Recent progress of surface coating on cathode materials lithium-ion batteries

Journal of Energy Chemistry 43, 220-235 DOI: 10.1016/j.jechem.2019.08.022

Citation Report

#	Article	IF	CITATIONS
1	Reduced Lithium/Nickel Disorder Degree of Sodiumâ€Đoped Lithiumâ€Rich Layered Oxides for Cathode Materials: Experiments and Calculations. ChemElectroChem, 2020, 7, 246-251.	1.7	17
2	Improved electrochemical behavior of Li rich cathode Li1.4Mn0.61Ni0.18Co0.18Al0.03O2.4 via Y2O3 surface coating. Materials Characterization, 2020, 169, 110602.	1.9	9
3	Structural and Electrochemical Properties of Li1.2Ni0.16Mn0.54Co0.08O2 - Al2O3 Composite Prepared by Atomic Layer Deposition as the Cathode Material for LIBs. International Journal of Electrochemical Science, 2020, 15, 10759-10771.	0.5	7
4	Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2. Journal of Materials Science: Materials in Electronics, 2020, 31, 19475-19486.	1.1	5
5	Improving Electrochemical Cycling Stability of Niâ€rich LiNi _{0.91} Co _{0.06} Al _{0.03} O ₂ Cathode Materials through H ₃ BO ₃ and Y ₂ O ₃ Composite Coating. ChemElectroChem, 2020, 7, 4730-4736.	1.7	6
6	Efficient nitrate and oxygen electroreduction over pyrolysis-free mesoporous covalent Co-salophen coordination frameworks on carbon nanotubes. Electrochimica Acta, 2020, 363, 137280.	2.6	15
7	Understanding the Design Principles of Advanced Aqueous Zincâ€Ion Battery Cathodes: From Transport Kinetics to Structural Engineering, and Future Perspectives. Advanced Energy Materials, 2020, 10, 2002354.	10.2	193
8	Surface Modification Strategies for Improving the Cycling Performance of Niâ€Rich Cathode Materials. European Journal of Inorganic Chemistry, 2020, 2020, 3117-3130.	1.0	46
9	Battery prelithiation enabled by lithium fixation on cathode. Journal of Power Sources, 2020, 480, 229109.	4.0	22
10	Improved sodium storage properties of Zr-doped Na3V2(PO4)2F3/C as cathode material for sodium ion batteries. Ceramics International, 2020, 46, 28490-28498.	2.3	28
11	Recent Developments of Nanomaterials and Nanostructures for Highâ€Rate Lithium Ion Batteries. ChemSusChem, 2020, 13, 5361-5407.	3.6	46
12	Enhanced cycling stability of nickel-rich layered oxide by tantalum doping. Journal of Power Sources, 2020, 473, 228597.	4.0	71
13	Synthesis and Mechanism of High Structural Stability of Nickel-Rich Cathode Materials by Adjusting Li-Excess. ACS Applied Materials & Interfaces, 2020, 12, 40393-40403.	4.0	93
14	Performace of a Kind of Organic Emulsion Coated Phosphogypsum Particles. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 872-878.	0.4	3
15	Coatingâ€Mediated Nanomechanical Behaviors of CuO Electrodes in Li―and Naâ€Ion Batteries. Advanced Materials Interfaces, 2020, 7, 2001161.	1.9	8
16	Degradation mechanism and performance enhancement strategies of LiNixCoyAl1â^'xâ^'yO2 (x ≥ 0.8 cathodes for rechargeable lithium-ion batteries: a review. Ionics, 2020, 26, 3199-3214.) _{1.2}	11
17	Three-Dimensional Walnut-Like, Hierarchically Nanoporous Carbon Microspheres: One-Pot Synthesis, Activation, and Supercapacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8024-8036.	3.2	32
18	Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 841, 155670.	2.8	51

#	Article	IF	CITATIONS
19	Integration of CoFe Alloys and Fe/Fe ₃ C Nanoparticles into N-Doped Carbon Nanosheets as Dual Catalytic Active Sites To Promote the Oxygen Electrocatalysis of Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 9009-9016.	3.2	30
20	Spray-drying synthesis of LiMnO2@VXC-72R composite microspheres with excellent electrochemical performance. Ceramics International, 2020, 46, 21805-21809.	2.3	28
21	Comparison of fluorine sources on the electrochemical property of Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ cathode materials. Functional Materials Letters, 2020, 13, 2050027.	0.7	7
22	Synergistic effect of Li2MgTi3O8 coating layer with dual ionic surface doping to improve electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Ionics, 2020, 26, 4937-4948.	1.2	7
23	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745.	5.2	101
24	Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material via Li2.09W0.9Nb0.1O4 Li-ion conductive coating layer. Journal of Solid State Electrochemistry, 2020, 24, 2301-2313.	1.2	10
25	Garnet–PVDF composite film modified lithium manganese oxide cathode and sulfurized carbon anode from polyacrylonitrile for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14043-14053.	5.2	12
26	Pyrazine-Linked 2D Covalent Organic Frameworks as Coating Material for High-Nickel Layered Oxide Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10597-10606.	4.0	35
27	Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review. Frontiers in Chemistry, 2020, 8, 141.	1.8	60
28	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49, 1569-1614.	18.7	1,326
29	Enhanced Electrochemical Performance of Ni-Rich Cathode Materials with Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 5819-5830.	3.2	118
30	Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating. Journal of Energy Chemistry, 2020, 51, 39-47.	7.1	48
31	High energy storage of Li-ions on keggin-type polyoxometalate as electrodes for rechargeable lithium batteries. Journal of Physics and Chemistry of Solids, 2020, 142, 109468.	1.9	14
32	Mg-doped LiMnPO ₄ /C cathode materials for enhanced lithium storage performance.	15	11
	Materials Technology, 2021, 36, 153-158.	1.0	
33	Materials Technology, 2021, 36, 153-158. Growth mechanisms for spherical Ni0.815Co0.15Al0.035(OH)2 precursors prepared via the ammonia complexation precipitation method. Journal of Energy Chemistry, 2021, 53, 379-386.	7.1	16
33 34	Materials Technology, 2021, 36, 153-158. Growth mechanisms for spherical Ni0.815Co0.15Al0.035(OH)2 precursors prepared via the ammonia complexation precipitation method. Journal of Energy Chemistry, 2021, 53, 379-386. NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes. Journal of Alloys and Compounds, 2021, 854, 157264.	7.1 2.8	16 37
33 34 35	Materials Technology, 2021, 36, 153-158. Growth mechanisms for spherical Ni0.815Co0.15Al0.035(OH)2 precursors prepared via the ammonia complexation precipitation method. Journal of Energy Chemistry, 2021, 53, 379-386. NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes. Journal of Alloys and Compounds, 2021, 854, 157264. Magnetron sputtering deposition of silicon nitride on polyimide separator for high-temperature lithium-ion batteries. Journal of Energy Chemistry, 2021, 56, 1-10.	7.1 2.8 7.1	16 37 42

#	Article	IF	CITATIONS
37	Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chinese Chemical Letters, 2021, 32, 973-982.	4.8	55
38	Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. Journal of Energy Chemistry, 2021, 56, 223-237.	7.1	155
39	Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceramics International, 2021, 47, 1758-1765.	2.3	50
40	Mn3O4 nanoparticles anchored on carbon nanotubes as anode material with enhanced lithium storage. Journal of Alloys and Compounds, 2021, 854, 157179.	2.8	45
41	Nanostructured Mn-based oxides as high-performance cathodes for next generation Li-ion batteries. Journal of Energy Chemistry, 2021, 59, 547-571.	7.1	38
42	Li2O-2B2O3 coating decorated Li4Ti5O12 anode for enhanced rate capability and cycling stability in lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 585, 574-582.	5.0	17
43	Carbon coating of electrode materials for lithium-ion batteries. Surface Innovations, 2021, 9, 92-110.	1.4	35
44	LiFePO4/C nanoparticle with fast ion/electron transfer capability obtained by adjusting pH values. Journal of Materials Science, 2021, 56, 640-648.	1.7	10
45	Monoclinic αâ€NaVOPO 4 as cathode materials for sodiumâ€ions batteries: Experimental and DFT investigation. International Journal of Energy Research, 2021, 45, 1703-1719.	2.2	11
46	Research Progress of Cathode Materials for Lithium-ion Batteries. E3S Web of Conferences, 2021, 233, 01020.	0.2	6
47	Synergistic Superiority of a Silver arbon Blackâ€Filled Conductive Polymer Composite for Temperature–Pressure Sensing. Advanced Engineering Materials, 2021, 23, 2001392.	1.6	2
48	The role of metal substitutions in the development of Li batteries, part I: cathodes. Materials Advances, 2021, 2, 3474-3518.	2.6	22
49	Recent developments in natural mineral-based separators for lithium-ion batteries. RSC Advances, 2021, 11, 16633-16644.	1.7	15
50	Synthesis and electrochemical properties of Zn ₂ Ti ₃ O ₈ /g-C ₃ N ₄ composites as anode materials for Li-ion batteries. Dalton Transactions, 2021, 50, 11137-11146.	1.6	4
51	Unoccupied 3d orbitals make Li-unalloyable transition metals usable as anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 17353-17365.	5.2	4
52	Understanding the Ni-rich layered structure materials for high-energy density lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2607-2622.	3.2	19
53	An overview of modification strategies to improve LiNi0·8Co0·1Mn0·1O2 (NCM811) cathode performance for automotive lithium-ion batteries. ETransportation, 2021, 7, 100105.	6.8	75
54	Reversible potassium storage in ultrafine CF : A superior cathode material for potassium batteries and its mechanism. Journal of Energy Chemistry, 2021, 53, 347-353.	7.1	16

#	Article	IF	CITATIONS
55	Artificial Cathode-Electrolyte Interphase towards High-Performance Lithium-Ion Batteries: A Case Study of β-AgVO3. Nanomaterials, 2021, 11, 569.	1.9	12
56	Electrochemical performance and structural stability of layered Li–Ni–Co–Mn oxide cathode materials in different voltage ranges. Ceramics International, 2021, 47, 8490-8497.	2.3	3
57	Safe and efficient phosphonium ionic liquid based electrolyte for high-potential LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathodes for Li-ion batteries. Electrochimica Acta, 2021, 371, 137841.	2.6	10
58	Enhanced electrochemical performance of Ni-rich cathode material by N-doped LiAlO2 surface modification for lithium-ion batteries. Electrochimica Acta, 2021, 372, 137882.	2.6	18
59	Surface modification of cathode materials for energy storage devices: A review. Surface and Coatings Technology, 2021, 412, 127009.	2.2	28
60	N-Doped Carbon-Wrapped Cobalt–Manganese Oxide Nanosheets Loaded into a Three-Dimensional Graphene Nanonetwork as a Free-Standing Anode for Lithium-Ion Storage. ACS Applied Nano Materials, 2021, 4, 3619-3630.	2.4	12
61	Construction of ethylene glycol organic sulfur ion battery system based on sulfur ions absorption/desorption. Materials Letters, 2021, 288, 129356.	1.3	2
62	Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti Dual Modification. ACS Applied Materials & Interfaces, 2021, 13, 17707-17716.	4.0	64
63	Boron Doping and LiBO ₂ Coating Synergistically Enhance the High-Rate Performance of LiNi _{0.6} Co _{0.1} Mn _{0.3} O ₂ Cathode Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 5322-5333.	3.2	25
64	Role of Al on the electrochemical performances of quaternary nickel-rich cathode LiNi0.8Co0.1Mn0.1â^'Al O2 (0Ââ‰ÂxÂâ‰Â0.06) for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 888, 115200.	1.9	15
65	Fabrication and electrochemical characterization of a novel spinel Li2Ni0.5Mn1.5O4 cathode coated with conductive glass for Lithium-ions batteries. Advanced Powder Technology, 2021, 32, 1802-1809.	2.0	3
66	Molybdenum-doped lithium vanadium phosphate (Li3MoxV2â^'x(PO4)3/C) as cathode material in lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 16669-16681.	1.1	1
67	A comprehensive review on recent advances of polyanionic cathode materials in Naâ€ion batteries for cost effective energy storage applications. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e400.	1.9	20
68	Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2. Ceramics International, 2021, 47, 12981-12991.	2.3	9
69	Recent trends in batteries and lubricants for electric vehicles. Advances in Mechanical Engineering, 2021, 13, 168781402110217.	0.8	16
70	How Do Polymer Binders Assist Transition Metal Oxide Cathodes to Address the Challenge of High-Voltage Lithium Battery Applications?. Electrochemical Energy Reviews, 2021, 4, 545-565.	13.1	53
71	The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review. Ionics, 2021, 27, 3207-3217.	1.2	12
72	Towards Superior Electrochemical Property of Nickel-High Cathode Materials with a Multi-Functional Modification Strategy. Journal of the Electrochemical Society, 2021, 168, 050518.	1.3	0

#	Article	IF	CITATIONS
73	The Latest Trends in Electric Vehicles Batteries. Molecules, 2021, 26, 3188.	1.7	39
74	Influence of synergistic effect of LiNi0.8Co0.15Al0.05O2@Cr2O5 composite on the electrochemical properties. Chinese Journal of Chemical Engineering, 2021, 33, 327-336.	1.7	2
75	Effect of Amorphous LiPON Coating on Electrochemical Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} Co ₂ (NMC811) in All Solid-State Batteries. Journal of the Electrochemical Society, 2021, 168, 060537.	1.3	18
76	Phase Compatible NiFe ₂ O ₄ Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS Nano, 2021, 15, 11607-11618.	7.3	95
77	Valuation of Surface Coatings in High-Energy Density Lithium-ion Battery Cathode Materials. Energy Storage Materials, 2021, 38, 309-328.	9.5	175
78	LiNi0.5Co0.2Mn0.3O2/graphite batteries storing at high temperature: Capacity fading and raveling of aging mechanisms. Journal of Power Sources, 2021, 496, 229858.	4.0	16
79	Bifunctional Sulfonated Graphene-Modified LiNi _{0.5} Mn _{1.5} O ₄ for Long-Life and High-Energy-Density Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5963-5972.	2.5	9
80	A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 2021, 46, 155-182.	8.3	132
81	Boosting cycle stability of NCM811 cathode material via 2D Mg-Al-LDO nanosheet coating for lithium-ion battery. Journal of Alloys and Compounds, 2021, 867, 159079.	2.8	17
82	A Comparative Review of Metal Oxide Surface Coatings on Three Families of Cathode Materials for Lithium Ion Batteries. Coatings, 2021, 11, 744.	1.2	27
83	Binding mechanisms of PVDF in lithium ion batteries. Applied Surface Science, 2021, 553, 149564.	3.1	48
84	A journey through layered cathode materials for lithium ion cells – From lithium cobalt oxide to lithium-rich transition metal oxides. Journal of Alloys and Compounds, 2021, 869, 159239.	2.8	67
85	Fast Charging of Lithiumâ€lon Batteries: A Review of Materials Aspects. Advanced Energy Materials, 2021, 11, 2101126.	10.2	407
86	Doubleâ€effect of highly concentrated acetonitrileâ€based electrolyte in organic lithiumâ€ion battery. EcoMat, 2021, 3, .	6.8	22
87	Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. Small, 2021, 17, e2102088.	5.2	26
88	Improving structural and thermal stability of LiNi0.8Co0.15Al0.05O2 by a fast-ionic-conductive LiAlSiO4 surface coating for Li-ion batteries. Electrochimica Acta, 2021, 387, 138620.	2.6	19
89	High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus. ACS Applied Energy Materials, 2021, 4, 7900-7910.	2.5	19
90	Improving the electrochemical properties of lithium-ion secondary battery by the in-situ synthesis of LiCo0.91O1.84 on positive electrode. Journal of Electroanalytical Chemistry, 2021, 895, 115486.	1.9	0

#	Article	IF	CITATIONS
91	Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries. Journal of Energy Chemistry, 2021, 59, 343-363.	7.1	52
92	Highly Efficient Lithium Extraction from Brine with a High Sodium Content by Adsorption-Coupled Electrochemical Technology. ACS Sustainable Chemistry and Engineering, 2021, 9, 11022-11031.	3.2	38
93	Mechanically and structurally stable Sb2Se3/carbon nanocomposite as anode for the lithium-ion batteries. Journal of Alloys and Compounds, 2021, 874, 159859.	2.8	12
94	Enhanced cycling performance of Li ion batteries based on Ni-rich cathode materials with LaPO4/Li3PO4 co-modification. Ceramics International, 2021, 47, 34585-34594.	2.3	8
95	Aluminum Fluoride Coating on Layered Vanadium-Based Cathode Materials with Enhanced K Storage Performance in the High Potential Range. Journal of Physical Chemistry C, 2021, 125, 21359-21369.	1.5	4
96	Effective Li ₃ AlF ₆ Surface Coating for High-Voltage Lithium-Ion Battery Operation. ACS Applied Energy Materials, 2021, 4, 9866-9870.	2.5	16
97	Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries. Scientific Reports, 2021, 11, 18590.	1.6	23
98	MOF-derived MnO/C composites as high-performance lithium-ion battery anodes. Synthetic Metals, 2021, 280, 116872.	2.1	17
100	Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials. Electrochimica Acta, 2021, 394, 139136.	2.6	11
101	Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. Journal of Energy Storage, 2021, 43, 103112.	3.9	32
102	A novel SnS2 nanomaterial based on nitrogen-doped cubic-like carbon skeleton with excellent lithium storage. Journal of Alloys and Compounds, 2021, 883, 160834.	2.8	17
103	Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+ and Ti4+ co-doping for lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 853-862.	5.0	68
104	Three-dimensional porous carbon decorated with FeS2 nanospheres as electrode material for electrochemical energy storage. Applied Surface Science, 2021, 565, 150538.	3.1	23
105	Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 885, 161005.	2.8	16
106	Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks. Resources Policy, 2021, 74, 102370.	4.2	10
107	Conductive carbon networks in surface coating of GeP rods toward high-performance lithium/sodium-ion battery anode. Surfaces and Interfaces, 2021, 27, 101461.	1.5	5
108	Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material. Journal of Alloys and Compounds, 2021, 885, 160946.	2.8	8
109	Hierarchical MnV2O4 double-layer hollow sandwich nanosheets confined by N-doped carbon layer as anode for high performance lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 538-545.	5.0	8

#	Article	IF	CITATIONS
110	Cathode materials for aqueous zinc-ion batteries: A mini review. Journal of Colloid and Interface Science, 2022, 605, 828-850.	5.0	92
111	Flexible SnTe/carbon nanofiber membrane as a free-standing anode for high-performance lithium-ion and sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 605, 231-240.	5.0	32
112	High-Voltage "Single-Crystal―Cathode Materials for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 1918-1932.	2.5	93
113	Chemical bath synthesis of NiCo2O4 nanoflowers with nanorods like thin film for flexible supercapacitor application-effect of urea concentration on structural conversion. Electrochimica Acta, 2020, 350, 136413.	2.6	32
114	One-time sintering process to modify xLi2MnO3 (-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. Journal of Energy Chemistry, 2020, 50, 271-279.	7.1	43
115	A multifunctional electrolyte with highly-coordinated solvation structure-in-nonsolvent for rechargeable lithium batteries. Journal of Energy Chemistry, 2020, 51, 362-371.	7.1	18
116	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano, 2021, 15, 47-80.	7.3	130
117	Review—Key Strategies to Increase the Rate Capacity of Cathode Materials for High Power Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 140528.	1.3	14
118	Failure mechanism of lithium metal anode under practical conditions. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228501.	0.2	8
119	Tuning the electrochemical properties by anionic substitution of Li-rich antiperovskite (Li ₂ Fe)S _{1â^`<i>x</i>} Se _{<i>x</i>} O cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23095-23105.	5.2	7
120	Investigation and Optimization of Excess Lithium in Cathodic Active Material with NMC Composition in Non-Stoichiometric Mode on Lithium-Ion Battery Performance: An Experimental Study. SSRN Electronic Journal, 0, , .	0.4	0
121	In situ redox reaction induced firmly anchoring of Na3V2(PO4)2F3 on reduced graphene oxide & carbon nanosheets as cathodes for high stable sodium-ion batteries. Journal of Power Sources, 2021, 516, 230515.	4.0	21
122	Understanding the combined effect of Ca doping and phosphate coating on Ni-rich LiNi0.91Co0.06Mn0.03O2 cathode material for Li-ion batteries. Electrochimica Acta, 2021, 399, 139417.	2.6	15
123	Achieving superior high-rate cyclability of LiNi0.5Mn1.5O4 cathode material via constructing stable CuO modification interface. Journal of Electroanalytical Chemistry, 2021, 903, 115825.	1.9	6
124	Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes. Journal of Central South University, 2020, 27, 3625-3636.	1.2	26
125	Novel graphitic sheets with ripple-like folds as an NCA cathode coating layer for high-energy-density lithium-ion batteries. Nanotechnology, 2021, 32, 08LT01.	1.3	6
126	From coating to doping: Effect of post-annealing temperature on the alumina coating of LiNi0.5Mn1.5O4 cathode material. Journal of Solid State Chemistry, 2022, 306, 122765.	1.4	11
127	Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive ⁹⁰ Sr. Inorganic Chemistry Frontiers, 2022, 9, 468-477.	3.0	12

#	Article	IF	CITATIONS
128	Recent Advances in Enhanced Performance of Niâ€Rich Cathode Materials for Liâ€Ion Batteries: A Review. Energy Technology, 2022, 10, .	1.8	17
129	AlF ₃ -Al ₂ O ₃ ALD Thin-Film-Coated Li _{1.2} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ Particles for Lithium-Ion Batteries: Long-Term Protection. ACS Applied Materials & Interfaces, 2022, 14, 3991-4003.	4.0	13
130	Precise surface control of cathode materials for stable lithium-ion batteries. Chemical Communications, 2022, 58, 1454-1467.	2.2	6
131	Atomic layer deposition of lithium zirconium oxides for the improved performance of lithium-ion batteries. Dalton Transactions, 2022, 51, 2737-2749.	1.6	12
132	Construction of graphitic carbon quantum dots-modified yolk–shell Co3O4 microsphere for high-performance lithium storage. Journal of Materials Science, 2022, 57, 3586-3600.	1.7	2
133	Experimental study and optimization of excess lithium in cathodic active materials with Li x (Ni 0. 3 Mn) Tj ETQq1	1_0_78431 2.2	l4rgBT /Ove
134	Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. Journal of Energy Chemistry, 2022, 69, 244-252.	7.1	27
135	Biomass-derived nitrogen-doped carbon on LiFePO4 material for energy storage applications. Journal of Alloys and Compounds, 2022, 902, 163720.	2.8	14
136	Prussian Blue Analogues for Sodiumâ€ion Batteries: Past, Present, and Future. Advanced Materials, 2022, 34, e2108384.	11.1	252
137	Ultrahigh Active Material Content and Highly Stable Ni-Rich Cathode Leveraged by Oxidative Chemical Vapor Deposition. SSRN Electronic Journal, 0, , .	0.4	0
138	Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi _{0.91} Co _{0.06} Al _{0.03} O ₂ @Ca ₃ (PO _{4Cathode Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, , 769.}	ox).œub>2	2⊲⁄sub>
139	Surface Modification Techniques for Improving the Material Performance. Advances in Chemical and Materials Engineering Book Series, 2022, , 1-19.	0.2	Ο
140	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. SSRN Electronic Journal, 0, , .	0.4	0
141	Cobaltâ€Free Cathode Materials: Families and their Prospects. Advanced Energy Materials, 2022, 12, .	10.2	77
142	Silkworm Protein-Derived Nitrogen-Doped Carbon-Coated Li[Ni0.8Co0.15Al0.05]O2 for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 1166.	1.9	4
143	Impact of coatings on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials: A focused review. Ceramics International, 2022, 48, 7374-7392.	2.3	16
144	Review—Surface Coatings for Cathodes in Lithium Ion Batteries: From Crystal Structures to Electrochemical Performance. Journal of the Electrochemical Society, 2022, 169, 043504.	1.3	44
145	Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition. Energy Storage Materials, 2022, 48, 1-11.	9.5	23

#	Article	IF	CITATIONS
146	Mitigating irreversible capacity loss for higher-energy lithium batteries. Energy Storage Materials, 2022, 48, 44-73.	9.5	25
147	Controllably regulating ion transport in lithium metal batteries via pore effect of metal–organic framework-based separators. Applied Surface Science, 2022, 589, 152885.	3.1	20
148	Enhanced Electrochemical Performance of MOF-Derived Nitrogen-Enriched Porous Carbon Coated with Ag as the Cathode for Lithium-Sulfur Batteries. Nano, 2021, 16, .	0.5	0
149	Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaClâ^'CaCl2 melts. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 473-478.	2.4	4
150	Application and Properties of Organic Emulsion Coated Phosphogypsum in Aluminous Rock Based Mineral Polymer Composite. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 830-838.	0.4	1
151	Improved Electrochemical Performance of W ⁶⁺ -Doped Li-Rich Cathode Li _{1.17} Mn _{0.51} Ni _{0.15} Co _{0.15} Al _{0.025} O _{2Combined Results from the Reduced Residual Li₂MnO₃ Phase and Promoted Li Intercalation, ACS Sustainable Chemistry and Engineering, 2021, 9, 17221-17231.}	այչ։	3
152	Morphology and Functionalization of Metal Foils and Other Surfaces for Electrochemical Applications. Advances in Chemical and Materials Engineering Book Series, 2022, , 359-389.	0.2	0
153	The CeF4-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance for 5ÂV lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2022, 33, 11712-11724.	1.1	3
154	Synergistic effect of Al–B co-doping to boost the LiNi0.9Co0.05Mn0.05O2 properties in lithium-ion batteries. Ceramics International, 2022, 48, 20605-20611.	2.3	6
155	Highly conductive ZrO2–x spheres as bifunctional framework stabilizers and gas evolution relievers in nickel-rich layered cathodes for lithium-ion batteries. Composites Part B: Engineering, 2022, 238, 109911.	5.9	11
156	Perspective—Potential Benefit of Li-Rich Cathode Materials: Reduction of Co and Ni Content Rather than Achievement of Ultra-High Capacities. Journal of the Electrochemical Society, 2022, 169, 050505.	1.3	1
157	Cathode materials of metal-ion batteries for low-temperature applications. Journal of Alloys and Compounds, 2022, 912, 165142.	2.8	14
158	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. Energy Storage Materials, 2022, 49, 555-563.	9.5	10
159	One-step calcination reaction to synthesize Li2MnO3 coating layers for LiNi0.8Co0.1Mn0.1O2 to improve cycling performances under high-voltage for Li-ion batteries. Applied Surface Science, 2022, 595, 153479.	3.1	7
160	B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. Journal of Energy Chemistry, 2022, 71, 588-594.	7.1	106
162	Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials. Journal of Power Sources, 2022, 540, 231633.	4.0	47
163	The Emergence of 2D MXenes Based Znâ€lon Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
164	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	10.2	48

#	Article	IF	CITATIONS
165	Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Materials Today Energy, 2022, 28, 101066.	2.5	28
166	Crystalline geometry engineering towards high-energy spinel cathode for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 919, 165798.	2.8	4
167	A "Two - for - One―Strategy to Construct a Lifepo4 @C Cathode Based on Cnf/Mofs for High-Energy Li Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
168	Renewable cathode materials dependent on conjugated polymer composite systems. , 2022, , 55-90.		3
169	Polydopamineâ€induced nanoâ€coating layer for high stability of nickelâ€rich cathode in secondary batteries. International Journal of Energy Research, 2022, 46, 15276-15289.	2.2	9
170	Surface Coating of NCM-811 Cathode Materials with g-C ₃ N ₄ for Enhanced Electrochemical Performance. ACS Omega, 2022, 7, 24851-24857.	1.6	10
171	Ball-Milled Silicon with Amorphous Al ₂ O ₃ /C Hybrid Coating Embedded in Graphene/Graphite Nanosheets with a Boosted Lithium Storage Capability. Langmuir, 2022, 38, 8555-8563.	1.6	3
172	Enhanced structure and surface stability of high-nickel cathode materials by AlPO4 modification. lonics, 0, , .	1.2	0
173	MXene-assisted polymer coating from aqueous monomer solution towards dendrite-free zinc anodes. Journal of Energy Chemistry, 2022, 73, 277-284.	7.1	26
174	Simulation of Intercalation Processes in Poorly Conductive Materials. ECS Journal of Solid State Science and Technology, 0, , .	0.9	0
175	Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2022, 58, 658-666.	0.3	1
176	Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes. Journal of Energy Chemistry, 2022, 75, 117-126.	7.1	13
177	Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries. Ionics, 0, , .	1.2	4
178	The action of Y-F co-doping in LiNi0.5Mn1.5O4 positive electrode materials. Powder Technology, 2022, 409, 117812.	2.1	7
179	The application of an enhanced salinity-gradient solar pond with nucleation matrix in lithium extraction from Zabuye salt lake in Tibet. Solar Energy, 2022, 244, 104-114.	2.9	10
180	Solvent-free dry cyclized polyacrylonitrile-coated LiNi0.87Co0.13O2 cathode for improving the electrochemical performance of Li-ion batteries. Materials Chemistry and Physics, 2022, 290, 126590.	2.0	2
181	Suppressing detrimental phase transitions on LiNi0.87Co0.13O2 cathode for Li-ion batteries via carbon coating. Diamond and Related Materials, 2022, 128, 109275.	1.8	1
182	Enhancing cyclic and in-air stability of Ni-Rich cathodes through perovskite oxide surface coating. Journal of Colloid and Interface Science, 2022, 628, 407-418.	5.0	11

#	Article	IF	CITATIONS
183	Insights into LiMXO ₄ F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44859-44868.	4.0	1
184	A new surface phase of Al2Ti7O15 to enhance the electronic conductivity and interfacial stability of LiCoO2 cathode materials. Applied Surface Science, 2022, 606, 154776.	3.1	3
185	Regulation of surface oxygen activity in Li-rich layered cathodes using band alignment of vanadium phosphate surface coatings. Journal of Materials Chemistry A, 2022, 10, 24487-24509.	5.2	2
186	Battery materials for electric vehicle – A comprehensive review. Materials Today: Proceedings, 2022, , .	0.9	0
187	The choice of organic acids as complexing agent affecting on the electrochemical properties of spinel LiNi0.5Mn1.5O4. Journal of Materials Science: Materials in Electronics, 2022, 33, 22217-22229.	1.1	0
188	Enable High-Energy LiNi0.5Co0.2Mn0.3O2 by Ultra-Thin Coating through Wet Impregnation. Batteries, 2022, 8, 136.	2.1	1
189	Realizing high energy-density lithium-ion batteries: High Ni-content or high cut-off voltage of single-crystal layered cathodes?. Journal of Electroanalytical Chemistry, 2022, 924, 116847.	1.9	4
190	Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 932, 167687.	2.8	13
191	Synthesis and electrochemical properties of Mn-doped porous Mg0.9Zn0.1Fe2â´`xMnxO4 (0Â≤Ââ‰Â1.25) spinel oxides as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935, 167997.	2.8	9
192	Air Instability of Niâ€Rich Layered Oxides–A Roadblock to Large Scale Application. Advanced Energy Materials, 2023, 13, .	10.2	15
193	Construction of a LiVO ₃ /C core–shell structure for high-rate lithium storage. New Journal of Chemistry, 2023, 47, 1508-1516.	1.4	3
194	A "two-for-one―strategy to construct a LiFePO4@C cathode with 3D porous framework for high-energy Li-on batteries. Journal of Alloys and Compounds, 2023, 937, 168402.	2.8	5
195	Electrochemical and spectroscopic studies on carbonâ€coated and iodineâ€doped <scp>LiFeBO₃</scp> as a cathode material for lithiumâ€ion batteries. Bulletin of the Korean Chemical Society, 2023, 44, 298-303.	1.0	2
196	Fabrication of PVA/SiO2 (Nanofiber) Membranes Prepared Using Electrospinning Method for Lithium Battery Separator. Journal of Physics: Conference Series, 2022, 2392, 012008.	0.3	1
197	Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 55491-55502.	4.0	3
198	Recent Advances in Surface Coatings of Layered Cathode Materials for Highâ€Performance Sodiumâ€lon Batteries. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	8
199	Durable semi-crystalline interphase engineering to stabilize high voltage Ni-rich cathode in dilute ether electrolyte. Journal of Energy Chemistry, 2023, 79, 110-117.	7.1	4
200	Modeling and performance predictions of electrochemical lithium extraction: Impact of leakage current. Desalination, 2023, 550, 116395.	4.0	4

#	Article	IF	CITATIONS
201	Bioâ€Macromolecular Surface Coatings for Autohesive, Transparent, Elastomeric Foils. Macromolecular Materials and Engineering, 2023, 308, .	1.7	2
202	CuO-ZnO submicroflakes with nanolayered Al2O3 coatings as high performance anode materials in lithium-ion batteries. Journal of Alloys and Compounds, 2023, 953, 170137.	2.8	10
203	Ion transport phenomena in electrode materials. Chemical Physics Reviews, 2023, 4, 021302.	2.6	0
204	A thin Si nanowire network anode for high volumetric capacity and long-life lithium-ion batteries. Journal of Energy Chemistry, 2023, 81, 20-27.	7.1	5
205	Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy Chemistry, 2023, 81, 221-259.	7.1	27
206	Improved rate performance of Li1.2Mn0.54Co0.13Ni0.13O2 Li-rich cathode by LaPO4 coating and Lanthanum doping. Ionics, 2023, 29, 1311-1322.	1.2	1
207	Partial Modification Strategies of NASICON-Type Na ₃ V ₂ (PO ₄) ₃ Materials for Cathodes of Sodium-Ion Batteries: Progress and Perspectives. ACS Applied Energy Materials, 2023, 6, 2657-2679.	2.5	6
208	Stabilizing Commercial LiMn ₂ O ₄ Cathode by Constructing Protective Saccharin Coating. ACS Applied Electronic Materials, 2023, 5, 1793-1803.	2.0	1
209	Enhanced electrochemical performance of LiNi0.83Co0.12Mn0.05O2 cathodes with a fast-ion conductor Li0.33La0.56TiO3 coating layer. Journal of Solid State Electrochemistry, 0, , .	1.2	1
210	MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries, 2023, 9, 174.	2.1	10
211	Enabling Future Closed‣oop Recycling of Spent Lithiumâ€Ion Batteries: Direct Cathode Regeneration. Advanced Materials, 2023, 35, .	11.1	28
212	Theoretical study of Li-ion migration in perovskiteÂŧype AVO3 (A = Ca, La, Ce, and La0.75Ca0.25) with DFT+U methods. Materials Today Communications, 2023, 35, 106029.	0.9	0
226	THz electromagnetic distribution in a layered medium uses Dyadic Green function. , 2023, , .		0
229	Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	15
233	Mn-based cathode materials for rechargeable batteries. Science China Chemistry, 2024, 67, 87-105.	4.2	3
250	Fluorination in advanced battery design. Nature Reviews Materials, 2024, 9, 119-133.	23.3	2
251	DFT study of lithium diffusion in pristine CaF2 and MgF2. AIP Conference Proceedings, 2023, , .	0.3	0
252	The role of niobium in layered oxide cathodes for conventional lithium-ion and solid-state batteries. Inorganic Chemistry Frontiers, 2023, 10, 7126-7145.	3.0	2

		TATION REPORT	
#	Article	IF	CITATIONS
258	Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , .	4.2	0
266	Thermodynamic Analysis of the Recovery of Metallic Mn from Waste Lithium Manganese Battery Usir the Molten Salt Method. Minerals, Metals and Materials Series, 2024, , 1539-1547.	ng 0.3	0