A micro-scale cost-benefit analysis of building-level floo Angeles

Water Resources and Economics 32, 100147 DOI: 10.1016/j.wre.2019.100147

Citation Report

#	Article	IF	CITATIONS
1	Assessment of Population Exposure to Urban Flood at the Building Scale. Water (Switzerland), 2020, 12, 3253.	2.7	14
2	Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nature Communications, 2020, 11, 5361.	12.8	48
3	Impact of Expansion Pattern of Built-Up Land in Floodplains on Flood Vulnerability: A Case Study in the North China Plain Area. Remote Sensing, 2020, 12, 3172.	4.0	7
4	Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case Study in Afouna Village, Egypt. Water (Switzerland), 2020, 12, 2565.	2.7	16
5	The Affordability of Flood Risk Property‣evel Adaptation Measures. Risk Analysis, 2020, 40, 1151-1167.	2.7	15
6	Implementation of propertyâ€level flood risk adaptation (PLFRA) measures: Choices and decisions. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1404.	6.5	61
7	Building-level adaptation analysis under uncertain sea-level rise. Climate Risk Management, 2021, 32, 100305.	3.2	6
8	Urban flood risk analysis of buildings using HEC-RAS 2D in climate change framework. H2Open Journal, 2021, 4, 262-275.	1.7	6
9	Implementation of Blockchain Technology in Insurance Contracts Against Natural Hazards: A Methodological Multi-Disciplinary Approach. Environmental and Climate Technologies, 2019, 23, 211-229.	1.4	11
10	A participatory approach for identification of micro flood zones in poorly developed urban areas. Academic Perspective Procedia, 2020, 3, 941-949.	0.0	0
12	Flood mitigation data analytics and decision support framework: Iowa Middle Cedar Watershed case study. Science of the Total Environment, 2022, 814, 152768.	8.0	25
13	Too expensive to keep — bidding farewell to an iconic mountain glacier?. Regional Environmental Change, 2022, 22, 1.	2.9	2
16	An agentâ€based model for evaluating reforms of the National Flood Insurance Program: A benchmarked model applied to Jamaica Bay, NYC. Risk Analysis, 2023, 43, 405-422.	2.7	2
17	Using Multidisciplinary Analysis to Develop Adaptation Options against Extreme Coastal Floods. International Journal of Disaster Risk Science, 0, , .	2.9	3
18	Economically optimizing elevation of new, single-family residences for flood mitigation via life-cycle benefit-cost analysis. Frontiers in Environmental Science, 0, 10, .	3.3	15
19	How the USA can benefit from risk-based premiums combined with flood protection. Nature Climate Change, 2022, 12, 995-998.	18.8	18
21	A Subjective Bayesian Framework for Synthesizing Deep Uncertainties in Climate Risk Management. Earth's Future, 2023, 11, .	6.3	3
22	Resilient Cities and Homeowners Action: Governing for Flood Resilience Through Homeowner Contributions. , 2022, , 17-33.		1

ARTICLE IF CITATIONS # Socio-Economic Assessment of Ecosystem-Based and Other Adaptation Strategies in Coastal Areas: A 23 2.6 2 Systematic Review. Journal of Marine Science and Engineering, 2023, 11, 319. Assessment of economic impacts in flood events in Lages/SC, Brazil. Brazilian Journal of 24 0.4 Environmental Sciences (Online), 2023, 58, 30-44. Assessing adaptation planning strategies of interconnected infrastructure under sea-level rise by 25 2.8 0 economic analysis. Frontiers of Architectural Research, 2023, 12, 892-905. Toward an adequate level of detail in flood risk assessments. Journal of Flood Risk Management, 0, , . A Systematic Literature Review on Climate Change Adaptation Measures for Coastal Built 27 0.4 0 Environment. Lecture Notes in Civil Engineering, 2023, , 651-672. Getting private investment in adaptation to work: Effective adaptation, value, and cash flows. Global Environmental Change, 2023, 83, 102761. 7.8 Analytical advances in homeowner flood risk quantification considering insurance, building 29 3.3 1 replacement value, and freeboard. Frontiers in Environmental Science, 0, 11, . Implementation of Risk-Based Approaches in Urban Land Use Planningâ€"The Example of the City of 3.2 Erftstadt, Germany. Sustainability, 2023, 15, 15340. A comparison of the cost effectiveness of propertyâ€level adaptation and communityâ€scale flood 31 3.3 1 defences in reducing flood risk. Journal of Flood Risk Management, O, , . Integrating Benefit-Cost Analysis and Monte Carlo Simulation to Prioritize Flood Mitigation Projects and Model Flood-Related Uncertainties., 2024,,.

CITATION REPORT