing for Internet of Things Realization in 5G Networks. IEEE Communications Surveys and Tutorials, 2021, 23, 957-994.	24.8	216
25	Network-Coded Cooperative LoRa Network With D2D Communication. IEEE Internet of Things Journal, 2022, 9, 4997-5008.	5.5	8
26	Alternative Chirp Spread Spectrum Techniques for LPWANs. IEEE Transactions on Green Communications and Networking, 2021, 5, 1846-1855.	3.5	25
27	Communication through black spot area using LoRa technology and IOT. Materials Today: Proceedings, 2021, 46, 3882-3887.	0.9	4
28	Collision Avoidance Resource Allocation for LoRaWAN. Sensors, 2021, 21, 1218.	2.1	21
29	Grant-Free Opportunistic Uplink Transmission in Wireless-Powered IoT: A Spatio-Temporal Model. IEEE Transactions on Communications, 2021, 69, 991-1006.	4.9	12
30	LPWAN Technologies. Textbooks in Telecommunication Engineering, 2022, , 193-212.	0.2	2
31	Experimental Evaluation of the Packet Reception Performance of LoRa. Sensors, 2021, 21, 1071.	2.1	11
32	Design and Implementation of Smart Energy Meter using LoRa-WAN and IoT Applications. Journal of Physics: Conference Series, 2021, 1804, 012207.	0.3	11
33	DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications. Sensors, 2021, 21, 1444.	2.1	11
34	Adaptive Selection of Transmission Configuration for LoRa-based Wireless Underground Sensor Networks. , 2021, , .		3
35	Massive Access for 5G and Beyond. IEEE Journal on Selected Areas in Communications, 2021, 39, 615-637.	9.7	347
36	Smart Monitoring and Controlling of Appliances Using LoRa Based IoT System. Designs, 2021, 5, 17.	1.3	39

CITATION	Report
CHARLON	

#	Article	IF	CITATIONS
37	Survey of Low-Power Wireless Network Technologies for the Internet of Things. Automatic Control and Computer Sciences, 2021, 55, 177-194.	0.4	5
38	A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability, 2021, 13, 3422.	1.6	16
39	Deep AI Enabled Ubiquitous Wireless Sensing. ACM Computing Surveys, 2022, 54, 1-35.	16.1	33
40	An IoT Enabled Air Quality Monitoring System Using LoRa and LPWAN. , 2021, , .		9
41	Machine Learning in Wireless Sensor Networks for Smart Cities: A Survey. Electronics (Switzerland), 2021, 10, 1012.	1.8	83
42	A LoRa-Based Multisensor IoT Platform for Agriculture Monitoring and Submersible Pump Control in a Water Bamboo Field. Processes, 2021, 9, 813.	1.3	13
43	A lightweight Compression-based Energy-Efficient Smart Metering System in Long-Range Network. , 2021, , .		0
44	Modeling Communication Reliability in LoRa Networks with Device-level Accuracy. , 2021, , .		9
45	Outdoor Ranging and Positioning based on LoRa Modulation. , 2021, , .		6
46	LORA in a Campus: Reliability and Stability Testing. IOP Conference Series: Materials Science and Engineering, 2021, 1105, 012034.	0.3	2
47	An Energy-Efficient River Water Pollution Monitoring System in Internet of Things. IEEE Transactions on Green Communications and Networking, 2021, 5, 693-702.	3.5	7
48	Resource Management in Energy Harvesting Powered LoRa Wireless Networks. , 2021, , .		7
49	Testbed for LoRaWAN Security: Design and Validation through Man-in-the-Middle Attacks Study. Applied Sciences (Switzerland), 2021, 11, 7642.	1.3	9
50	LoRaWAN ESL for Food Retail and Logistics. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 493-502.	2.7	5
51	Wireless technologies, medical applications and future challenges in WBAN: a survey. Wireless Networks, 2021, 27, 5271-5295.	2.0	44
52	<scp>LoRa</scp> â€aided outdoor localization system: <scp>RSSI</scp> or <scp>TDoA</scp> ?. Internet Technology Letters, 2022, 5, e319.	1.4	6
53	Energy Efficiency Analysis of LoRa Networks. IEEE Wireless Communications Letters, 2021, 10, 1881-1885.	3.2	19
54	Review on Reliable and Quality Wearable Healthcare Device (WHD). International Journal of Reliable and Quality E-Healthcare, 2021, 10, 1-25.	1.0	2

	CITATI	ON REPORT	
#	Article	IF	CITATIONS
55	LiteNap: Downclocking LoRa Reception. IEEE/ACM Transactions on Networking, 2021, 29, 2632-2645.	2.6	8
56	An Energy Efficient Smart Metering System Using Edge Computing in LoRa Network. IEEE Transactions on Sustainable Computing, 2022, 7, 786-798.	2.2	16
57	Performance of LoRa-Based Schemes and Quadrature Chirp Index Modulation. IEEE Internet of Things Journal, 2022, 9, 7759-7772.	5.5	7
58	LMAC., 2020, , .		74
59	Combating packet collisions using non-stationary signal scaling in LPWANs. , 2020, , .		67
60	BFree. , 2020, 4, 1-39.		13
61	LoRa Device Fingerprinting in the Wild: Disclosing RF Data-Driven Fingerprint Sensitivity to Deployment Variability. IEEE Access, 2021, 9, 142893-142909.	2.6	34
62	MAD for FANETs: Movement Assisted Delivery for Flying Ad-hoc Networks. , 2021, , .		3
63	An Implementation Design of Unified Protocol Architecture for Physical Layer of LoRaWAN End-Nodes. Electronics (Switzerland), 2021, 10, 2550.	1.8	1
64	A Propagation Study of LoRa P2P Links for IoT Applications: The Case of Near-Surface Measurements over Semitropical Rivers. Sensors, 2021, 21, 6872.	2.1	8
65	HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service. Future Internet, 2021, 13, 271.	2.4	2
66	Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos. Ingenius: Revista De Ciencia Y TecnologÃa, 2020, , 87-96.	0.1	2
67	Starfish. , 2020, , .		13
68	On the feasibility of an IoT Multi-Radio Architecture for Smart Buildings. , 2020, , .		0
69	Methodology for testing LPWAN networks with mesh topology. , 2020, , .		0
70	A Deep Reinforcement Learning Approach For LoRa WAN Energy Optimization. , 2021, , .		4
71	Deep reinforcement learning based transmission policy enforcement and multi-hop routing in QoS aware LoRa IoT networks. Computer Communications, 2022, 183, 33-50.	3.1	30
73	An Energy-Efficient Smart Space System using LoRa Network with Deadline and Security Constraints. , 2021, , .		0

	Ci	ITATION REPORT	
#	Article	IF	CITATIONS
74	A Reinforcement Learning assisted Backoff Algorithm for LoRa networks. , 2021, , .		4
75	CoLoRa: Enabling Multi-Packet Reception in LoRa Networks. IEEE Transactions on Mobile Computing, 2021, , 1-1.	3.9	1
76	A New Frequency-Bin-Index LoRa System for High-Data-Rate Transmission: Design and Performance Analysis. IEEE Internet of Things Journal, 2022, 9, 12515-12528.	5.5	5
77	Analysis and Optimization for Large-Scale LoRa Networks: Throughput Fairness and Scalability. IEEE Internet of Things Journal, 2022, 9, 9574-9590.	5.5	5
78	Looking at NB-IoT Over LEO Satellite Systems: Design and Evaluation of a Service-Oriented Solution. IEEE Internet of Things Journal, 2022, 9, 14952-14964.	5.5	6
79	A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics (Switzerland), 2022, 11, 164.	1.8	83
80	LoRa technology for Internet of Things(IoT):A brief Survey. , 2020, , .		12
81	Internet of Things in Smart Agriculture $\hat{a} \in \mathbb{R}^{2}$ Possibilities and Challenges. , 2020, , .		8
82	A Downlink Non Orthogonal Multiple Access for Chirp Spread Spectrum Communications. , 2020, , .		4
83	LoRaWAN Internet of Things Network Planning for Smart City in Bandung Areas. , 2020, , .		2
84	The Effect of Temperature and Humidity on Indoor LoRa Propagation Model. , 2021, , .		3
85	Design and Construction of a Communication Module for Nano-Satellites. , 2021, , .		0
86	A Novel Index Modulation Based Chirp Spreading Modulation Scheme for Wireless Communications Systems. , 2021, , .		0
87	Spatio-Temporal Analyses of Environmental Monitoring Based on Wireless Sensor Networks. , 2021, ,		1
88	LPWAN's – Overview, Market Scenario and Performance Analysis of Lora, Sigfox Using NB-Fi Ra Calculator. , 2021, , .	nge	1
89	Reinforcement Learning for Hybrid Energy LoRa Wireless Networks. , 2021, , .		1
90	Performance Analysis and Resource Allocation for a Relaying LoRa System Considering Random Noda Distances. IEEE Transactions on Communications, 2022, 70, 1638-1652.	4.9	4
91	Multi-Layered Energy Efficiency in LoRa-WAN Networks: A Tutorial. IEEE Access, 2022, 10, 9198-9231	2.6	20

#	Article	IF	CITATIONS
92	Flexible Index Mapping Scheme for Packet-Level Index Modulation. IEEE Wireless Communications Letters, 2022, 11, 703-706.	3.2	1
93	Bi2Bi Communication: Toward Encouragement of Sustainable Smart Mobility. IEEE Access, 2022, 10, 9380-9394.	2.6	3
94	Intelligent Computing and Control Framework for Smart Automated System. Intelligent Automation and Soft Computing, 2022, 33, 173-189.	1.6	0
95	SSK-ICS LoRa: A LoRa-Based Modulation Scheme With Constant Envelope and Enhanced Data Rate. IEEE Communications Letters, 2022, 26, 1185-1189.	2.5	11
96	Comprehensive Throughput Analysis of Unslotted ALOHA for Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2022, 9, 15800-15813.	5.5	5
98	A Real-Time LoRa Protocol Using Logical Frame Partitioning for Periodic and Aperiodic Data Transmission. IEEE Internet of Things Journal, 2022, 9, 15401-15412.	5.5	3
99	Jamming Attacks and Anti-Jamming Strategies in Wireless Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 767-809.	24.8	121
100	Joint Content and Radio Access for the Internet of Things: A Smart-Contract-Based Trusted Framework. IEEE Internet of Things Journal, 2022, 9, 18142-18152.	5.5	2
101	Data Aggregation in Regular Large-Scale IoT Networks: Granularity, Reliability, and Delay Tradeoffs. IEEE Internet of Things Journal, 2022, 9, 17767-17784.	5.5	7
102	Re-Learning EXP3 Multi-Armed Bandit Algorithm for Enhancing the Massive IoT-LoRaWAN Network Performance. Sensors, 2022, 22, 1603.	2.1	5
103	Multi-Linear LoRa network topology deployment with interference avoidance for white area monitoring. , 2022, , .		0
104	IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences (Switzerland), 2022, 12, 3396.	1.3	113
105	Time-Slotted Spreading Factor Hopping for Mitigating Blind Spots in LoRa-Based Networks. Sensors, 2022, 22, 2253.	2.1	5
106	Comprehensive RF Dataset Collection and Release: A Deep Learning-Based Device Fingerprinting Use Case. , 2021, , .		9
107	Sensitivity-Aware Configurations for High Packet Generation Rate LoRa Networks. , 2021, , .		0
108	LoRa: A Proposed Connectivity Technology for Internet of Things Applications in the Kurdistan Region of Iraq. Kurdistan Journal of Applied Research, 0, , 20-34.	0.4	1
109	An Open Source LoRaWAN Simulator Framework for the Internet of Things Applications. , 2021, , .		1
110	A Novel Approach for Cancelation of Nonaligned Inter Spreading Factor Interference in LoRa Systems. IEEE Open Journal of the Communications Society, 2022, 3, 718-728.	4.4	4

#	Article	IF	CITATIONS
111	A novel time-slotted LoRa MAC protocol for scalable IoT networks. Future Generation Computer Systems, 2022, 134, 287-302.	4.9	4
112	Interference Mitigation and Decoding Through Gateway Diversity in LoRaWAN. IEEE Transactions on Wireless Communications, 2022, 21, 9068-9081.	6.1	10
113	A New Reconfigurable Intelligent-Surface-Assisted LoRa System. IEEE Transactions on Vehicular Technology, 2022, 71, 9055-9060.	3.9	6
114	Towards Energy-Fairness in LoRa Networks. IEEE Transactions on Mobile Computing, 2022, , 1-1.	3.9	1
115	A review: spreading factor allocation schemes for LoRaWAN. Telecommunication Systems, 2022, 80, 449-468.	1.6	9
116	Analysis of LoRaWAN 1.0 and 1.1 Protocols Security Mechanisms. Sensors, 2022, 22, 3717.	2.1	8
117	Dynamic LoRa Wireless Networks Powered by Hybrid Energy. , 2022, , .		0
118	Unleashing the Potential of Networked Tethered Flying Platforms: Prospects, Challenges, and Applications. IEEE Open Journal of Vehicular Technology, 2022, 3, 278-320.	3.4	13
119	Sensor Fusion Based Intelligent Hydroponic Farming and Nursing System. IEEE Sensors Journal, 2022, 22, 14584-14591.	2.4	4
120	LoRaWAN Communication Protocols: A Comprehensive Survey under an Energy Efficiency Perspective. Telecom, 2022, 3, 322-357.	1.6	5
121	A Communication Framework for Image Transmission through LPWAN Technology. Electronics (Switzerland), 2022, 11, 1764.	1.8	2
122	A Hierarchy-Based Energy-Efficient Routing Protocol for LoRa-Mesh Network. IEEE Internet of Things Journal, 2022, 9, 22836-22849.	5.5	8
123	Joint Multichannel-Spatial Diversity for Efficient Opportunistic Routing in Low-Power Wireless Networks. IEEE/ACM Transactions on Networking, 2022, , 1-14.	2.6	0
124	ML in WSN Using IoT for Smart Cities: A Survey. Advanced Technologies and Societal Change, 2022, , 1-11.	0.8	1
125	Delivering WiFi Connectivity to Remote Locations Through LoRa Mesh Networking. , 2022, , .		2
126	PolarScheduler: Dynamic Transmission Control for Floating LoRa Networks. , 2022, , .		5
127	LoRaX: Repurposing LoRa as a Low Data Rate Messaging System to Extend Internet Boundaries. , 2022, , .		4
128	Recent Advances in LoRa: A Comprehensive Survey. ACM Transactions on Sensor Networks, 2022, 18, 1-44.	2.3	22

#	Article	IF	CITATIONS
129	Development And Research of A Two-Contour Solar System In The Lorawan Network. WSEAS Transactions on Mathematics, 2022, 21, 371-379.	0.2	0
130	Challenges of Securing Low-Power LoRaWAN Devices Deployed in Advanced Manufacturing. , 2022, , .		0
131	A Model of Random Multiple Access in Unlicensed Spectrum Systems. , 2022, , .		1
132	An Exploration of LoRa Network in Tropical Farming Environment. , 2022, , .		0
133	Implicit Multi-hop Communication Scheme based on Overhearing in IoT LoRa Networks. , 2022, , .		1
134	Analysis of a novel media access control protocol for LoRa. IEEE Internet of Things Journal, 2022, , 1-1.	5.5	0
135	EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing. , 2022, , .		0
136	Low-Power Wide-Area Networks: A Broad Overview of Its Different Aspects. IEEE Access, 2022, 10, 81926-81959.	2.6	17
137	Coverage and Energy-Efficiency Experimental Test Performance for a Comparative Evaluation of Unlicensed LPWAN: LoRaWAN and SigFox. IEEE Access, 2022, 10, 97183-97196.	2.6	5
138	Ambient LoRa Backscatter System With Chirp Interval Modulation. IEEE Transactions on Wireless Communications, 2023, 22, 1328-1342.	6.1	1
139	Investigation on Security Risk of LoRaWAN: Compatibility Scenarios. IEEE Access, 2022, 10, 101825-101843.	2.6	4
140	Securing End-Node to Gateway Communication in LoRaWAN With a Lightweight Security Protocol. IEEE Access, 2022, 10, 96672-96694.	2.6	2
141	On the Error Performance of LoRa-Enabled Aerial Networks Over Shadowed Rician Fading Channels. IEEE Communications Letters, 2022, 26, 2322-2326.	2.5	1
142	An Approach to Optimize LoRa Network Performance for Efficient IoT Applications. Wireless Personal Communications, 2023, 128, 209-229.	1.8	0
143	Optimization of LoRa SF Allocation Based on Deep Reinforcement Learning. Wireless Communications and Mobile Computing, 2022, 2022, 1-14.	0.8	3
144	Performance evaluation and optimization of long range IoT network using whale optimization algorithm. Cluster Computing, 2023, 26, 3737-3751.	3.5	3
145	SDR-LoRa., 2022,,.		1
146	A Survey on Wireless Wearable Body Area Networks: A Perspective of Technology and Economy. Sensors, 2022, 22, 7722.	2.1	15

#	Article	IF	CITATIONS
147	A Study on LoRa SX1276 Performance in IoT Health Monitoring. Wireless Communications and Mobile Computing, 2022, 2022, 1-17.	0.8	2
148	Robust Anomaly Detection via Radio Fingerprinting in LoRa-Enabled IIoT. Lecture Notes in Computer Science, 2022, , 161-178.	1.0	Ο
149	Decoding LoRa Collisions via Parallel Alignment. ACM Transactions on Sensor Networks, 2023, 19, 1-25.	2.3	3
150	A Low-Cost and Do-It-Yourself Device for Pumping Monitoring in Deep Aquifers. Electronics (Switzerland), 2022, 11, 3788.	1.8	0
151	A Comprehensive Study on LPWANs With a Focus on the Potential of LoRa/LoRaWAN Systems. IEEE Communications Surveys and Tutorials, 2023, 25, 825-867.	24.8	15
152	FlyingLoRa: Towards energy efficient data collection in UAV-assisted LoRa networks. Computer Networks, 2023, 220, 109511.	3.2	6
153	Mechanism for IPv6 adaptation in LoRa topologies. Internet of Things (Netherlands), 2023, 21, 100647.	4.9	3
154	Modeling and practical implementation of the optimal wireless security gateway for the industrial automation network. Serbian Journal of Electrical Engineering, 2022, 19, 303-327.	0.2	0
155	Estimation of Ground Water Level (GWL) for Tropical Peatland Forest Using Machine Learning. IEEE Access, 2022, 10, 126180-126187.	2.6	5
156	A comprehensive review on LoRa implementation in IoT application domains. AIP Conference Proceedings, 2022, , .	0.3	2
157	Experimental Evaluation of Floor Height Estimation Using Unlicensed-Band LPWA Signals Toward Three-Dimensional NLOS Indoor Positioning. , 2022, , .		0
158	IoT Device Using LoRaWAN for Data Transfer for Long Distances. Lecture Notes in Networks and Systems, 2023, , 491-500.	0.5	0
159	Requirements, Deployments, and Challenges of LoRa Technology: A Survey. Computational Intelligence and Neuroscience, 2023, 2023, 1-15.	1.1	5
160	Evaluation of low-power wireless communication technology in underground environments for smart cities applications. , 2022, , .		0
161	LIDS: Lightweight Dynamic Scheduling Technique for 6G-enabled Massive LoRa based IoT Systems. , 2022, , .		3
162	Online Backoff Control of Unslotted ALOHA with Collision Resolution. , 2022, , .		0
163	An adaptive spreading factor allocation scheme for mobile LoRa networks: Blind ADR with distributed TDMA scheduling. Simulation Modelling Practice and Theory, 2023, 125, 102755.	2.2	1
164	Radio fingerprinting for anomaly detection using federated learning in LoRa-enabled Industrial Internet of Things. Future Generation Computer Systems, 2023, 143, 322-336.	4.9	6

#	Article	IF	CITATIONS
165	MaLoRaGW. , 2022, , .		0
166	LLDPC., 2022,,.		6
167	HyLink. , 2022, , .		4
168	A Study to Ensure Communication Reliability of Bus Location System Using LoRa Communication. IEEE Consumer Electronics Magazine, 2023, , 1-8.	2.3	0
169	Jamming of LoRa PHY and Countermeasure. ACM Transactions on Sensor Networks, 2023, 19, 1-27.	2.3	2
170	LoRa Technology in Flying Ad Hoc Networks: A Survey of Challenges and Open Issues. Sensors, 2023, 23, 2403.	2.1	9
171	LoRa - IoT based Industrial Automation Motor Speed Control Monitoring System. , 2023, , .		3
172	Security Enhancement of Joint Procedure Based on Improved Elliptic Curve Cryptography in LoRaWAN. Wireless Personal Communications, 2023, 129, 1471-1487.	1.8	1
173	Supporting Path Planning in LoRa-based UAVs for dynamic Coverage for IoT devices. , 2023, , .		1
174	ABP vs. OTAA activation of LoRa devices: an Experimental Study in a Rural Context. , 2023, , .		1
175	Use-Case-Oriented Evaluation of Wireless Communication Technologies for Advanced Underground Mining Operations. Sensors, 2023, 23, 3537.	2.1	2
176	Performance Analysis of LoRa WAN in IoT at L band Frequency. , 2023, , .		0
177	LoRa network communication protocol based on location and time planning. Peer-to-Peer Networking and Applications, 0, , .	2.6	0
178	Implicit Overhearing Node-Based Multi-Hop Communication Scheme in IoT LoRa Networks. Sensors, 2023, 23, 3874.	2.1	2
184	Lorawan Prototype for Smart Home Vulnerabilities and Threats Investigation. , 2023, , .		0
188	Exploring IoT Networks. , 2023, , 105-201.		0
189	Working with LoRa. , 2023, , 373-402.		0
191	A Survey on LoRaWAN for Smart Medical and Industries. , 2023, , .		0

#	Article	IF	CITATIONS
192	LoPhy: A Resilient and Fast Covert Channel over LoRa PHY. , 2023, , .		1
193	Link Quality Modeling for LoRa Networks in Orchards. , 2023, , .		0
202	Evaluating Energy Consumption and Maximum Communication Distance for SX1280 LoRa Transceiver at 2.4 GHz towards Adaptive Networks. , 2023, , .		0
203	Balancing reliability and energy efficiency in LoRa networks using reinforcement learning. , 2023, , .		1
207	A Classification of Cross-Layer Optimization Approaches in LoRaWAN for Internet of Things. , 2023, , .		0
211	One Shot for All: Quick and Accurate Data Aggregation for LPWANs. , 2023, , .		0
212	Drone cybersecurity issues, solutions, trend insights and future perspectives: a survey. Neural Computing and Applications, 2023, 35, 23063-23101.	3.2	6
215	Analysis of smart city energy efficiency technologies. AIP Conference Proceedings, 2023, , .	0.3	0
216	Extended Adaptive Data-Rate (X-ADR) Technique for Optimal Resource Allocation in Smart City Applications. , 2023, , .		1
219	Evaluation of Quality of Service Parameters for LoRaWAN IoT Driven Smart Dustbin Service. , 2023, , .		0
221	LoRaWAN Sensors Integration for Manufacturing Applications via Edge Device Model with OPC UA. , 2023, , .		0
223	ALR-LoRaWAN: An Application-Level Retransmission Management Algorithm for LoRaWAN Networks. , 2023, , .		0
224	Air parameters monitoring in urban area based on LoRaWAN: Data collection for environmental assessment. , 2023, , .		1
226	Intelligent Communication Planning for Constrained Environmental IoT Sensing with Reinforcement Learning. , 2023, , .		0
227	Rate-Monotonic Scheduler for LoRa-Based Smart Space Monitoring System. , 2023, , .		0
231	Developing Energy Autonomous and Cable-less Multi-gateway LoRa Networks. , 2023, , .		Ο
232	Centralized Communication Scheduler for LoRa. , 2023, , .		0
234	SLACOZE : Secure LoRa Ad-hoc Communication network Over the deadZonE. , 2023, , .		0

#	Article	IF	CITATIONS
236	Packet-Level Index Modulation Under Duty Cycle Constraints. , 2023, , .		0
238	SLoRa: A Systematic Framework for Synergic Interference Resilience In LPWAN. , 2023, , .		Ο
240	A Model for a Dense LoRaWAN Network in the Agribusiness. , 2023, , .		0
246	A Frequency Division Modulation for CSS-based Communication Systems: An Initial Discussion. , 2023, , \cdot		0
249	Distributed Estimation ofÂScalar Fields withÂImplicit Coordination. Springer Proceedings in Advanced Robotics, 2024, , 466-478.	0.9	0
253	Implementation of IoT Device for Efficient Communication Using LoRa Module for distinct Applications. , 2023, , .		0
254	Real-Time Investigation of LoRaWAN Architecture by LoRa Communication Module and Ultrasonic Sensor. , 2023, , .		0
255	Joint Optimization ofÂPAol andÂQueue Backlog withÂEnergy Constraints inÂLoRa Gateway Systems. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 273-290.	0.2	0