Additive Engineering for Efficient and Stable Perovskite

Advanced Energy Materials 10, 1902579 DOI: 10.1002/aenm.201902579

Citation Report

#	Article	IF	CITATIONS
1	Mobility-Dependent Charge-Transfer Efficiency at the ZnO/MAPbl ₃ Perovskite Contact: Developing a Novel Test Platform for Probing Electrical Contact Properties. Journal of Physical Chemistry C, 2019, 123, 30689-30695.	1.5	3
2	Optimization of Bulk Defects in Sn/Pb Mixed Perovskite Solar Cells Through Synergistic Effect of Potassium Thiocyanate. Solar Rrl, 2020, 4, 2000584.	3.1	31
3	Radical Molecular Modulator for High-Performance Perovskite Solar Cells. Frontiers in Chemistry, 2020, 8, 825.	1.8	9
4	Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy and Environmental Science, 2020, 13, 4666-4690.	15.6	79
5	A Quantitative Analysis of the Research Trends in Perovskite Solar Cells in 2009–2019. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000441.	0.8	5
6	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	11.7	137
7	Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy, 2020, 77, 105292.	8.2	37
8	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	2.8	26
9	Efficient and Stable MAPbI ₃ -Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation. Journal of Physical Chemistry Letters, 2020, 11, 6772-6778.	2.1	48
10	Perylene diimide based low band gap copolymers: synthesis, characterization and their applications in perovskite solar cells. Journal of Polymer Research, 2020, 27, 1.	1.2	3
11	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.	4.0	28
12	In Situ-Formed and Low-Temperature-Deposited Nb:TiO2 Compact-Mesoporous Layer for Hysteresis-Less Perovskite Solar Cells with High Performance. Nanoscale Research Letters, 2020, 15, 135.	3.1	1
13	Functionalized CNTs as Effective Additives to Improve the Efficiency of Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 11674-11680.	2.5	19
14	Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation. Journal of Luminescence, 2020, 227, 117592.	1.5	9
15	Interfacial modification towards highly efficient and stable perovskite solar cells. Nanoscale, 2020, 12, 18563-18575.	2.8	34
16	Molecular Ferroelectricsâ€Driven Highâ€Performance Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 20149-20157.	1.6	16
17	Molecular Ferroelectricsâ€Driven Highâ€Performance Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19974-19982.	7.2	71
18	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	8.8	307

#	Article	IF	CITATIONS
19	Green Synthesis of Eco-Friendly Graphene Quantum Dots for Highly Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 10863-10871.	2.5	66
20	Incorporating quantum dots for high efficiency and stable perovskite photovoltaics. Journal of Materials Chemistry A, 2020, 8, 25017-25027.	5.2	24
21	Modulating Charge Carrier Dynamics and Transfer via Surface Modifications in Organometallic Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 7886-7892.	2.1	11
22	XPS of the surface chemical environment of CsMAFAPbBrI trication-mixed halide perovskite film. Surface Science Spectra, 2020, 27, .	0.3	17
23	Ambient Pressure X-ray Photoelectron Spectroscopy Investigation of Thermally Stable Halide Perovskite Solar Cells via Post-Treatment. ACS Applied Materials & Interfaces, 2020, 12, 43705-43713.	4.0	34
24	Chemically Stable Black Phase CsPbI ₃ Inorganic Perovskites for Highâ€Efficiency Photovoltaics. Advanced Materials, 2020, 32, e2001025.	11.1	123
25	New Synthetic Route of Ultrapure Alkylammonium Iodides for Perovskite Thin Films of Superior Optoelectronic Properties. Energy Technology, 2020, 8, 2000478.	1.8	3
26	Gold Nanoparticles Functionalized with Fullerene Derivative as an Effective Interface Layer for Improving the Efficiency and Stability of Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2001144.	1.9	14
27	Thermal Evaporation–Oxidation Deposited Aluminum Oxide as an Interfacial Modifier to Improve the Performance and Stability of Zinc Oxide-Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9618-9627.	2.5	6
28	Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces. Journal of the American Chemical Society, 2020, 142, 21595-21614.	6.6	32
29	Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells. Small, 2020, 16, e2004877.	5.2	35
30	Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 24905-24912.	4.0	20
31	Sulfur-Donor Solvents Strongly Coordinate Pb ²⁺ in Hybrid Organic–Inorganic Perovskite Precursor Solutions. Journal of Physical Chemistry C, 2020, 124, 14496-14502.	1.5	38
32	Tuning the crystallization process of perovskite active layer using a functionalized graphene oxide for enhanced photovoltaic performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 12257-12268.	1.1	8
33	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	3.1	79
34	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	10.2	256
35	Efficient Formamidinium-Based Planar Perovskite Solar Cells Fabricated Through a Cal ₂ –PbI ₂ Precursor. ACS Sustainable Chemistry and Engineering, 2020, 8, 4267-4275.	3.2	19
36	Recent progress in morphology optimization in perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 21356-21386.	5.2	159

#	Article	IF	Citations
37	Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. Journal of Energy Chemistry, 2021, 54, 151-173.	7.1	51
38	Effect of CH3NH3I/CH3NH3Br precursors on the structural and surface morphology properties of the electrodeposited methylammonium lead–mixed halide perovskite films. Journal of Solid State Electrochemistry, 2021, 25, 583-590.	1.2	1
39	Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050.	6.9	43
40	High-performance fully-ambient air processed perovskite solar cells using solvent additive. Journal of Physics and Chemistry of Solids, 2021, 149, 109792.	1.9	33
41	Structural, optical and excitonic properties of urea grading doped CH3NH3PbI3 thin films and their application in inverted-type perovskite solar cells. Journal of Alloys and Compounds, 2021, 858, 157660.	2.8	12
42	Highly Reproducible Fabrication of Perovskite Films with an Ultrawide Antisolvent Dripping Window for Largeâ€5cale Flexible Solar Cells. Solar Rrl, 2021, 5, .	3.1	16
43	Breakthrough: Phase-Pure 2D Perovskite Films. Joule, 2021, 5, 14-15.	11.7	8
44	Additive engineering for Sn-based PSCs: Enhancement of open-circuit voltage and fill factor. Solar Energy, 2021, 214, 26-50.	2.9	9
45	Strain Engineering of Metal–Halide Perovskites toward Efficient Photovoltaics: Advances and Perspectives. Solar Rrl, 2021, 5, 2000672.	3.1	33
46	Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters, 2021, 6, 232-248.	8.8	89
47	A Critical Review on the Voltage Requirement in Hybrid Cells with Solar Energy Harvesting and Energy Storage Capability. Batteries and Supercaps, 2021, 4, 252-267.	2.4	14
48	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	7.8	37
49	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	4.6	63
50	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	16.0	35
51	Overcoming photovoltage deficit <i>via</i> natural amino acid passivation for efficient perovskite solar cells and modules. Journal of Materials Chemistry A, 2021, 9, 5857-5865.	5.2	43
52	Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy and Environmental Science, 2021, 14, 5875-5893.	15.6	180
53	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291.	23.0	506
54	Substance and shadow of formamidinium lead triiodide based solar cells. Physical Chemistry Chemical Physics, 2021, 23, 9049-9060.	1.3	7

#	Article	IF	CITATIONS
55	Synergistic improvements in the performance and stability of inverted planar MAPbl ₃ -based perovskite solar cells incorporating benzylammonium halide salt additives. Materials Chemistry Frontiers, 2021, 5, 3378-3387.	3.2	18
56	Ultra-flexible and waterproof perovskite photovoltaics for washable power source applications. Chemical Communications, 2021, 57, 6320-6323.	2.2	12
57	Control of the quality and homogeneity of halide perovskites by mixed-chloride additives upon the film formation process. Journal of Materials Chemistry A, 2021, 9, 17801-17811.	5.2	19
58	Synergetic effects of DMA cation doping and Cl anion additives induced re-growth of MA _{1â^'x} DMA _x PbI ₃ perovskites. Sustainable Energy and Fuels, 2021, 5, 2860-2864.	2.5	4
59	Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy and Environmental Science, 2021, 14, 2906-2953.	15.6	170
60	Cesium Doping for Performance Improvement of Lead(II)-acetate-Based Perovskite Solar Cells. Materials, 2021, 14, 363.	1.3	5
61	Advances in SnO ₂ -based perovskite solar cells: from preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9, 19554-19588.	5.2	88
62	Zwitterions: promising interfacial/doping materials for organic/perovskite solar cells. New Journal of Chemistry, 2021, 45, 15118-15130.	1.4	15
63	Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9175-9190.	5.2	10
64	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	5.2	28
65	Vertical 2D/3D Heterojunction of Tin Perovskites for Highly Efficient HTM-Free Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 2041-2048.	2.5	26
66	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
67	Use of Sodium Diethyldithiocarbamate to Enhance the Openâ€Circuit Voltage of CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000811.	3.1	5
68	Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar Rrl, 2021, 5, 2000713.	3.1	17
69	Advances in Metal Halide Perovskite Film Preparation: The Role of Antiâ€Solvent Treatment. Small Methods, 2021, 5, e2100046.	4.6	39
70	Influence of Additives on the <i>In Situ</i> Crystallization Dynamics of Methyl Ammonium Lead Halide Perovskites. ACS Applied Energy Materials, 2021, 4, 1398-1409.	2.5	11
71	Relationship between perovsktie solar cell efficiency and lattice disordering. Japanese Journal of Applied Physics, 2021, 60, 035001.	0.8	0
72	Discovery of a New Intermediate Enables Oneâ€Step Deposition of Highâ€Quality Perovskite Films via Solvent Engineering. Solar Rrl, 2021, 5, 2000712.	3.1	24

#	Article	IF	CITATIONS
73	Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. Small, 2021, 17, e2005640.	5.2	20
74	Applications of Plasma-Assisted Systems for Advanced Electrode Material Synthesis and Modification. ACS Applied Materials & Interfaces, 2021, 13, 13909-13919.	4.0	24
75	Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Advanced Composites and Hybrid Materials, 2021, 4, 1261-1269.	9.9	27
76	Trifluoromethylphenylacetic Acid as In Situ Accelerant of Ostwald Ripening for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100040.	3.1	11
77	2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.	14.4	36
78	Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. CheM, 2021, 7, 774-785.	5.8	37
79	A thioacetamide interlayer anchoring TiO 2 and (FAPbI 3) 1â^' x (MAPbBr 3) x for highâ€performance perovskite solar cells. Journal of the American Ceramic Society, 2021, 104, 5120-5126.	1.9	2
80	Colorful Efficient Moiréâ€Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008091.	11.1	37
81	Strategies to Improve Luminescence Efficiency and Stability of Blue Perovskite Lightâ€Emitting Devices. Small Science, 2021, 1, 2000048.	5.8	33
82	A Synergistic Precursor Regulation Strategy for Scalable Fabrication of Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000613.	1.2	3
83	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	5.2	61
84	Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 22% via Smallâ€Molecule Passivation. Advanced Materials, 2021, 33, e2007169.	11.1	211
85	Printing strategies for scaling-up perovskite solar cells. National Science Review, 2021, 8, nwab075.	4.6	48
86	Largeâ€Area Blade oated Solar Cells: Advances and Perspectives. Advanced Energy Materials, 2021, 11, 2100378.	10.2	77
87	Making Room for Growing Oriented FASnI ₃ with Large Grains via Cold Precursor Solution. Advanced Functional Materials, 2021, 31, 2100931.	7.8	57
88	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	8.8	76
89	Versatile Bidentate Chemical Passivation on a Cesium Lead Inorganic Perovskite for Efficient and Stable Photovoltaics. ACS Applied Energy Materials, 2021, 4, 4021-4028.	2.5	16
90	Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 20043-20050.	4.0	21

#	Article	IF	CITATIONS
91	Simultaneous dual-interface and bulk defect passivation for high-efficiency and stable CsPbI2Br perovskite solar cells. Journal of Power Sources, 2021, 492, 229580.	4.0	13
92	Technical Challenges and Perspectives for the Commercialization of Solutionâ€Processable Solar Cells. Advanced Materials Technologies, 2021, 6, .	3.0	60
93	Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive. ACS Applied Electronic Materials, 2021, 3, 1813-1825.	2.0	22
94	Enhanced crystallization of solution-processed perovskite using urea as an additive for large-grain MAPbl ₃ perovskite solar cells. Nanotechnology, 2021, 32, 30LT02.	1.3	8
95	Subpicosecond magneto-optical response probed by the Kerr rotation technique in PbI2 film. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1858.	0.9	0
96	Vacant Manganeseâ€Based Perovskite Fluorides@Reduced Graphene Oxides for Naâ€Ion Storage with Pseudocapacitive Conversion/Insertion Dual Mechanisms. Chemistry - A European Journal, 2021, 27, 9954-9960.	1.7	7
97	Influence of pyridine-based ligands on photostability of MAPbI3 thin films. Mendeleev Communications, 2021, 31, 319-322.	0.6	3
98	Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies. Advanced Energy Materials, 2021, 11, 2100784.	10.2	35
99	Influence of pyridine-based ligands on photostability of MAPbI3 thin films. Mendeleev Communications, 2021, 31, 319-322.	0.6	1
100	Fluorinated Oligomer Wrapped Perovskite Crystals for Inverted MAPbI ₃ Solar Cells with 21% Efficiency and Enhanced Stability. ACS Applied Materials & amp; Interfaces, 2021, 13, 26093-26101.	4.0	18
101	Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101082.	10.2	21
102	"Visible―Phase Separation of MAPbl ₃ /Î′â€FAPbl ₃ Films for Highâ€Performance and Stable Photodetectors. Advanced Materials Interfaces, 2021, 8, 2100266.	1.9	5
103	Micro structurally engineered hysteresis-free high efficiency perovskite solar cell using Zr-doped TiO2 electron transport layer. Ceramics International, 2021, 47, 14665-14672.	2.3	14
104	Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 4882-4901.	2.1	21
105	An Effective Strategy of Combining Surface Passivation and Secondary Grain Growth for Highly Efficient and Stable Perovskite Solar Cells. Small, 2021, 17, e2100678.	5.2	23
106	Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 5357-5362.	2.1	5
107	Impact of Amine Additives on Perovskite Precursor Aging: A Case Study of Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 5836-5843.	2.1	6
108	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566-1586.	11.7	119

#	Article	IF	CITATIONS
109	Research progress of absorber film of inorganic perovskite solar cells: Fabrication techniques and additive engineering in defect passivation. Materials Science in Semiconductor Processing, 2021, 127, 105666.	1.9	24
110	Reduced Defects and Enhanced Performance of (FAPbI ₃) _{0.97} (MAPbBr ₃) _{0.03} -Based Perovskite Solar Cells by Trimesic Acid Additives. ACS Omega, 2021, 6, 16151-16158.	1.6	7
111	Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Optical and Quantum Electronics, 2021, 53, 1.	1.5	47
112	Organic Polymers as Additives in Perovskite Solar Cells. Macromolecules, 2021, 54, 5451-5463.	2.2	42
113	Benzodithiopheneâ€Based Spacers for Layered and Quasi‣ayered Lead Halide Perovskite Solar Cells. ChemSusChem, 2021, 14, 3001-3009.	3.6	8
114	Recent Progress on Formamidiniumâ€Đominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	10.2	45
115	Marked Passivation Effect of Naphthaleneâ€1,8â€Dicarboximides in Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008405.	11.1	116
116	Synergistic Interface Layer Optimization and Surface Passivation with Fluorocarbon Molecules toward Efficient and Stable Inverted Planar Perovskite Solar Cells. Research, 2021, 2021, 9836752.	2.8	27
117	Green antisolvent additive engineering to improve the performance of perovskite solar cells. Journal of Energy Chemistry, 2022, 66, 1-8.	7.1	42
118	Ladder-type heteroacene-based dopant-free hole-transporting materials for efficient and stable CsPbI2Br perovskite solar cells. Dyes and Pigments, 2021, 191, 109368.	2.0	8
119	Effect of parasitic absorption of the plasmonic cubic nanoparticles on the performance of a plasmonic assisted halide thin-film perovskite solar cell. Solar Energy, 2021, 223, 293-301.	2.9	16
120	Hydrophilic Surface-Driven Crystalline Grain Growth of Perovskites on Metal Oxides. ACS Applied Energy Materials, 2021, 4, 6923-6932.	2.5	17
121	The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells. Crystals, 2021, 11, 814.	1.0	17
122	Constructing CdS-Based Electron Transporting Layers With Efficient Electron Extraction for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 1014-1021.	1.5	6
123	Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Science Advances, 2021, 7, .	4.7	195
124	Incorporation of Two-Dimensional WSe ₂ into MAPbI ₃ Perovskite for Efficient and Stable Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 6883-6888.	2.1	12
125	Selective Passivation of Grain Boundaries via Incorporation of a Fluidic Small Molecule in Perovskite Solar Absorbers. ACS Applied Energy Materials, 2021, 4, 10059-10068.	2.5	3
126	Application of MXenes in Perovskite Solar Cells: A Short Review. Nanomaterials, 2021, 11, 2151.	1.9	29

#	Article	IF	CITATIONS
127	Perovskite Passivation with a Bifunctional Molecule 1,2â€Benzisothiazolinâ€3â€One for Efficient and Stable Planar Solar Cells. Solar Rrl, 2021, 5, 2100472.	3.1	5
128	Highly Stable Inorganic Lead Halide Perovskite toward Efficient Photovoltaics. Accounts of Chemical Research, 2021, 54, 3452-3461.	7.6	37
129	Multifunctional Reductive Molecular Modulator toward Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100320.	3.1	18
130	Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nature Communications, 2021, 12, 4831.	5.8	56
131	Low-Temperature Fabrication of Phase-Pure α-FAPbI3 Films by Cation Exchange from Two-Dimensional Perovskites for Solar Cell Applications. Energy & Fuels, 0, , .	2.5	11
132	Efficient defect passivation for high performance perovskite solar cell by adding alizarin red S. Journal of Materials Science, 2021, 56, 19552-19563.	1.7	2
133	A Review on Gasâ€Quenching Technique for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100386.	3.1	28
134	Rollâ€ŧoâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341.	3.1	22
135	Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase. CheM, 2021, 7, 2513-2526.	5.8	49
136	Grain Boundary Defects Passivated with <i>tert</i> -Butyl Methacrylate for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11298-11305.	2.5	8
137	Organic Matrix Assisted Lowâ€ŧemperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie, 2022, 134, .	1.6	3
138	A study of the effects of a thermally evaporated nanoscale CsBr layer on the optoelectronic properties and stability of formamidinium-rich perovskite solar cells. AIP Advances, 2021, 11, 095112.	0.6	8
139	Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21%. Journal of Energy Chemistry, 2021, 60, 169-177.	7.1	17
140	Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites. Applied Physics Reviews, 2021, 8, .	5.5	36
141	Ferrocene Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	0
142	Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virusâ€Inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3%. Advanced Energy Materials, 2021, 11, 2101221.	10.2	20
143	Ferroceneâ€Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 25567-25574.	7.2	34
144	Poly(vinylidene fluorideâ€coâ€hexafluoropropylene) additive in perovskite for stable performance of carbonâ€based perovskite solar cells. International Journal of Energy Research, 2022, 46, 1565-1574.	2.2	12

#	Article	IF	CITATIONS
145	Binary Additive Engineering Enables Efficient Perovskite Solar Cells via Spray-Coating in Air. ACS Applied Energy Materials, 2021, 4, 11496-11504.	2.5	8
146	Organic Matrix Assisted Lowâ€ŧemperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
147	Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chemical Engineering Journal, 2021, 422, 130572.	6.6	47
148	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 62, 243-251.	7.1	35
149	Anion effect on properties of Zn-doped CH3NH3PbI3 based perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 233, 111400.	3.0	9
150	Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 426, 130685.	6.6	34
151	Benzotriazole derivative inhibits nonradiative recombination and improves the UV-stability of inverted MAPbI3 perovskite solar cells. Journal of Energy Chemistry, 2022, 65, 592-599.	7.1	18
152	A design strategy of additive molecule for PSCs: Anchoring intrinsic properties of functional groups by suppressing long-range conjugation effect. Chemical Engineering Journal, 2022, 427, 131676.	6.6	8
153	A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells: The more fluorination the better?. Journal of Energy Chemistry, 2022, 64, 179-189.	7.1	28
154	Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2021, 9, 19206-19244.	5.2	28
155	Exploring the film growth in perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 6029-6049.	5.2	20
156	Small Molecules with Controllable Molecular Weights Passivate Surface Defects in Airâ€Stable pâ€iâ€n Perovskite Solar Cells. Advanced Electronic Materials, 2021, 7, 2000870.	2.6	18
157	Constructing highly efficient all-inorganic perovskite solar cells with efficiency exceeding 17% by using dopant-free polymeric electron-donor materials. Nano Energy, 2020, 75, 104933.	8.2	50
158	Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility. Physical Review B, 2020, 102, .	1.1	15
159	D–A–π–A organic sensitizer surface passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 25086-25093.	5.2	28
160	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH ₃ NH ₃ PbI ₃ â€Based Perovskite Solar Cell with Efficiency Beyond 21%. Small, 2021, 17, e2102186.	5.2	28
161	A Brief Review of the Role of 2D Mxene Nanosheets toward Solar Cells Efficiency Improvement. Nanomaterials, 2021, 11, 2732.	1.9	13
162	An Embedding 2D/3D Heterostructure Enables Highâ€Performance FAâ€Alloyed Flexible Perovskite Solar Cells with Efficiency over 20%. Advanced Science, 2021, 8, e2101856.	5.6	57

#	Article	IF	CITATIONS
163	Lead Sources in Perovskite Solar Cells: Toward Controllable, Sustainable, and Large calable Production. Solar Rrl, 2021, 5, 2100665.	3.1	21
164	Trifluoromethylâ€Group Bearing, Hydrophobic Bulky Cations as Defect Passivators for Highly Efficient, Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100712.	3.1	11
165	A Holistic Study on the Effect of Annealing Temperature and Time on CH3NH3PbI3-Based Perovskite Solar Cell Characteristics. Frontiers in Energy Research, 2021, 9, .	1.2	3
166	Multifunctional passivation agents for improving efficiency and stability of perovskite solar cells: Synergy of methyl and carbonyl groups. Applied Surface Science, 2022, 575, 151740.	3.1	13
167	Thin films of formamidinium lead iodide (FAPI) deposited using aerosol assisted chemical vapour deposition (AACVD). Scientific Reports, 2020, 10, 22245.	1.6	6
168	The Promise of Perovskite Solar Cells. , 2022, , 388-404.		3
169	Self-stability of un-encapsulated polycrystalline MAPbI3 solar cells via the formation of chemical bonds between C60 molecules and MA cations. Solar Energy Materials and Solar Cells, 2022, 235, 111454.	3.0	10
170	Ionic liquid assisted pure blue emission CsPbBr3 quantum dots with improved optical properties and alkyl chain regulated stability. Chemical Engineering Journal, 2022, 430, 132790.	6.6	25
171	Interfacial Defect Passivation and Charge Carrier Management for Efficient Perovskite Solar Cells via a Highly Crystalline Small Molecule. ACS Energy Letters, 2021, 6, 4209-4219.	8.8	63
172	Lowâ€Cost Strategy for Highâ€Efficiency Bifacial Perovskite/câ€5i Tandem Solar Cells. Solar Rrl, 2022, 6, 2100781.	3.1	5
173	IngenierÃas de aditivos en celdas solares tipo perovskita. Ingenierias, 2021, 24, 3-12.	0.2	0
174	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
175	Methodologies for >30% Efficient Perovskite Solar Cells via Enhancement of Voltage and Fill Factor. Solar Rrl, 2022, 6, 2100767.	3.1	21
176	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
177	A methylammonium iodide healing method for CH ₃ NH ₃ PbI ₃ perovskite solar cells with high fill factor over 80%. Journal of Semiconductors, 2021, 42, 112202.	2.0	2
178	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	28
179	Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability. Cell Reports Physical Science, 2021, 2, 100646.	2.8	10
180	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, .	3.1	8

#	Article	IF	CITATIONS
181	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
182	Design of dopant-free small molecular hole transport materials for perovskite solar cells: a viewpoint from defect passivation. Journal of Materials Chemistry A, 2022, 10, 1150-1178.	5.2	44
183	Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion–Jacobson Perovskite for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 850-860.	4.0	22
184	Size-tunable MoS ₂ nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. Journal of Materials Chemistry A, 2022, 10, 3605-3617.	5.2	15
185	Toward highâ€efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO ₂ additives into 3D perovskite layer. EcoMat, 2022, 4, e12166.	6.8	31
186	Enhancing the performance of perovskite solar cells through simple bilateral active site molecule assisted surface defect passivation. Chemical Engineering Journal, 2022, 432, 134223.	6.6	17
187	Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 420-438.	7.1	27
188	Interfaces between Pb-Free Double Perovskite Cs2NaBil6 and MXenes Sc2CO2 and Sc2C(OH)2. Journal of Physical Chemistry Letters, 2022, 13, 851-856.	2.1	0
189	Designing Ionic Liquids as the Solvent for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22870-22878.	4.0	18
190	Unveiling the effect of amino acids on the crystallization pathways of methylammonium lead iodide perovskites. Journal of Energy Chemistry, 2022, 69, 253-260.	7.1	10
191	Recent Progress and Future Prospects for Light Management of Allâ€Perovskite Tandem Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	16
192	Synergistic Approach toward Erbium-Passivated Triple-Anion Organic-Free Perovskite Solar Cells with Excellent Performance for Agrivoltaics Application. ACS Applied Materials & Interfaces, 2022, 14, 6894-6905.	4.0	8
193	Molecular interactions and functionalities of an organic additive in a perovskite semiconducting device: a case study towards high performance solar cells. Journal of Materials Chemistry A, 2022, 10, 2876-2887.	5.2	14
194	Synergy Effect of a π onjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote <i>V</i> _{oc} and Stability of Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
195	Synergy Effect of a π onjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote V oc and Stability of Planar Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	4
196	Lewis Base Plays a Double-Edged-Sword Role in Trap State Engineering of Perovskite Polycrystals. Journal of Physical Chemistry Letters, 2022, 13, 1571-1577.	2.1	11
197	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	17
198	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63

#	Article	IF	CITATIONS
199	Role of π-conjugated-length-regulated perovskite intergrain interconnecting in the photovoltaic performance of perovskite solar cells. Applied Surface Science, 2022, 585, 152670.	3.1	5
200	1Â+Â1 > 2: Dual strategies of quinolinic acid passivation and DMF solvent annealing for high-performance inverted perovskite solar cell. Chemical Engineering Journal, 2022, 435, 135107.	6.6	14
201	1+1>2: Dual Strategies of Quinolinic Acid Passivation and Dmf Solvent Annealing for High-Performance Inverted Perovskite Solar Cell. SSRN Electronic Journal, 0, , .	0.4	0
202	Reducing Trap Densities of Perovskite Films by Adding Hypoxanthine for High-Performance and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
203	One-Step Anti-Solvent Associated Method for High Performance Two-Dimensional Perovskite Photodetectors Fabrication at Low Temperature. SSRN Electronic Journal, 0, , .	0.4	0
204	A review of graphene derivative enhancers for perovskite solar cells. Nanoscale Advances, 2022, 4, 2057-2076.	2.2	20
205	Improving the Performance of Perovskite Solar Cells with Insulating Additive-Modified Hole Transport Layers. ACS Applied Materials & amp; Interfaces, 2022, 14, 11500-11508.	4.0	14
206	Design Principles for Organic Small Molecule Hole-Transport Materials for Perovskite Solar Cells: Film Morphology Matters. ACS Applied Energy Materials, 2022, 5, 5395-5403.	2.5	11
207	Controlling the Formation Process of Methylammoniumâ€Free Halide Perovskite Films for a Homogeneous Incorporation of Alkali Metal Cations Beneficial to Solar Cell Performance. Advanced Energy Materials, 2022, 12, .	10.2	27
208	Universal Surface-Defect Passivant for Perovskite Solar Cells Based on <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mmi:mrow><mmi:mi mathvariant="normal">N</mmi:mi </mmi:mrow><mmi:mi mathvariant="normal">N -Phenylglycine for improved Photovoltaic Performance and Stability. Physical Review Applied, 2022, 17, .</mmi:mi </mmi:math 	1.5	2
209	Greatly improved Photovoltal Performance and Stability. Physical Review Applied, 2022, 17, . Greatly improved photoresponse in the MAPbBr ₃ /Si heterojunction by introducing an ITO layer and optimizing MAPbBr ₃ layer thickness. Optics Express, 2022, 30, 11536.	1.7	12
210	Inorganic CsPbBr ₃ Perovskite Nanocrystals as Interfacial Ion Reservoirs to Stabilize FAPbI ₃ Perovskite for Efficient Photovoltaics. Advanced Energy Materials, 2022, 12, .	10.2	22
211	Multifunctional <i>Ï€</i> â€Conjugated Additives for Halide Perovskite. Advanced Science, 2022, 9, e2105307.	5.6	33
212	Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation. Joule, 2022, 6, 676-689.	11.7	110
213	Stable one dimensional (1D)/three dimensional (3D) perovskite solar cell with an efficiency exceeding 23%. InformaÄnÃ-Materiály, 2022, 4, .	8.5	23
214	Enhancing the Electronic Properties and Stability of High-Efficiency Tin–Lead Mixed Halide Perovskite Solar Cells via Doping Engineering. Journal of Physical Chemistry Letters, 2022, 13, 3130-3137.	2.1	12
215	Interfacial Defect Passivation Effect of <i>N</i> -Methyl- <i>N</i> -(thien-2-ylmethyl)amine for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 4270-4278.	2.5	2
216	The Chemistry of the Passivation Mechanism of Perovskite Films with Ionic Liquids. Inorganic Chemistry, 2022, 61, 5010-5016.	1.9	12

#	Article	IF	CITATIONS
217	Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment. ACS Applied Energy Materials, 2022, 5, 4149-4158.	2.5	10
218	Advances in Organic and Perovskite Photovoltaics Enabling a Greener Internet of Things. Advanced Functional Materials, 2022, 32, .	7.8	24
219	Highly efficient and stable perovskite solar cells induced by novel bulk organosulfur ammonium. Materials Today Energy, 2022, 26, 101004.	2.5	7
220	Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135269.	6.6	17
221	Highly efficient and low hysteresis methylammonium-free perovskite solar cells based on multifunctional oteracil potassium interface modification. Chemical Engineering Journal, 2022, 439, 135671.	6.6	26
222	Selfâ€Formed Multifunctional Grain Boundary Passivation Layer Achieving 22.4% Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	13
223	Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. Journal of Physical Chemistry Letters, 2022, 13, 25-41.	2.1	10
224	Passivation Effect of CsPbI3 Quantum Dots on the Performance and Stability of Perovskite Solar Cells. Photonics, 2022, 9, 3.	0.9	6
225	Improving the Efficiency of Hole-Conductor-Free Carbon-Based Planar Perovskite Solar Cells with Long-Term Stability by Using the Hydrazine Acetate Additive via the One-Step Method. ACS Applied Electronic Materials, 2021, 3, 5211-5218.	2.0	3
226	Homogeneously Miscible Fullerene inducing Vertical Gradient in Perovskite Thinâ€Film toward Highly Efficient Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	28
227	Efficient Flexible Perovskite Solar Cells with Reduced Hysteresis Employing Cobalt Nitrate Treated SnO ₂ . Solar Rrl, 2022, 6, .	3.1	7
228	Recent Advances on the Strategies to Stabilize the α-Phase of Formamidinium Based Perovskite Materials. Crystals, 2022, 12, 573.	1.0	2
229	Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2022, 14, 20159-20167.	4.0	19
230	Lithium chloride-based interface engineering at electron transport and perovskite layers to boost the performance of perovskite photovoltaics. Optical Materials, 2022, 127, 112348.	1.7	7
232	High-performance perovskite solar cells resulting from large perovskite grain size enabled by the urea additive. Sustainable Energy and Fuels, 2022, 6, 2955-2961.	2.5	5
233	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
234	Unravel the Chargeâ€Carrier Dynamics in Simple Dimethyl Oxalateâ€Treated Perovskite Solar Cells with Efficiency Exceeding 22%. Energy and Environmental Materials, 2023, 6, .	7.3	7
235	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27

#	Article	IF	CITATIONS
236	Tautomeric Dual‣ite Passivation for Carbonâ€Based Printable Mesoscopic Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	9
237	A multifunctional piperidine-based modulator for printable mesoscopic perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136967.	6.6	13
238	Halide anions engineered ionic liquids passivation layer for highly stable inverted perovskite solar cells. Journal of Colloid and Interface Science, 2022, 622, 469-480.	5.0	12
239	Ionic Liquid Engineering in Perovskite Photovoltaics. Energy and Environmental Materials, 2023, 6, .	7.3	18
240	Atomic Layer Engineering of Aluminumâ€Doped Zinc Oxide Films for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	16
241	Sulfonyl passivation through synergistic hydrogen bonding and coordination interactions for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 13048-13054.	5.2	18
242	Characterization of interfaces: Lessons from the past for the future of perovskite solar cells. Journal of Semiconductors, 2022, 43, 051202.	2.0	6
243	A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromolecular Research, 2022, 30, 391-396.	1.0	5
244	Alkyl Diamine-Induced (100)-Preferred Crystal Orientation for Efficient Pb–Sn Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6936-6942.	2.5	12
245	Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Research, 2022, 15, 7139-7153.	5.8	12
246	Accelerated Formation of 2D Ruddlesden—Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications. Nanomaterials, 2022, 12, 1816.	1.9	5
247	Interface Modification with Holistically Designed Push–Pull D–π–A Organic Small Molecule Facilitates Band Alignment Engineering, Efficient Defect Passivation, and Enhanced Hydrophobicity in Mixed Cation Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6783-6796.	2.5	11
248	Ionic Liquidâ€Assisted Crystallization and Defect Passivation for Efficient Perovskite Solar Cells with Enhanced Open ircuit Voltage. ChemSusChem, 2022, 15, .	3.6	14
249	Topâ€Contactsâ€Interface Engineering for Highâ€Performance Perovskite Solar Cell With Reducing Lead Leakage. Solar Rrl, 2022, 6, .	3.1	8
250	lon migration suppression mechanism via 4-sulfobenzoic acid monopotassium salt for 22.7% stable perovskite solar cells. Science China Materials, 2022, 65, 3368-3381.	3.5	19
251	Thermal Stability of K-Doped Organometal Halide Perovskite for Photovoltaic Materials. ACS Applied Energy Materials, 2022, 5, 10409-10414.	2.5	1
252	Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and Perspectives. Nanomaterials, 2022, 12, 2102.	1.9	13
253	The capacitive effect of inverted perovskite solar cell caused by the interface between perovskite layer and zinc oxide layer. Optical Materials, 2022, 131, 112570.	1.7	1

#	Article	IF	CITATIONS
254	High-conductivity thiocyanate ionic liquid interface engineering for efficient and stable perovskite solar cells. Chemical Communications, 2022, 58, 8384-8387.	2.2	8
255	Introduction of cadmium chloride additive to improve the performance and stability of perovskite solar cells. RSC Advances, 2022, 12, 20461-20470.	1.7	40
256	Controlling Phase Transition toward Future Low-Cost and Eco-friendly Printing of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 6503-6513.	2.1	9
257	Active Functional Groups and Adjacent Dual-Interaction Strategies Enable Perovskite Solar Cells to Prosper: Including Unique Morphology and Enhanced Optoelectronic Performance. ACS Sustainable Chemistry and Engineering, 2022, 10, 9946-9955.	3.2	6
258	Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 31911-31919.	4.0	6
259	VOC over 1.2ÂV for Cs2AgBiBr6 solar cells based on formamidinium acetate additive. Journal of Materials Science: Materials in Electronics, 2022, 33, 18758-18767.	1.1	9
260	Recent progress of rare earth conversion material in perovskite solar cells: A mini review. Inorganic Chemistry Communication, 2022, 143, 109731.	1.8	7
261	Highly efficient and freely soluble titanium sub-oxide powder as interfacial functional material for versatile photovoltaic cells. Chemical Engineering Journal, 2022, 450, 138017.	6.6	0
262	A Novel Organic Dopant for Spiro-OMeTAD in High-Efficiency and Stable Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	1.8	5
263	Design and simulation of homojunction perovskite CH3NH3GeI3 solar cells. Indian Journal of Physics, 2023, 97, 727-731.	0.9	5
264	Multistrategy Preparation of Efficient and Stable Environment-Friendly Lead-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 35513-35521.	4.0	9
265	Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83%. ACS Nano, 2022, 16, 11902-11911.	7.3	30
266	Design of a Flexible Thin-Film Encapsulant with Sandwich Structures of Perhydropolysilazane Layers. ACS Applied Materials & Interfaces, 2022, 14, 34678-34685.	4.0	5
267	Selection, Preparation and Application of Quantum Dots in Perovskite Solar Cells. International Journal of Molecular Sciences, 2022, 23, 9482.	1.8	9
268	Molecular Interaction Modulates Crystallization and Defects of Perovskite Films for High-Performance Solar Cells. ACS Applied Energy Materials, 2022, 5, 10572-10580.	2.5	2
269	Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy, 2022, 102, 107747.	8.2	73
270	Simultaneous interface passivation and defect compensation for high-efficiency planar perovskite solar cells. Applied Surface Science, 2022, 604, 154431.	3.1	5
271	Preparation of Nickel Oxide Nanoflakes for Carrier Extraction and Transport in Perovskite Solar Cells. Nanomaterials, 2022, 12, 3336.	1.9	1

#	Article	IF	CITATIONS
272	All-in-one additive enables defect passivated, crystallization modulated and moisture resisted perovskite films toward efficient solar cells. Chemical Engineering Journal, 2023, 452, 139345.	6.6	27
273	Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138962.	6.6	14
274	Role of crown ether in the perovskite precursor for doctor-bladed perovskite solar cells: investigation by liquid-phase scanning electron microscopy. Journal of Materials Chemistry C, 2022, 10, 16016-16027.	2.7	2
275	A self-arranged metal–organic polyhedron/fullerene asymmetric structure improves the performance of inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 14542-14548.	2.7	4
276	Passivation of Positively Charged Cationic Defects in Perovskite with Nitrogen-Donor Crown Ether Enabling Efficient Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
277	Deep defect passivation and shallow vacancy repair <i>via</i> an ionic silicone polymer toward highly stable inverted perovskite solar cells. Energy and Environmental Science, 2022, 15, 4414-4424.	15.6	35
278	What are Methylammonium and Solvent Fates upon Halide Perovskite Thinâ€Film Preparation and Thermal Aging?. Advanced Materials Interfaces, 2022, 9, .	1.9	7
279	Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air. Journal of Semiconductors, 2022, 43, 092201.	2.0	3
280	Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	18
281	The Growth Dynamics of Organic–Inorganic Metal Halide Perovskite Films. Journal of the American Chemical Society, 2022, 144, 17848-17856.	6.6	9
282	Recent Advances in the Research of Photoâ€Assisted Lithiumâ€Based Rechargeable Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	9
283	Dualâ€6ite Synergistic Passivation for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	20
284	Grain Boundary Passivation Using D131 Organic Dye Molecule for Efficient and Thermally Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 13825-13834.	3.2	12
285	Organic Additive Engineering to Grow Highâ€Quality Inorganic CsPbX ₃ Perovskite Films for Efficient and Stable Solar Cells. Solar Rrl, 2022, 6, .	3.1	7
286	Interfacial Engineering for Highâ€Performance PTAAâ€Based Inverted 3D Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
287	Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 5345-5359.	2.5	4
288	Inorganic frameworks of low-dimensional perovskites dictate the performance and stability of mixed-dimensional perovskite solar cells. Materials Horizons, 2023, 10, 536-546.	6.4	5
289	Cage Molecules Stabilize Lead Halide Perovskite Thin Films. Chemistry of Materials, 2022, 34, 9384-9391.	3.2	8

#	Article	IF	CITATIONS
290	Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 47872-47881.	4.0	13
291	Probing charge carrier dynamics in metal halide perovskite solar cells. EcoMat, 2023, 5, .	6.8	8
292	Effect of 1,3-Disubstituted Urea Derivatives as Additives on the Efficiency and Stability of Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 13617-13626.	2.5	8
293	Honeycombâ€Type TiO ₂ Films Toward a High Tolerance to Optical Paths for Perovskite Solar Cells. ChemSusChem, 2023, 16, .	3.6	6
294	Ammonium Thiocyanate-Passivated Quasi-Two-Dimensional Dion Jacobson Perovskite Solar Cells for Improved Efficiency and Stability. ACS Applied Energy Materials, 2022, 5, 13723-13734.	2.5	8
295	What Can Glow Discharge Optical Emission Spectroscopy (GDâ€OES) Technique Tell Us about Perovskite Solar Cells?. Small Methods, 2022, 6, .	4.6	10
296	Fullereneâ€Based Inverted Perovskite Solar Cell: A Key to Achieve Promising, Stable, and Efficient Photovoltaics. Advanced Materials Interfaces, 2022, 9, .	1.9	12
297	Cation Engineering by Threeâ€Đimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	3
298	Interface Engineering via Amino Acid for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	7
299	Opportunities and Challenges for Perovskite Solar Cells Based on Vacuum Thermal Evaporation. Advanced Materials Technologies, 2023, 8, .	3.0	10
300	Pre-annealing treatment for high-efficiency perovskite solar cells via sequential deposition. Joule, 2022, 6, 2869-2884.	11.7	41
301	A Wide Bandgap Halide Perovskite Based Selfâ€Powered Blue Photodetector with 84.9% of External Quantum Efficiency. Advanced Materials, 2022, 34, .	11.1	6
302	A Thiourea Competitive Crystallization Strategy for FAâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	25
303	Effects of electron- and hole-current hysteresis on trap characterization in organo-inorganic halide perovskite. Journal of Energy Chemistry, 2023, 76, 414-420.	7.1	5
304	Enhancing the efficiency and stability of p-i-n triple cation perovskite solar cells using benzyl cyanoacetate passivation agent. Applied Surface Science, 2023, 611, 155640.	3.1	3
305	Design, synthesis, optical studies, and application of all-inorganic layered double perovskites as stabilizers in ambient air processed perovskite solar cells. Materials Research Bulletin, 2023, 159, 112088.	2.7	7
306	Mitigation of Openâ€Circuit Voltage Losses in Perovskite Solar Cells Processed over Micrometerâ€Sizedâ€Textured Si Substrates. Advanced Functional Materials, 2023, 33, .	7.8	5
307	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	4.2	53

#	Article	IF	CITATIONS
308	Additive Engineering with Triple Cations and Bifunctional Sulfamic Acid for Tin Perovskite Solar Cells Attaining a PCE Value of 12.5% without Hysteresis. ACS Energy Letters, 2022, 7, 4436-4442.	8.8	27
309	Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nature Reviews Materials, 2023, 8, 89-108.	23.3	125
310	Molecular Configuration Engineering in Holeâ€Transporting Materials toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	10
311	Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%. Advanced Materials, 2023, 35, .	11.1	58
312	Dimethylammonium Cation-Induced 1D/3D Heterostructure for Efficient and Stable Perovskite Solar Cells. Molecules, 2022, 27, 7566.	1.7	1
313	Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nature Communications, 2022, 13, .	5.8	25
314	Rationalization of passivation strategies toward high-performance perovskite solar cells. Chemical Society Reviews, 2023, 52, 163-195.	18.7	81
315	Molecularly understanding and regulating carrier injection behavior of ETL/perovskite towards high performance PeLEDs. Chemical Engineering Journal, 2023, 456, 141077.	6.6	5
316	Supramolecular control in hybrid perovskite photovoltaics. Photochemistry, 2022, , 346-370.	0.2	0
317	Orotic Acid as a Bifunctional Additive for Regulating Crystallization and Passivating Defects toward High-Performance Formamidinium–Cesium Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 53808-53818.	4.0	3
318	Multifunctional indaceno[1,2-b:5,6-b′]dithiophene chloride molecule for stable high-efficiency perovskite solar cells. Science China Chemistry, 2023, 66, 185-194.	4.2	4
319	Complex Additiveâ€Assisted Crystal Growth and Phase Stabilization of αâ€FAPbI ₃ Film for Highly Efficient, Air‣table Perovskite Photovoltaics. Advanced Materials Interfaces, 2023, 10, .	1.9	5
320	Additive-Assisted Electronic Defect Passivation in Lead-Free Tin Perovskite Solar Cells: Suppression of Sn ²⁺ Oxidation and I [–] Losses. ACS Applied Energy Materials, 2022, 5, 15038-15047.	2.5	2
321	Plantâ€Đerived <scp>l</scp> â€Theanine for Ultraviolet/Ozone Resistant Perovskite Photovoltaics. Advanced Energy Materials, 2023, 13, .	10.2	17
322	Crystallization Regulation and Dualâ€Defects Healing by Selfâ€Polymerization of Multifunctional Monomer Additives for Stable and Efficient CsPbBr ₃ Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	10
323	Natural Product Additive with Multifunctional Groups Enhancing the Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	1
324	Crystallization Tailoring for Efficient and Stable Perovskite Solar Cells Via Introduction of Propionic Acid in a Green Anti-Solvent. Journal of Electronic Materials, 0, , .	1.0	0
325	Numerical Study on the Effect of Dual Electron Transport Layer in Improving the Performance of Perovskite–Perovskite Tandem Solar Cells. Advanced Theory and Simulations, 2023, 6, .	1.3	6

#	Article	IF	Citations
326	Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Science China Chemistry, 2023, 66, 449-458.	4.2	9
327	Controlled Growth of Hybrid Halide Perovskites by Crown Ether Complexation for Perovskite Solar Cells. Helvetica Chimica Acta, 2023, 106, .	1.0	2
328	Naphthalene-imide Self-assembled Monolayers as a Surface Modification of ITO for Improved Thermal Stability of Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 667-677.	2.5	4
329	Seeding Agents in Metal Halide Perovskite Solar Cells: From Material to Mechanism. ChemSusChem, 2023, 16, .	3.6	6
330	Performance enhancement strategies of fibrous solar cells for wearable hybrid energy systems. Journal of Materials Chemistry A, 2023, 11, 3210-3244.	5.2	5
331	4-Carboxyphenyl isothiocyanate as a Lewis base additive for efficient and stable perovskite solar cells. Synthetic Metals, 2023, 293, 117276.	2.1	1
332	Rinsing Intermediate Phase Strategy for Modulating Perovskite Crystal Growth and Fabricating Highly Efficient and Stable Inverted Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 818-829.	4.0	2
333	Atomic layer deposition of SnO ₂ using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale, 2023, 15, 5044-5052.	2.8	14
334	Enhancing the stability and efficiency of MAPbI ₃ perovskite solar cells by theophylline-BF ₄ ^{â^'} alkaloid derivatives, a theoretical-experimental approach. RSC Advances, 2023, 13, 5070-5080.	1.7	3
336	Synergistic Defect Passivation by the Treatment of Ionic Liquids for Efficient and Stable Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	3
337	Copolymer Mediated Engineering of Halide Perovskites and Associated Devices: Current State and Future. , 2023, 2, .		3
338	Surfactant effects on electrochemically durable lead halide perovskite electro-catalysts. Dalton Transactions, 2023, 52, 5956-5968.	1.6	2
339	Hybrid 1D/3D-Structured Perovskite as a Highly Selective and Stable Sensor for NO2 Detection at Room Temperature. Molecules, 2023, 28, 2615.	1.7	4
340	Crystallinity Regulation and Defects Passivation for Efficient and Stable Perovskite Solar Cells Using Fully Conjugated Porous Aromatic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
341	MXenes for perovskite solar cells: Progress and prospects. Journal of Energy Chemistry, 2023, 81, 443-461.	7.1	3
342	Conformational control of morphology for perylene diimide dimer as electron transporting material at perovskite surface. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114705.	2.0	0
343	Metal Ion-Incorporated Lead-Free Perovskites toward Broadband Photodetectors. ACS Applied Electronic Materials, 2023, 5, 5291-5302.	2.0	5
344	Design and Device Numerical Analysis of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell. Crystals, 2023, 13, 267.	1.0	9

#	Article	IF	CITATIONS
345	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectronics: From Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
346	Bifunctional Cellulose Interlayer Enabled Efficient Perovskite Solar Cells with Simultaneously Enhanced Efficiency and Stability. Advanced Science, 2023, 10, .	5.6	13
347	Green-antisolvent-induced homogeneous phase distribution for efficient and stable MA-free 2D perovskite solar cells. Chemical Engineering Journal, 2023, 460, 141758.	6.6	7
348	Manipulating Crystallographic Orientation via Cross‣inkable Ligand for Efficient and Stable Perovskite Solar Cells. Small, 2023, 19, .	5.2	8
349	PbI ₆ Octahedra Stabilization Strategy Based on Ï€â€Ï€ Stacking Small Molecule Toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	24
350	Graphene‣ike Monoelemental 2D Materials for Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	13
351	Review of Defect Passivation for NiO _{<i>x</i>} -Based Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 2098-2121.	2.5	10
352	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
353	Liquidâ€State Dithiocarbonateâ€Based Polymeric Additives with Monodispersity Rendering Perovskite Solar Cells with Exceptionally High Certified Photocurrent and Fill Factor. Advanced Energy Materials, 2023, 13, .	10.2	13
354	3D Polydentate Complexing Agents for Passivating Defects and Modulating Crystallinity for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	13
355	Concurrent Top and Buried Surface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 2023, 33, .	7.8	11
356	Designing Heterovalent Substitution with Antioxidant Attribute for Highâ€Performance Snâ€Pb Alloyed Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	9
357	Radical reinforced defect passivation strategy for efficient and stable MAPbI3 perovskite solar cells fabricated in air using a green anti-solvent process. Chemical Engineering Journal, 2023, 462, 142328.	6.6	10
358	Synergistic Crystallization Modulation and Defects passivation via Additive Engineering Stabilize Perovskite Films for Efficient Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	15
359	A Polymer Defect Passivator for Efficient Holeâ€Conductorâ€Free Printable Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	14
360	Bifunctional Lewis Baseâ€Assisted Fabrication of Highâ€Quality CsPblBr ₂ Perovskite for Efficient and Stable Solar Cells. Energy Technology, 2023, 11, .	1.8	2
361	Upcycled synthesis and extraction of carbonâ€encapsulated iron carbide nanoparticles for gap Plasmon applications in perovskite solar cells. EcoMat, 0, , .	6.8	1
362	Tailored Cysteineâ€Derived Molecular Structures toward Efficient and Stable Inorganic Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	25

#	Article	IF	CITATIONS
363	Selfâ€Healing Perovskite Grain Boundaries in Efficient and Stable Solar Cells via Incorporation of 502 Adhesive. Solar Rrl, 2023, 7, .	3.1	2
364	Review on Chemical Stability of Lead Halide Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	29
365	Enhanced Performance and Stability of Fully Printed Perovskite Solar Cells and Modules by Ternary Additives under High Humidity. Energy & Fuels, 2023, 37, 6049-6061.	2.5	4
366	Crystallinity Regulation and Defects Passivation for Efficient and Stable Perovskite Solar Cells Using Fully Conjugated Porous Aromatic Frameworks. Angewandte Chemie, 0, , .	1.6	0
367	Enhanced performance in perovskites films by defect engineering and charge carrier transportation via pulsed laser doping of 2D MoS2. Sustainable Materials and Technologies, 2023, 36, e00622.	1.7	1
368	Effect of Residual Chloride in FAPbI ₃ Film on Photovoltaic Performance and Stability of Perovskite Solar Cell. ACS Energy Letters, 2023, 8, 2122-2129.	8.8	12
369	Improved Perovskite Solar Cell Performance by LiSCN Doping of CuSCN Hole-transport Layer. Chemistry Letters, 2023, 52, 393-396.	0.7	1
370	Cooperative multiple interactions of donor-ï€-acceptor dyes enhance the efficiency and stability of perovskite solar cells. Physical Chemistry Chemical Physics, 0, , .	1.3	0
371	"Metal Halide Perovskite Solar Modules: The Challenge of Upscaling and Commercializing This Technology― , 2023, , 297-321.		0
406	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21
416	Critical role of 1D materials in realizing efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 18592-18604.	5.2	4
442	Solution fabrication methods and optimization strategies of CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
445	Cross-linking strategies for efficient and highly stable perovskite solar cells. Journal of Materials Chemistry C, O, , .	2.7	0
455	Water-soluble fullerenol-mediated electron transfer in molecular systems toward enhanced solar hydrogen production. Chemical Communications, 0, , .	2.2	0
469	Metal Halide Perovskite Solar Modules: Manufacturing and Performance. , 2024, , 309-323.		0