Current developments in <i>Coot</i> for macromolecu Cryoâ€microscopy and Crystallographic Data

Protein Science 29, 1055-1064

DOI: 10.1002/pro.3791

Citation Report

#	Article	IF	CITATIONS
1	Current developments in <i>Coot</i> for macromolecular model building of Electron Cryoâ€microscopy and Crystallographic Data. Protein Science, 2020, 29, 1055-1064.	3.1	412
2	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
3	Single-particle cryo-EM at atomic resolution. Nature, 2020, 587, 152-156.	13.7	572
4	Elongational stalling activates mitoribosome-associated quality control. Science, 2020, 370, 1105-1110.	6.0	74
5	A tunable LIC1-adaptor interaction modulates dynein activity in a cargo-specific manner. Nature Communications, 2020, 11, 5695.	5.8	41
6	Three-Dimensional Structures of Carbohydrates and Where to Find Them. International Journal of Molecular Sciences, 2020, 21, 7702.	1.8	22
7	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	2.1	61
8	Structure of a human 48 <i>S</i> translational initiation complex. Science, 2020, 369, 1220-1227.	6.0	138
9	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	6.0	464
10	Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72.	2.9	39
11	The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. Journal of the American Chemical Society, 2020, 142, 21562-21574.	6.6	20
12	Structural basis for membrane insertion by the human ER membrane protein complex. Science, 2020, 369, 433-436.	6.0	127
13	The MiDAC histone deacetylase complex is essential for embryonic development and has a unique multivalent structure. Nature Communications, 2020, 11, 3252.	5.8	51
14	Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella. Microorganisms, 2020, 8, 943.	1.6	25
15	Comparison of CryoEM and X-ray structures of dimethylformamidase. Progress in Biophysics and Molecular Biology, 2021, 160, 66-78.	1.4	3
16	Covidâ€19.bioreproducibility.org: A web resource for <scp>SARS oV</scp> â€2â€related structural models. Protein Science, 2021, 30, 115-124.	3.1	15
17	Lysozyme conformational changes with ionic liquids: Spectroscopic, small angle x-ray scattering and crystallographic study. Journal of Colloid and Interface Science, 2021, 585, 433-443.	5.0	24
18	Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. Journal of Structural Biology, 2021, 213, 107674.	1.3	3

#	Article	IF	CITATIONS
19	A Thermophilic Bacterial Esterase for Scavenging Nerve Agents: A Kinetic, Biophysical and Structural Study. Molecules, 2021, 26, 657.	1.7	1
21	Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	144
22	Adaptive Cartesian and torsional restraints for interactive model rebuilding. Acta Crystallographica Section D: Structural Biology, 2021, 77, 438-446.	1.1	16
23	Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nature Communications, 2021, 12, 1564.	5.8	50
25	Functional elucidation of TfuA in peptide backbone thioamidation. Nature Chemical Biology, 2021, 17, 585-592.	3.9	21
26	Structure of human telomerase holoenzyme with bound telomeric DNA. Nature, 2021, 593, 449-453.	13.7	106
27	Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature, 2021, 594, 129-133.	13.7	73
28	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
31	Structural basis for conformational equilibrium of the catalytic spliceosome. Molecular Cell, 2021, 81, 1439-1452.e9.	4.5	26
32	Recognizing and validating ligands with CheckMyBlob. Nucleic Acids Research, 2021, 49, W86-W92.	6.5	9
35	Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nature Communications, 2021, 12, 3007.	5.8	22
36	Cryoâ€EM structure of metazoan TRAPPIII, the multiâ€subunit complex that activates the GTPase Rab1. EMBO Journal, 2021, 40, e107608.	3.5	26
38	Structural basis of omega-3 fatty acid transport across the blood–brain barrier. Nature, 2021, 595, 315-319.	13.7	61
39	Cryo-EM structure of the photosynthetic RC-LH1-PufX supercomplex at 2.8-Ã resolution. Science Advances, 2021, 7, .	4.7	29
42	Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Nature Communications, 2021, 12, 3433.	5.8	69
44	Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nature Communications, 2021, 12, 3577.	5.8	40
45	An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution. Journal of Molecular Biology, 2021, 433, 166954.	2.0	3
46	Conformational changes of loops highlight a potential binding site in <i>Rhodococcus equi</i> VapB. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 246-253.	0.4	3

#	Article	IF	CITATIONS
48	Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone. Cell Reports, 2021, 36, 109317.	2.9	20
49	Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. ELife, 2021, 10, .	2.8	36
50	Structural basis of early translocation events on the ribosome. Nature, 2021, 595, 741-745.	13.7	60
51	The X-ray structure of <scp>L</scp> -threonine dehydrogenase from the common hospital pathogen <i>Clostridium difficile</i> . Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 269-274.	0.4	1
52	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
53	Substrate binding modes of purine and pyrimidine nucleotides to human ecto-5′-nucleotidase (CD73) and inhibition by their bisphosphonic acid derivatives. Purinergic Signalling, 2021, 17, 693-704.	1.1	8
54	X-ray crystallography reveals molecular recognition mechanism for sugar binding in a melibiose transporter MelB. Communications Biology, 2021, 4, 931.	2.0	19
55	Structural basis of the complementary activity of two ketosynthases in aryl polyene biosynthesis. Scientific Reports, 2021, 11, 16340.	1.6	4
56	Structures of tmRNA and SmpB as they transit through the ribosome. Nature Communications, 2021, 12, 4909.	5.8	16
57	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	13.7	230
58	Mechanism of DNA Interaction and Translocation by the Replicase of a Circular Rep-Encoding Single-Stranded DNA Virus. MBio, 2021, 12, e0076321.	1.8	12
59	Multiple Occurrences of a 168-Nucleotide Deletion in SARS-CoV-2 ORF8, Unnoticed by Standard Amplicon Sequencing and Variant Calling Pipelines. Viruses, 2021, 13, 1870.	1.5	7
60	Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2021, 95, e0052921.	1.5	20
61	Nucleolar maturation of the human small subunit processome. Science, 2021, 373, eabj5338.	6.0	63
62	Bipartite binding and partial inhibition links DEPTOR and mTOR in a mutually antagonistic embrace. ELife, 2021, 10, .	2.8	5
64	The structure of an Hsp90-immunophilin complex reveals cochaperone recognition of the client maturation state. Molecular Cell, 2021, 81, 3496-3508.e5.	4.5	46
65	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	13.7	409
66	Binding of a pyrimidine RNA base-mimic to SARS-CoV-2 nonstructural protein 9. Journal of Biological Chemistry, 2021, 297, 101018.	1.6	10

#	Article	IF	CITATIONS
67	Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science, 2021, 373, 1142-1146.	6.0	91
68	Structure–function studies of the C3/C5 epimerases and C4 reductases of the Campylobacter jejuni capsular heptose modification pathways. Journal of Biological Chemistry, 2021, 296, 100352.	1.6	12
69	Mammalian expression of virus-like particles as a proof of principle for next generation polio vaccines. Npj Vaccines, 2021, 6, 5.	2.9	23
70	Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Reports, 2020, 33, 108529.	2.9	20
76	The RING domain of TRIM69 promotes higher-order assembly. Acta Crystallographica Section D: Structural Biology, 2020, 76, 954-961.	1.1	9
77	Crystallographic binding studies of rat peroxisomal multifunctional enzyme type 1 with 3-ketodecanoyl-CoA: capturing active and inactive states of its hydratase and dehydrogenase catalytic sites. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1256-1269.	1.1	4
78	Cryo‣M structure of native human uromodulin, a zona pellucida module polymer. EMBO Journal, 2020, 39, e106807.	3.5	31
79	Structure of the bacterial ribosome at 2 Ã resolution. ELife, 2020, 9, .	2.8	151
80	Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. ELife, 2020, 9, .	2.8	73
81	Cryo-Electron Microscopy Structure and Interactions of the Human Cytomegalovirus gHgLgO Trimer with Platelet-Derived Growth Factor Receptor Alpha. MBio, 2021, 12, e0262521.	1.8	2
82	Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCrJ, 2021, 8, 973-979.	1.0	25
83	Binding of a Pocket Factor to Hepatitis B Virus Capsids Changes the Rotamer Conformation of Phenylalanine 97. Viruses, 2021, 13, 2115.	1.5	4
85	Visualizing formation of the active site in the mitochondrial ribosome. ELife, 2021, 10, .	2.8	22
87	Crystal structure of yeast Gid10 in complex with Pro/N-degron. Biochemical and Biophysical Research Communications, 2021, 582, 86-92.	1.0	9
89	The structure of neurofibromin isoform 2 reveals different functional states. Nature, 2021, 599, 315-319.	13.7	22
91	Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. Journal of Medicinal Chemistry, 2021, 64, 17366-17383.	2.9	32
93	Structure of the TELO2-TTI1-TTI2 Complex and its Function in TOR Recruitment to the R2TP Chaperone. SSRN Electronic Journal, 0, , .	0.4	0
96	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	2.9	5

#	Article	IF	CITATIONS
98	Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Science Advances, 2021, 7, eabj5255.	4.7	20
100	Broadening access to cryoEM through centralized facilities. Trends in Biochemical Sciences, 2022, 47, 106-116.	3.7	9
101	The X-ray structure of juvenile hormone diol kinase from the silkworm <i>Bombyx mori</i> . Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 465-472.	0.4	0
102	Ten things I`hate' about refinement. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1497-1515.	1.1	4
103	Directed evolution of and structural insights into antibody-mediated disruption of a stable receptor-ligand complex. Nature Communications, 2021, 12, 7069.	5.8	6
104	Structure of CRL2Lrr1, the E3 ubiquitin ligase that promotes DNA replication termination in vertebrates. Nucleic Acids Research, 2021, 49, 13194-13206.	6.5	4
105	Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nature Communications, 2021, 12, 7001.	5.8	11
107	Group depositions to the Protein Data Bank need adequate presentation and different archiving protocol. Protein Science, 2022, 31, 784-786.	3.1	6
108	Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nature Communications, 2022, 13, 251.	5.8	14
109	Structural modeling of Omicron spike protein and its complex with human ACE-2 receptor: Molecular basis for high transmissibility of the virus. Biochemical and Biophysical Research Communications, 2022, 592, 51-53.	1.0	21
110	Crystal structure of a human MUC16 SEA domain reveals insight into the nature of the CA125 tumor marker. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1210-1218.	1.5	10
111	Cryo-EM structures of amyloid- \hat{l}^2 42 filaments from human brains. Science, 2022, 375, 167-172.	6.0	228
112	Pseudomonas aeruginosa C-Terminal Processing Protease CtpA Assembles into a Hexameric Structure That Requires Activation by a Spiral-Shaped Lipoprotein-Binding Partner. MBio, 2022, 13, e0368021.	1.8	7
114	An engineered protein-based submicromolar competitive inhibitor of the Staphylococcus aureus virulence factor aureolysin. Computational and Structural Biotechnology Journal, 2022, 20, 534-544.	1.9	5
115	Catalytically active holo <i>Homo sapiens</i> adenosine deaminase I adopts a closed conformation. Acta Crystallographica Section D: Structural Biology, 2022, 78, 91-103.	1.1	3
116	CryoEM analysis of small plant biocatalysts at sub-2â€Ã resolution. Acta Crystallographica Section D: Structural Biology, 2022, 78, 113-123.	1.1	1
117	Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell, 2022, 185, 361-378.e25.	13.5	87
118	Atomic structure of Lanreotide nanotubes revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18

		CITATION REPORT		
#	Article		IF	CITATIONS
119	Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nature Communications,	2022, 13, 628.	5.8	14
120	The regulatory domains of the lipid exporter ABCA1 form domain swapped latches. PLo e0262746.	DS ONE, 2022, 17,	1.1	4
123	Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 184-189.	2, 2022, 604,	13.7	109
124	Structure of pathological TDP-43 filaments from ALS with FTLD. Nature, 2022, 601, 13	9-143.	13.7	129
125	Cryo-EM structures of human RNA polymerase I. Nature Structural and Molecular Biolo 997-1008.	ygy, 2021, 28,	3.6	28
127	X-ray Crystal Structure Analysis of VHH–Protein Antigen Complexes. Methods in Mo 2022, 2446, 513-530.	lecular Biology,	0.4	4
128	Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. N Communications, 2022, 13, 850.	ature	5.8	13
129	A recurring packing contact in crystals of InIB pinpoints functional binding sites in the domain and the B repeat. Acta Crystallographica Section D: Structural Biology, 2022, 2	internalin 78, 310-320.	1.1	1
131	Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state. Communic 2022, 5, 257.	cations Biology,	2.0	4
132	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2	022, 605, 310-314.	13.7	88
133	Structure of the decoy module of human glycoprotein 2 and uromodulin and its intera bacterial adhesin FimH. Nature Structural and Molecular Biology, 2022, 29, 190-193.	ction with	3.6	17
135	Structural basis of human telomerase recruitment by TPP1-POT1. Science, 2022, 375,	1173-1176.	6.0	48
136	Crystal structure report of the ImmR transcriptional regulator DNA-binding domain of subtilis ICEBs1 transposon. Scientific Reports, 2022, 12, 5258.	the Bacillus	1.6	1
137	Assembly of recombinant tau into filaments identical to those of Alzheimer's disea traumatic encephalopathy. ELife, 2022, 11, .	se and chronic	2.8	121
138	Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. 2022, 82, 1199-1209.e6.	Molecular Cell,	4.5	29
139	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Revi Biochemistry, 2022, 91, 1-32.	ew of	5.0	45
140	Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature, 202	2, 604, 371-376.	13.7	25
141	Crystallographic snapshots of ternary complexes of thermophilic secondary alcohol de from <scp> <i>Thermoanaerobacter pseudoethanolicus</i> </scp> reveal the dynamic exchange and the proton relay network. Proteins: Structure, Function and Bioinformat	s of ligand	1.5	Ο

#	Article	IF	CITATIONS
142	Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nature Communications, 2022, 13, 1860.	5.8	25
143	Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science, 2022, 376, 163-169.	6.0	78
144	Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nature Structural and Molecular Biology, 2022, 29, 10-20.	3.6	21
145	Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX. IUCrJ, 2022, 9, 134-145.	1.0	2
146	A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. Journal of Cell Biology, 2022, 221, .	2.3	33
148	Structural basis for the helical filament formation of <i>Escherichia coli</i> glutamine synthetase. Protein Science, 2022, 31, e4304.	3.1	5
149	Elucidating Sequence and Structural Determinants of Carbohydrate Esterases for Complete Deacetylation of Substituted Xylans. Molecules, 2022, 27, 2655.	1.7	3
150	Mechanism of RNA polymerase I selection by transcription factor UAF. Science Advances, 2022, 8, eabn5725.	4.7	9
151	Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC–LH1 supercomplex. Nature Communications, 2022, 13, 1977.	5.8	22
152	Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of δ-cadinol. Microbial Cell Factories, 2022, 21, 64.	1.9	9
153	Substrate-Based Design of Cytosolic Nucleotidase IIIB Inhibitors and Structural Insights into Inhibition Mechanism. Pharmaceuticals, 2022, 15, 554.	1.7	1
155	Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nature Communications, 2022, 13, 2268.	5.8	69
157	Cryo-EM structure of an active central apparatus. Nature Structural and Molecular Biology, 2022, 29, 472-482.	3.6	31
158	Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nature Structural and Molecular Biology, 2022, 29, 483-492.	3.6	33
159	Structural insights into ClpP protease side exit poreâ€opening by a pH drop coupled with substrate hydrolysis. EMBO Journal, 2022, 41, e109755.	3.5	8
160	Fluorine-induced polarity increases inhibitory activity of BPTI towards chymotrypsin. RSC Chemical Biology, 2022, 3, 773-782.	2.0	8
161	E-site drug specificity of the human pathogen <i>Candida albicans</i> ribosome. Science Advances, 2022, 8, .	4.7	10
162	Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies. Cell Reports, 2022, 39, 110841.	2.9	17

#	Article	IF	CITATIONS
165	eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Nature, 2022, 607, 185-190.	13.7	25
167	Neutralizing Antibodies against Lassa Virus Lineage I. MBio, 2022, 13, .	1.8	12
168	Sequence-assignment validation in cryo-EM models with <i>checkMySequence</i> . Acta Crystallographica Section D: Structural Biology, 2022, 78, 806-816.	1.1	6
169	Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon. Science, 2022, 376, 1338-1343.	6.0	27
170	Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Frontiers in Pharmacology, 0, 13, .	1.6	5
171	A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel. Nature, 2022, 607, 374-380.	13.7	36
172	Multifaceted Computational Modeling in Glycoscience. Chemical Reviews, 2022, 122, 15914-15970.	23.0	30
173	Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nature Communications, 2022, 13, .	5.8	17
174	Lone Pair…π Contacts and Structure Signatures of r(UNCG) Tetraloops, Z-Turns, and Z-Steps: A WebFR3D Survey. Molecules, 2022, 27, 4365.	1.7	6
175	Insights into isostructural and non-isostructural crystals of esters of oleanolic acid and its 11-oxo derivatives. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 606-617.	0.5	1
176	Architecture of the human erythrocyte ankyrin-1 complex. Nature Structural and Molecular Biology, 2022, 29, 706-718.	3.6	33
177	2.2 à Cryo-EM Tetra-Protofilament Structure of the Hamster Prion 108–144 Fibril Reveals an Ordered Water Channel in the Center. Journal of the American Chemical Society, 2022, 144, 13888-13894.	6.6	7
178	Structures of lactaldehyde reductase, <scp>FucO</scp> , link enzyme activity to hydrogen bond networks and conformational dynamics. FEBS Journal, 0, , .	2.2	1
179	Cryo-EM structures of human hepatitis B and woodchuck hepatitis virus small spherical subviral particles. Science Advances, 2022, 8, .	4.7	12
180	Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. IScience, 2022, 25, 104914.	1.9	5
181	Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Communications Biology, 2022, 5, .	2.0	15
183	Cyclic nucleotide-induced helical structure activates a TIR immune effector. Nature, 2022, 608, 808-812.	13.7	59
184	Hisâ€163 is a stereospecific proton donor in the mechanism of Dâ€glucosaminateâ€6â€phosphate ammonia″y FEBS Letters, 0, , .	ase. 1.3	2

#	Article	IF	CITATIONS
185	Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science, 2022, 377, .	6.0	90
186	Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity, 2022, 55, 1710-1724.e8.	6.6	11
187	Selective TnsC recruitment enhances the fidelity of RNA-guided transposition. Nature, 2022, 609, 384-393.	13.7	34
189	Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nature Communications, 2022, 13, .	5.8	6
190	Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the HIV-1 envelope glycoprotein. Nature Communications, 2022, 13, .	5.8	5
193	Plant metacaspase: A case study of microcrystal structure determination and analysis. Methods in Enzymology, 2022, , .	0.4	0
194	Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling. Nature Communications, 2022, 13, .	5.8	8
196	Columnar structure of human telomeric chromatin. Nature, 2022, 609, 1048-1055.	13.7	27
197	Comparative structural analyses of the NHL domains from the human E3 ligase TRIM–NHL family. IUCrJ, 2022, 9, 720-727.	1.0	5
198	Structures of α-synuclein filaments from human brains with Lewy pathology. Nature, 2022, 610, 791-795.	13.7	124
199	Autoprocessing and oxyanion loop reorganization upon GC373 and nirmatrelvir binding of monomeric SARS-CoV-2 main protease catalytic domain. Communications Biology, 2022, 5, .	2.0	8
200	Architecture of the yeast Pol III pre-termination complex and pausing mechanism on poly(dT) termination signals. Cell Reports, 2022, 40, 111316.	2.9	11
201	Single-particle cryo-EM structures from iDPC–STEM at near-atomic resolution. Nature Methods, 2022,		
	19, 1126-1136.	9.0	26
202		9.0 0.6	26 2
	19, 1126-1136. Assembly of von Willebrand factor tubules with inÂvivo helical parameters requires A1 domain		
202	19, 1126-1136. Assembly of von Willebrand factor tubules with inÂvivo helical parameters requires A1 domain insertion. Blood, 2022, 140, 2835-2843.	0.6	2
202 205	 19, 1126-1136. Assembly of von Willebrand factor tubules with inÂvivo helical parameters requires A1 domain insertion. Blood, 2022, 140, 2835-2843. De novo design of immunoglobulin-like domains. Nature Communications, 2022, 13, . Production and Characterisation of Stabilised PV-3 Virus-like Particles Using Pichia pastoris. Viruses, 	0.6 5.8	2 21

#	Article	IF	Citations
209	Structural basis of actin filament assembly and aging. Nature, 2022, 611, 374-379.	13.7	36
210	Zymogenic latency in an â^1⁄4250-million-year-old astacin metallopeptidase. Acta Crystallographica Section D: Structural Biology, 2022, 78, 1347-1357.	1.1	2
212	Structural and functional analysis of EntV reveals a 12 amino acid fragment protective against fungal infections. Nature Communications, 2022, 13, .	5.8	13
213	The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction. Viruses, 2022, 14, 2206.	1.5	7
214	Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor. Journal of Molecular Biology, 2022, 434, 167876.	2.0	4
215	Structural and dynamic effects of paraoxon binding to human acetylcholinesterase by X-ray crystallography and inelastic neutron scattering. Structure, 2022, 30, 1538-1549.e3.	1.6	8
218	RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science, 2022, 378, 874-881.	6.0	32
220	Structural basis for sequence-independent substrate selection by eukaryotic wobble base tRNA deaminase ADAT2/3. Nature Communications, 2022, 13, .	5.8	11
221	Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host and Microbe, 2022, 30, 1759-1772.e12.	5.1	20
222	Complementary antibody lineages achieve neutralization breadth in an HIV-1 infected elite neutralizer. PLoS Pathogens, 2022, 18, e1010945.	2.1	0
223	A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen <i>Tannerella forsythia</i> . Chemical Science, 2023, 14, 869-888.	3.7	1
225	Water Network in the Binding Pocket of Fluorinated BPTI–Trypsin Complexes─Insights from Simulation and Experiment. Journal of Physical Chemistry B, 2022, 126, 9985-9999.	1.2	2
226	A conserved glutathione binding site in poliovirus is a target for antivirals and vaccine stabilisation. Communications Biology, 2022, 5, .	2.0	3
227	Structural basis of tankyrase activation by polymerization. Nature, 2022, 612, 162-169.	13.7	9
228	Integrating model simulation tools and <scp>cryoâ€electron</scp> microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	8
229	Structural basis of SNAPc-dependent snRNA transcription initiation by RNA polymerase II. Nature Structural and Molecular Biology, 2022, 29, 1159-1169.	3.6	5
233	Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster. ELife, 0, 12, .	2.8	11
234	Cryo-EM structures of amyloid-β filaments with the Arctic mutation (E22G) from human and mouse brains. Acta Neuropathologica, 2023, 145, 325-333.	3.9	24

ARTICLE IF CITATIONS # A rustâ€fungus Nudix hydrolase effector decaps <scp>mRNA</scp><i>inÂvitro</i> and interferes with 235 3.5 5 plant immune pathways. New Phytologist, 2023, 239, 222-239. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1. 1.6 Structure, 2023, 31, 309-317.e5. Structural basis of broad-spectrum l²-lactam resistance in Staphylococcus aureus. Nature, 2023, 613, 237 13.7 11 375-382. Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms. Cell 2.9 Reports, 2023, 42, 111900. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron 239 1.4 4 Microscopy. Micromachines, 2023, 14, 118. Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome. Nucleic Acids Research, 6.5 2023, 51, 1880-1894. Quinate-based ligands for irreversible inactivation of the bacterial virulence factor DHQ1 enzymeâ€"A 242 1.6 0 molecular insightâ€. Frontiers in Molecular Biosciences, 0, 10, . 8-Hydroxyquinolylnitrones as multifunctional ligands for the therapy of neurodegenerative diseases. 5.7 Acta Pharmaceutica Sinica B, 2023, 13, 2152-2175. Structural insights into latency of the metallopeptidase ulilysin (lysargiNase) and its unexpected 244 inhibition by a sulfonyl–fluoride inhibitor of serine peptidases. Dalton Transactions, 2023, 52, 0 1.6 3610-3622. Cooperative Substrate Binding Controls Catalysis in Bacterial Cytochrome P450terp (CYP108A1). 245 6.6 Journal of the American Chemical Society, 2023, 145, 4254-4265. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature, 2023, 617, 246 13.714 200-207. Inside-out: Antibody-binding reveals potential folding hinge-points within the SARS-CoV-2 replication 1.1 co-factor nsp9. PLoS ONE, 2023, 18, e0283194. Rapid discovery and crystallography study of highly potent and selective butylcholinesterase inhibitors based on oxime-containing libraries and conformational restriction strategies. Bioorganic 248 2.0 1 Chemistry, 2023, 134, 106465. $Oxazolo[5,4-f] quinoxaline-type \ selective \ inhibitors \ of \ glycogen \ synthase \ kinase-3 \hat{l} \pm \ (GSK-3 \hat{l} \pm): \ Development \ and \ impact \ on \ temozolomide \ treatment \ of \ glioblastoma \ cells. Bioorganic \ Chemistry, \ 2023, \ 134, \ 106456.$ 249 Cryo-EM reveals the structure and dynamics of a 723-residue malate synthase G. Journal of Structural 250 0 1.3 Biology, 2023, 215, 107958. Crystallographic Characterization of Sodium Ions in a Bacterial Leucine/Sodium Symporter. Crystals, 2023, 13, 183. Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from 252 9 1.6 Rhodobacter capsulatus. Structure, 2023, 31, 318-328.e3. Structure of the Saccharolobus solfataricus type III-D CRISPR effector. Current Research in 1.1 Structural Biology, 2023, 5, 100098.

#	Article	IF	CITATIONS
256	Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nature Communications, 2023, 14, .	5.8	13
257	Structural and biophysical characterization of the Borna disease virus 1 phosphoprotein. Acta Crystallographica Section F, Structural Biology Communications, 2023, 79, 51-60.	0.4	0
258	New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Acta Neuropathologica, 2023, 145, 561-572.	3.9	8
259	Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallographica Section D: Structural Biology, 2023, 79, 224-233.	1.1	1
261	Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps. Nature Communications, 2023, 14, .	5.8	2
262	Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. Journal of Clinical Investigation, 2023, 133, .	3.9	4
263	Genome-encoded ABCF factors implicated in intrinsic antibiotic resistance in Gram-positive bacteria: VmlR2, Ard1 and CplR. Nucleic Acids Research, 2023, 51, 4536-4554.	6.5	9
264	Cryo-EM structures of human Cx36/CJD2 neuronal gap junction channel. Nature Communications, 2023, 14, .	5.8	11
265	Structural basis for guide RNA selection by the RESC1–RESC2 complex. Nucleic Acids Research, 2023, 51, 4602-4612.	6.5	3
266	Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids - Design, synthesis, and biological evaluation. European Journal of Medicinal Chemistry, 2023, 252, 115301.	2.6	4
267	Modulation of Allosteric Control and Evolution of Hemoglobin. Biomolecules, 2023, 13, 572.	1.8	1
268	Structural basis for enzymatic terminal C–H bond functionalization of alkanes. Nature Structural and Molecular Biology, 2023, 30, 521-526.	3.6	5
271	Extended DNA threading through a dual-engine motor module of the activating signal co-integrator 1 complex. Nature Communications, 2023, 14, .	5.8	0
272	Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science, 2023, 380, 301-308.	6.0	19
273	<i>FLEXR</i> : automated multi-conformer model building using electron-density map sampling. Acta Crystallographica Section D: Structural Biology, 2023, 79, 354-367.	1.1	2
274	Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chemical Reviews, 2023, 123, 6612-6667.	23.0	22
276	The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains. PLoS Biology, 2023, 21, e3001995.	2.6	5
277	CryoFold 2.0: Cryo-EM Structure Determination with MELD. Journal of Physical Chemistry A, 2023, 127, 3906-3913.	1.1	5

	CITAT	ION REPORT	
#	Article	IF	CITATIONS
278	Structural Analysis of Bacillus subtilis Sigma Factors. Microorganisms, 2023, 11, 1077.	1.6	3
341	Cryo-Electron Microscopy and Cryo-Electron Tomography of Viruses. Springer Series in Biophysics, 2023, , 283-306.	0.4	0