The role of beta-2-glycoprotein I in health and disease a function: More than just APS

Blood Reviews 39, 100610

DOI: 10.1016/j.blre.2019.100610

Citation Report

#	Article	IF	CITATIONS
1	Advances in the Research on Anticardiolipin Antibody. Journal of Immunology Research, 2019, 2019, 1-7.	2.2	12
2	Anti- \hat{l}^2 2GPI domain 1 antibodies stratify high risk of thrombosis and late pregnancy morbidity in a large cohort of Chinese patients with antiphospholipid syndrome. Thrombosis Research, 2020, 185, 142-149.	1.7	19
3	Beta2 glycoprotein I-derived therapeutic peptides induce sFlt-1 secretion to reduce melanoma vascularity and growth. Cancer Letters, 2020, 495, 66-75.	7.2	3
4	The Complement System in the Pathophysiology of Pregnancy and in Systemic Autoimmune Rheumatic Diseases During Pregnancy. Frontiers in Immunology, 2020, 11 , 2084.	4.8	30
5	Biofabricating a Silk Scaffold as a Functional Microbial Trap. ACS Biomaterials Science and Engineering, 2020, 6, 7041-7050.	5.2	2
6	The Weight of IgA Anti- \hat{l}^2 2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. International Journal of Molecular Sciences, 2020, 21, 8972.	4.1	23
7	Management of anticoagulant-refractory thrombotic antiphospholipid syndrome. Lancet Haematology,the, 2020, 7, e613-e623.	4.6	6
8	Free Thiol \hat{I}^2 2-GPI (\hat{I}^2 -2-Glycoprotein-I) Provides a Link Between Inflammation and Oxidative Stress in Atherosclerotic Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2794-2804.	2.4	4
9	Prevention of Pregnancy Complications in Antiphospholipid Syndrome. Hamostaseologie, 2020, 40, 174-183.	1.9	6
10	TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Communication and Signaling, 2020, 18, 29.	6.5	23
11	Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. Biology, 2020, 9, 15.	2.8	20
12	Thrombotic antiphospholipid syndrome: A practical guide to diagnosis and management. Thrombosis Research, 2021, 198, 213-221.	1.7	39
13	Anti- \hat{l}^2 2-glycoprotein I autoantibodies influence thrombin generation parameters via various mechanisms. Thrombosis Research, 2021, 197, 124-131.	1.7	3
14	How I treat anticoagulant-refractory thrombotic antiphospholipid syndrome. Blood, 2021, 137, 299-309.	1.4	15
15	\hat{I}^22 glycoprotein I participates in phagocytosis of apoptotic neurons and in vascular injury in experimental brain stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 0271678X2098455.	4.3	8
16	Pediatric Antiphospholipid Syndrome: from Pathogenesis to Clinical Management. Current Rheumatology Reports, 2021, 23, 10.	4.7	12
17	Specific domain V reduction of beta-2-glycoprotein I induces protein flexibility and alters pathogenic antibody binding. Scientific Reports, 2021, 11, 4542.	3.3	3
18	Betaâ€2â€Glycoproteinâ€l Deficiency Could Precipitate an Antiphospholipid Syndromeâ€like Prothrombotic Situation in Patients With Coronavirus Disease 2019. ACR Open Rheumatology, 2021, 3, 267-276.	2.1	15

#	ARTICLE	IF	CITATIONS
19	Serum proteomes of Santa Gertrudis cattle before and after infestation with <i>Rhipicephalus australis</i> ticks. Parasite Immunology, 2021, 43, e12836.	1.5	3
20	Phenotypic plasticity in Pygoscelis adeliae physiology and immunity under anthropogenic pressure: a proteomic and biochemical scenario. Marine Biology, 2021, 168, 1.	1.5	1
21	Exosome-Contained APOH Associated With Antiphospholipid Syndrome. Frontiers in Immunology, 2021, 12, 604222.	4.8	8
22	Laboratory Approaches to Test the Function of Antiphospholipid Antibodies. Seminars in Thrombosis and Hemostasis, 2022, 48, 132-144.	2.7	3
23	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	6.2	125
24	Comparison of proteomic approaches used for the detection of potential biomarkers of Alzheimer's disease in blood plasma. Journal of Separation Science, 2021, 44, 4132-4140.	2.5	3
25	In vivo evidence of angiogenesis inhibition by \hat{l}^2 2-glycoprotein I subfractions in the chorioallantoic membrane of chicken embryos. Brazilian Journal of Medical and Biological Research, 2021, 54, e10291.	1.5	1
27	Cross-reactive, natural IgG recognizing L. major promote parasite internalization by dendritic cells and promote protective immunity. Journal of Molecular Medicine, 2021, , 1.	3.9	0
28	The Relationship Between Thrombo-Inflammatory Biomarkers and Cellular Indices of Inflammation in Lymphoma Patients. Clinical and Applied Thrombosis/Hemostasis, 2021, 27, 107602962110503.	1.7	0
29	IMPACT OF NITRIC OXIDE SYNTHESIS MODULATORS ON THE CYTOKINES PROFILE IN EXPERIMENTAL ANTIPHOSPHOLIPID SYNDROME. International Journal of Medicine and Medical Research, 2020, 5, 113-121.	0.2	0
30	Graph Coverings for Investigating Non Local Structures in Proteins, Music and Poems. Sci, 2021, 3, 39.	3.0	3
31	Effects of antiâ€beta 2â€glycoprotein 1 antibodies and its association with pregnancyâ€related morbidity in antiphospholipid syndrome. American Journal of Reproductive Immunology, 2022, 87, e13509.	1.2	9
32	Anti- \hat{l}^2 ₂ GPI/ \hat{l}^2 ₂ GPI Induces Neutrophil Pyroptosis and Thereby EnhancesICAM-1 and IL-8 Expression in Endothelial Cells. SSRN Electronic Journal, 0, , .	0.4	0
33	IgA anti-beta-2 glycoprotein I antibodies in chronic hepatitis C. Arab Journal of Gastroenterology, 2022, 23, 26-31.	0.9	3
34	Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Seminars in Immunopathology, 2022, 44, 347-362.	6.1	67
35	Modulating Autoimmunity against LDL: Development of a Vaccine against Atherosclerosis. Hamostaseologie, 2021, 41, 447-457.	1.9	2
36	Risk of Thrombosis, Pregnancy Morbidity or Death in Antiphospholipid Syndrome. Frontiers in Cardiovascular Medicine, 2022, 9, 852777.	2.4	8
37	Anti‴β ₂ GPI∫β ₂ GPI induces neutrophil pyroptosis and thereby enhances ICAM‴1 and IL‴8 expression in endothelial cells. International Journal of Molecular Medicine, 2022, 49, .	4.0	4

3

#	ARTICLE	IF	CITATIONS
38	Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects. Paediatric Drugs, 2022, 24, 13-27.	3.1	5
39	Enrichment of Complement, Immunoglobulins, and Autoantibody Targets in the Proteome of Platelets from Patients with Systemic Lupus Erythematosus. Thrombosis and Haemostasis, 2022, 122, 1486-1501.	3.4	3
40	PEGylated Domain I of Beta-2-Glycoprotein I Inhibits Thrombosis in a Chronic Mouse Model of the Antiphospholipid Syndrome. Frontiers in Immunology, 2022, 13, 842923.	4.8	0
41	The Pathophysiology of The Antiphospholipid Syndrome: A Perspective From The Blood Coagulation System. Clinical and Applied Thrombosis/Hemostasis, 2022, 28, 107602962210885.	1.7	19
42	Antigens and Antibodies of the Antiphospholipid Syndrome as New Allies in the Pathogenesis of COVID-19 Coagulopathy. International Journal of Molecular Sciences, 2022, 23, 4946.	4.1	7
43	Preliminary Study on the Imbalance Between Th 17 and Regulatory T Cells in Antiphospholipid Syndrome. Frontiers in Immunology, 2022, 13, .	4.8	2
44	Clinical significance of antibodies to the phosphatidylserine/prothrombin complex. Sovremennaya Revmatologiya, 2022, 16, 81-86.	0.5	0
45	Frequency of serological markers of rheumatoid arthritis in patients with <scp>lgA</scp> antiâ€Î²2 glycoprotein I antibodies. Journal of Clinical Laboratory Analysis, 0, , .	2.1	2
46	Inflammation and thromboâ€occlusive vessel signalling in benign atrophic papulosis () Tj ETQq0 0 0 rgBT /Overloc	k 10 Tf 50 2.4) 427 Td (<s 2</s
47	Antibodies to domain I \hat{I}^22 -glycoprotein 1 in patients with antiphospholipid syndrome and systemic lupus erythematosus. Nauchno-Prakticheskaya Revmatologiya, 2022, 60, 353-359.	1.0	1
48	Exploring the function of factor XIII free B subunit: Interactions with complement factors and a novel approach to identify potential binding partners. Research and Practice in Thrombosis and Haemostasis, 2022, 6, .	2.3	2
49	Proteomics-based evaluation of the mechanism underlying vascular injury via DNA interstrand crosslinks, glutathione perturbation, mitogen-activated protein kinase, and Wnt and ErbB signaling pathways induced by crotonaldehyde. Clinical Proteomics, 2022, 19, .	2.1	3
50	Pathogenesis of the obstetric antiphospholipid syndrome: the key role of beta 2 glycoprotein I. Exploration of Immunology, 0, , 510-517.	0.3	0
51	Circulating immune-complexes of IgG/IgM bound to B2-glycoprotein-I associated with complement consumption and thrombocytopenia in antiphospholipid syndrome. Frontiers in Immunology, 0, 13, .	4.8	11
52	Tissue factor in COVID-19-associated coagulopathy. Thrombosis Research, 2022, 220, 35-47.	1.7	16
53	Proteomic Profile of Vitrified in Vitro-Produced Bovine Embryos (<i>Bos Taurus Indicus</i>). Cryo-Letters, 2022, 43, 206-221.	0.3	О
54	Antiphospholipid antibodies in autoimmune thyroid diseases. Journal of Clinical Laboratory Analysis, 2022, 36, .	2.1	3
55	Immunology of pregnancy and reproductive health in autoimmune rheumatic diseases. Update from the 11th International Conference on Reproduction, Pregnancy and Rheumatic Diseases. Autoimmunity Reviews, 2023, 22, 103259.	5.8	2

#	ARTICLE	IF	CITATIONS
56	Platelet-derived microparticles stimulated by anti- \hat{l}^2 (sub>2 GPI/ \hat{l}^2 (sub>2 GPI complexes induce pyroptosis of endothelial cells in antiphospholipid syndrome. Platelets, 2023, 34, .	2.3	10
58	Beta 2 glycoprotein I and neutrophil extracellular traps: Potential bridge between innate and adaptive immunity in anti-phospholipid syndrome. Frontiers in Immunology, $0,13,.$	4.8	6
59	Evolution of Antiphospholipid Syndrome. Seminars in Thrombosis and Hemostasis, 2023, 49, 295-304.	2.7	4
60	Fluctuation of Anti–Domain 1 and Anti– <scp>β₂â€Glycoprotein</scp> I Antibody Titers Over Time in Patients With Persistently Positive Antiphospholipid Antibodies. Arthritis and Rheumatology, 2023, 75, 984-995.	5.6	3
61	Application of quantitative proteomics to discover biomarkers for tick resistance in cattle. Frontiers in Immunology, $0,14,.$	4.8	2
62	Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. Journal of Clinical Medicine, 2023, 12, 891.	2.4	3
63	Autoantibodies: are they a clue for liver diseases?. Clinical and Experimental Hepatology, 2022, 8, 309-314.	1.3	0
64	Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ, The, 0, , e069717.	6.0	33
65	Autoimmune/inflammatory syndrome induced by adjuvants (ASIA): past, present, and future implications. Clinical and Experimental Immunology, 0, , .	2.6	2
66	The potential role of molecular mimicry by the anaerobic microbiota in the aetiology of autoimmune disease. Anaerobe, 2023, 80, 102721.	2.1	3
67	How to approach acute thrombosis and thrombocytopenia. Clinical Medicine, 2023, 23, 234-241.	1.9	4
68	Role of $\hat{l}^22\hat{a}$ eglycoprotein I in the pathogenesis of the antiphospholipid syndrome. Rheumatology & Autoimmunity, 0 , , .	0.8	0
69	Cysteine and methionine oxidation in thrombotic disorders. Current Opinion in Chemical Biology, 2023, 76, 102350.	6.1	1
70	Systemic lupus erythematosus and antiphospholipid syndrome: past, present, future. Terapevticheskii Arkhiv, 2023, 95, 365-374.	0.8	1
71	Interaction of the antiphospholipid syndrome autoantigen beta-2 glycoprotein I with DNA and neutrophil extracellular traps. Clinical Immunology, 2023, 255, 109714.	3.2	2
72	Modern concept of autoimmunity in rheumatology. Nauchno-Prakticheskaya Revmatologiya, 2023, 61, 397-420.	1.0	6
73	Structural analyses of \hat{l}^2 2-glycoprotein I: is there a circular conformation?. Journal of Thrombosis and Haemostasis, 2023, 21, 3511-3521.	3.8	2
74	Antibodies to Domain I \hat{I}^2 2-Glycoprotein 1 in Patients with Antiphospholipid Syndrome and Systemic Lupus Erythematosus. Doklady Biochemistry and Biophysics, 2023, 511, 219-226.	0.9	0

#	Article	IF	CITATIONS
75	16th International congress on antiphospholipid antibodies task force report on antiphospholipid syndrome laboratory diagnostics and trends. Lupus, 2023, 32, 1625-1636.	1.6	1
77	Natural supplements in antiphospholipid syndrome: A case for further study. Clinical Immunology, 2024, 258, 109848.	3.2	O
78	Identification of Potential Drug Targets for Antiplatelet Therapy Specifically Targeting Platelets of Old Individuals through Proteomic Analysis. Biomedicines, 2023, 11, 2944.	3.2	0
79	Cerebrospinal Fluid, the Meninges, and the Subarachnoid Space. , 2023, , 255-288.		O
80	Lipid-binding antiphospholipid antibodies: significance for pathophysiology and diagnosis of the antiphospholipid syndrome. Critical Reviews in Clinical Laboratory Sciences, 0, , 1-18.	6.1	0
81	Epidemiology of antiphospholipid syndrome: macro- and microvascular manifestations. Rheumatology, 2024, 63, SI24-SI36.	1.9	1
82	Antiphospholipid syndrome pathogenesis in 2023: an update of new mechanisms or just a reconsideration of the old ones?. Rheumatology, 2024, 63, SI4-SI13.	1.9	2
83	The Perspectives of Platelet Proteomics in Health and Disease. Biomedicines, 2024, 12, 585.	3.2	0
84	Impact of autoantibody-mediated procoagulant platelets and thrombus formation in antiphospholipid syndrome. Hamostaseologie, 2024, , .	1.9	0