Melamine foam/reduced graphene oxide supported for simultaneous shape memory property and light-to-the

Chemical Engineering Journal 379, 122373 DOI: 10.1016/j.cej.2019.122373

Citation Report

#	Article	IF	CITATIONS
1	Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Composites Part B: Engineering, 2019, 177, 107372.	5.9	157
2	Composite phase change material based on reduced graphene oxide/expanded graphite aerogel with improved thermal properties and shapeâ€stability. International Journal of Energy Research, 2020, 44, 242-256.	2.2	35
3	Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage. Solar Energy Materials and Solar Cells, 2020, 208, 110391.	3.0	53
4	Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage. Applied Energy, 2020, 260, 114320.	5.1	32
5	Highly thermally conductive phase change composites for thermal energy storage featuring shape memory. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105706.	3.8	47
6	An Efficient Environmentally Friendly Composite Material Based on Carbonized Biological Cellulose/Paraffin: Thermal and Sustainable Properties Analysis. ChemistrySelect, 2020, 5, 12051-12056.	0.7	5
7	Form-stable phase change material embedded in three-dimensional reduced graphene aerogel with large latent heat for thermal energy management. Applied Surface Science, 2020, 534, 147612.	3.1	42
8	Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy and Environmental Science, 2020, 13, 4498-4535.	15.6	181
9	Form-stable and light-to-thermal conversion properties of comb-like polymer composite phase change materials for thermal management application. Solar Energy Materials and Solar Cells, 2020, 217, 110704.	3.0	23
10	Waterproof Phase Change Material with a Facilely Incorporated Cellulose Nanocrystal/Poly(<i>N</i> -isopropylacrylamide) Network for All-Weather Outdoor Thermal Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 53365-53375.	4.0	11
11	MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106067.	3.8	94
12	Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning. Carbohydrate Polymers, 2020, 249, 116836.	5.1	30
13	Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Composites Part B: Engineering, 2020, 199, 108308.	5.9	65
14	Ultra-efficient photo-triggerable healing and shape-memory nanocomposite materials doped with copper sulfide nanoparticles. Composites Science and Technology, 2020, 199, 108371.	3.8	20
15	Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. Journal of Power Sources, 2020, 480, 229116.	4.0	88
16	Superlyophilic Shape Memory Porous Sponge for Smart Liquid Permeation. ACS Nano, 2020, 14, 14047-14056.	7.3	19
17	Form-Stable Erythritol/HDPE Composite Phase Change Material with Flexibility, Tailorability, and High Transition Enthalpy. ACS Applied Polymer Materials, 2020, 2, 4464-4471.	2.0	28
18	Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. Journal of Materials Chemistry A, 2020, 8, 20970-20978.	5.2	62

#	Article	IF	CITATIONS
19	Multielement Synergetic Effect of Boron Nitride and Multiwalled Carbon Nanotubes for the Fabrication of Novel Shape-Stabilized Phase-Change Composites with Enhanced Thermal Conductivity. ACS Applied Materials & Interfaces, 2020, 12, 41398-41409.	4.0	47
20	Shape memory graphene and cutting-edge achievements. APL Materials, 2020, 8, .	2.2	12
21	Infiltration properties of n-alkanes in mesoporous biochar: The capacity of smokeless support for stability and energy storage. Journal of Hazardous Materials, 2020, 399, 123041.	6.5	23
22	Hydrogen peroxide sol–gel coating of microencapsulated phase change materials by metal oxides. Journal of Sol-Gel Science and Technology, 2020, 95, 649-660.	1.1	9
23	Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chemical Engineering Journal, 2020, 393, 124711.	6.6	47
24	Ti ₃ C ₂ T _{<i>x</i>/sub>@PDA-Integrated Polyurethane Phase Change Composites with Superior Solar-Thermal Conversion Efficiency and Improved Thermal Conductivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 5799-5806.}	3.2	116
25	Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency. Journal of Materials Chemistry A, 2020, 8, 14126-14134.	5.2	83
26	Flexible Ethylene Propylene Diene Monomer/Paraffin Wax Vulcanizate with Simultaneously Increased Mechanical Strength, Thermal-Energy Storage, and Shape-Memory Behavior. Energy & Fuels, 2020, 34, 9020-9029.	2.5	19
27	Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat. Chemical Engineering Journal, 2020, 390, 124618.	6.6	72
28	Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale, 2020, 12, 4005-4017.	2.8	74
29	Hierarchically Porous PVA Aerogel for Leakage-Proof Phase Change Materials with Superior Energy Storage Capacity. Energy & Fuels, 2020, 34, 2471-2479.	2.5	49
30	High latent heat and recyclable form-stable phase change materials prepared via a facile self-template method. Chemical Engineering Journal, 2020, 396, 125265.	6.6	24
31	Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Composites Part B: Engineering, 2020, 195, 108094.	5.9	77
32	Facile fabrication of shape-stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol-ene click chemistry and solvent exchange. Chemical Engineering Journal, 2020, 396, 125206.	6.6	64
33	Developing a heat-insulating composite phase change material with light-to-thermal conversion performance from graphene oxide/silica hybrid aerogel. Applied Thermal Engineering, 2020, 174, 115303.	3.0	29
34	Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106191.	3.8	90
35	Improving the thermal energy storage capability of diatom-based biomass/polyethylene glycol composites phase change materials by artificial culture methods. Solar Energy Materials and Solar Cells, 2021, 219, 110797.	3.0	63
36	Advanced multifunctional composite phase change materials based on photo-responsive materials. Nano Energy, 2021, 80, 105454.	8.2	129

#	Article	IF	CITATIONS
37	Multiple phase change-stimulated shape memory and self-healing epoxy composites with thermal regulation function. Chemical Engineering Journal, 2021, 409, 127382.	6.6	31
38	Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage. Carbon, 2021, 176, 178-187.	5.4	45
39	Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization. Energy, 2021, 219, 119630.	4.5	38
40	Simultaneous phase change energy storage and thermoresponsive shape memory properties of porous poly(vinyl alcohol)/phase change microcapsule composites. Polymer International, 2021, 70, 803-811.	1.6	8
41	Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification. Materials Chemistry and Physics, 2021, 258, 123998.	2.0	51
42	A Review on Thermal Conductivity Enhancement of Organic Phase Change Material-Based Form-Stable Phase Change Materials. Advances in Sustainability Science and Technology, 2021, , 33-45.	0.4	1
43	Pouch Lithium Battery with a Passive Thermal Management System Using Form-Stable and Flexible Composite Phase Change Materials. ACS Applied Energy Materials, 2021, 4, 1978-1992.	2.5	50
44	Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management. Advanced Science, 2021, 8, 2003734.	5.6	108
45	Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. European Polymer Journal, 2021, 145, 110245.	2.6	50
46	Scalable Production of EP/CaCl ₂ @C Multistage Core–Shell Sorbent for Solar-Driven Sorption Heat Storage Application. Energy & Fuels, 2021, 35, 6845-6857.	2.5	7
47	Carbonâ€Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion. Advanced Science, 2021, 8, 2001274.	5.6	162
48	Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage, shape memory and thermal therapy functions. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106291.	3.8	109
49	Multifunctional Shape‧tabilized Phase Change Materials with Enhanced Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness for Electronic Devices. Macromolecular Materials and Engineering, 2021, 306, 2100055.	1.7	14
50	Thermo-conductive phase change materials with binary fillers of core-shell-like distribution. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106326.	3.8	21
51	Modified Melamine Foam-Based Flexible Phase Change Composites: Enhanced Photothermal Conversion and Shape Memory Properties. ACS Applied Polymer Materials, 2021, 3, 3321-3333.	2.0	24
52	Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 224, 111013.	3.0	52
53	Performance analysis of a modified solar still using reduced graphene oxide coated absorber plate with activated carbon pellet. Sustainable Energy Technologies and Assessments, 2021, 45, 101046.	1.7	38
54	Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal	3.8	60

#	Article	IF	CITATIONS
55	MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Composites Science and Technology, 2021, 210, 108835.	3.8	71
56	Effect of dopamine-modified expanded vermiculite on phase change behavior and heat storage characteristic of polyethylene glycol. Chemical Engineering Journal, 2021, 415, 128992.	6.6	34
57	Biphasic organohydrogels based on phase change materials with excellent thermostability for thermal management applications. Chemical Engineering Journal, 2021, 416, 129181.	6.6	22
58	Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates. ACS Nano, 2021, 15, 12922-12934.	7.3	75
59	High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites. International Journal of Heat and Mass Transfer, 2021, 175, 121405.	2.5	47
60	Preparation and characterization of phase-change energy storage nonwoven fabric. Journal of Industrial Textiles, 2022, 51, 7089S-7103S.	1.1	6
61	Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes. Ceramics International, 2021, 47, 23564-23570.	2.3	8
62	Fabrication of formâ€stable phase change material with enhanced thermal performance based on the cocrystal of combâ€like polymer and paraffin. Energy Storage, 2022, 4, e289.	2.3	0
63	Phase change materials confined into sunlight capturer sponge towards thermal energy harvesting and storage. Solar Energy, 2021, 226, 147-153.	2.9	6
64	Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release. Chemical Engineering Journal, 2021, 420, 129942.	6.6	24
65	Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chemical Engineering Journal, 2021, 419, 129637.	6.6	109
66	High Thermal Conductivity and Mechanical Strength Phase Change Composite with Double Supporting Skeletons for Industrial Waste Heat Recovery. ACS Applied Materials & Interfaces, 2021, 13, 47174-47184.	4.0	79
67	Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chemical Engineering Journal, 2021, 419, 129620.	6.6	56
68	Enhanced properties of mica-based composite phase change materials for thermal energy storage. Journal of Energy Storage, 2021, 42, 103106.	3.9	18
69	Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response. Applied Surface Science, 2021, 562, 150211.	3.1	22
70	Dodecylamine/Ti3C2-pectin form-stable phase change composites with enhanced light-to-thermal conversion and mechanical properties. Renewable Energy, 2021, 176, 663-674.	4.3	30
71	Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges. Energy Storage Materials, 2021, 42, 845-870.	9.5	47
72	Lightweight, strong, and form-stable cellulose nanofibrils phase change aerogel with high latent heat. Carbohydrate Polymers, 2021, 272, 118460.	5.1	57

#	Article	IF	CITATIONS
73	Multifunctional shape-stabilized phase change composites based upon multi-walled carbon nanotubes and polypyrrole decorated melamine foam for light/electric-to-thermal energy conversion and storage. Journal of Energy Storage, 2021, 43, 103187.	3.9	29
74	Phase change material based on polypyrrole/Fe3O4- functionalized hollow kapok fiber aerogel matrix for solar /magnetic- thermal energy conversion and storage. Chemical Engineering Journal, 2021, 423, 130180.	6.6	64
75	Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy. Renewable Energy, 2021, 179, 47-64.	4.3	86
76	Branched alkylated polynorbornene and 3D flower-like MoS2 nanospheres reinforced phase change composites with high thermal energy storage capacity and photothermal conversion efficiency. Renewable Energy, 2021, 179, 687-695.	4.3	22
77	Bio-based flexible phase change composite film with high thermal conductivity for thermal energy storage. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106638.	3.8	38
78	Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chemical Engineering Journal, 2021, 425, 131466.	6.6	97
79	Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. Chemical Engineering Journal, 2022, 428, 131164.	6.6	117
80	Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chemical Engineering Journal, 2022, 427, 131665.	6.6	46
81	In-situ formed Cyclodextrin-functionalized graphene oxide / poly (N-isopropylacrylamide) nanocomposite hydrogel as an recovery adsorbent for phenol and microfluidic valve. Journal of Colloid and Interface Science, 2022, 607, 253-268.	5.0	20
82	Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Materials Horizons, 2021, 8, 1230-1241.	6.4	39
83	Paraffin/Ti ₃ C ₂ T <i>_x</i> Mxene@Gelatin Aerogels Composite Phase-Change Materials with High Solar-Thermal Conversion Efficiency and Enhanced Thermal Conductivity for Thermal Energy Storage. Energy & Fuels, 2021, 35, 2805-2814.	2.5	36
84	Phase change materials stabilized by porous metal supramolecular gels: Gelation effect on loading capacity and thermal performance. Chemical Engineering Journal, 2020, 394, 124806.	6.6	39
85	Modification of the three-dimensional graphene aerogel self-assembled network using a titanate coupling agent and its thermal conductivity mechanism with epoxy composites. Nanoscale, 2021, 13, 18247-18255.	2.8	15
86	Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat. Journal of Colloid and Interface Science, 2022, 608, 1497-1513.	5.0	21
87	Flexible, stimuli-responsive and self-cleaning phase change fiber for thermal energy storage and smart textiles. Composites Part B: Engineering, 2022, 228, 109431.	5.9	50
88	Double-layered and shape-stabilized phase change materials with enhanced thermal conduction and reversible thermochromism for solar thermoelectric power generation. Chemical Engineering Journal, 2022, 430, 132773.	6.6	30
89	Large-scale fabrication of flexible EPDM/MXene/PW phase change composites with excellent light-to-thermal conversion efficiency via water-assisted melt blending. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106713.	3.8	69
90	Ion cross-linking assisted synthesis of ZIF-8/chitosan/melamine sponge with anti-biofouling activity for enhanced uranium recovery. Inorganic Chemistry Frontiers, 2021, 9, 155-164.	3.0	12

#	Article	IF	Citations
92	Magnetic field-assisted acceleration of energy storage based on microencapsulation of phase change material with CaCO3/Fe3O4 composite shell. Journal of Energy Storage, 2022, 47, 103574.	3.9	23
93	N-doped porous carbon chain with 3D interconnected network structure to modify expanded graphite for efficient thermal energy storage materials. Journal of Energy Storage, 2022, 47, 103634.	3.9	8
94	Graphene oxide/chitosan nanoâ€coating with ultrafast fireâ€alarm response and flameâ€retardant property. Polymers for Advanced Technologies, 2022, 33, 795-806.	1.6	18
95	Oxygen Reduction Activity of Bâ†N ontaining Organic Molecule Affected by Asymmetric Regulation. Small, 2022, 18, e2105524.	5.2	8
96	Effect of functional modification of porous medium on phase change behavior and heat storage characteristics of form-stable composite phase change materials: A critical review. Journal of Energy Storage, 2021, 44, 103637.	3.9	17
97	Metallized Skeleton of Polymer Foam Based on Metal–Organic Decomposition for High-Performance EMI Shielding. ACS Applied Materials & Interfaces, 2022, 14, 3302-3314.	4.0	42
98	Flexible phase change materials: Preparation, properties and application. Chemical Engineering Journal, 2022, 431, 134231.	6.6	55
99	Polynorbornene-based bottlebrush polymers confining phase change materials for ultra-stable latent heat storage derived from solar irradiation. Solar Energy Materials and Solar Cells, 2022, 236, 111547.	3.0	10
100	A modified method to quantify the photo-thermal conversion efficiency of shape-stable phase change materials. Solar Energy Materials and Solar Cells, 2022, 237, 111572.	3.0	13
101	Sustainable development of graphene oxide from pine leaves for electrochemical energy storage and corrosion protection. Current Research in Green and Sustainable Chemistry, 2022, 5, 100266.	2.9	3
102	A new design of extensible solar-driven thermoelectric array with highly thermo/electro-conductive PCMs as solar receivers, thermal/electric bridges, and voltage fluctuation suppressors simultaneously. Energy Conversion and Management, 2022, 252, 115079.	4.4	8
103	Evaporation Performance of Woodâ€Based Evaporator for Solar Interfacial Vapor Generation. Energy Technology, 2022, 10, .	1.8	6
104	Functional Unit Construction for Heat Storage by Using Biomass-Based Composite. Frontiers in Chemistry, 2022, 10, 835455.	1.8	2
105	Cuprous oxide modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion. Powder Technology, 2022, 399, 117189.	2.1	12
106	Flexible phase change composite based on loading paraffin into cross-linked CNT/SBS network for thermal management and thermal storage. Chemical Engineering Journal, 2022, 437, 135056.	6.6	45
107	Nearâ€Infrared Responsive Droplet for Digital PCR. Small, 2022, 18, e2107858.	5.2	9
108	Leak-free, high latent heat and self-cleaning phase change materials supported by layered cellulose/Fe3O4 skeleton for light-to-thermal energy conversion. Energy Conversion and Management, 2022, 256, 115357.	4.4	23
109	The marriage of two-dimensional materials and phase change materials for energy storage, conversion and applications. EnergyChem, 2022, 4, 100071.	10.1	42

CITATION REPORT

#	Article	IF	CITATIONS
110	Flexible engineering of advanced phase change materials. IScience, 2022, 25, 104226.	1.9	21
111	Preparation of flexible solid-solid phase change materials with simultaneously thermal energy storage capability, reprocessability and dual-actuated shape memory performance. Polymer, 2022, 248, 124826.	1.8	10
112	The preparation of high performance Multi-functional porous sponge through a biomimic coating strategy based on polyurethane dendritic colloids. Chemical Engineering Journal, 2022, 438, 135659.	6.6	20
113	Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 2022, 161, 112321.	8.2	57
114	Encapsulation of dodecane in gasification biochar for its prolonged thermal/shape stability, reliability, and ambient enthalpy storage. Chemical Engineering Journal, 2022, 437, 135407.	6.6	18
115	A novel study to examine dependency of indoor temperature and PCM to reduce energy consumption in buildings. Journal of Building Engineering, 2022, 51, 104249.	1.6	13
116	Synthesis and application of paraffin/silica phase change nanocapsules: Experimental and numerical approach. Journal of Energy Storage, 2022, 51, 104407.	3.9	13
117	Scalable Flexible Phase Change Materials with a Swollen Polymer Network Structure for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 59364-59372.	4.0	36
118	A mini review on paraffinâ€graphene and related hybrid phase change materials for building energy applications. Energy Storage, 2023, 5, .	2.3	0
119	Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application. Energy, 2022, 254, 124198.	4.5	21
120	Multifunctional Melamine Formaldehyde Composite Foam for High-Temperature Insulation, Flame Retardancy, and Oil–Water Separation. Industrial & Engineering Chemistry Research, 2022, 61, 6458-6467.	1.8	6
121	Mussel-inspired strategy to construct 3D silver nanoparticle network in flexible phase change composites with excellent thermal energy management and electromagnetic interference shielding capabilities. Composites Part B: Engineering, 2022, 239, 109962.	5.9	43
122	Enhanced photothermal conversion capability of melamine foam-derived carbon foam-based form-stable phase change composites. Energy Conversion and Management, 2022, 263, 115693.	4.4	26
123	Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics. Journal of Energy Storage, 2022, 52, 104751.	3.9	11
124	Constructing heat conduction path and flexible support skeleton for PEG-based phase change composites through salt template method. Composites Science and Technology, 2022, 226, 109532.	3.8	31
125	Flame-retardant AlOOH/graphene oxide composite coating with temperature-responsive resistance for efficient early-warning fire sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129326.	2.3	18
126	Artificial "honeycomb-honey―decorated with non-noble plasmonic nanoparticles for superior solar capture and thermal energy storage. Nano Research, 2022, 15, 8065-8075.	5.8	12
127	Stabilized multifunctional phase change materials based on carbonized Cuâ€coated melamine foam/reduced graphene oxide framework for multiple energy conversion and storage. , 2022, 4, 1214-1227.		39

CITATION REPORT

		REPORT	
#	Article	IF	Citations
128	Light-responsive shape memory polymer composites. European Polymer Journal, 2022, 173, 111314.	2.6	16
129	Highly Elastic Melamine Graphene/MWNT Hybrid Sponge for Sensor Applications. Molecules, 2022, 27, 3530.	1.7	4
130	Temperature control of battery modules through composite phase change materials with dual operating temperature regions. Chemical Engineering Journal, 2022, 449, 137733.	6.6	43
131	Photo- and magneto-responsive highly graphitized carbon based phase change composites for energy conversion and storage. Materials Today Nano, 2022, 19, 100234.	2.3	10
132	Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites. Nano-Micro Letters, 2022, 14, .	14.4	65
133	Flame retardant and form-stable phase change composites based on phytic acid/dopamine-decorated delignified wood for efficient solar-thermal energy conversion and storage. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107048.	3.8	19
134	PEDOT:PSS/MXene/PEG composites with remarkable thermal management performance and excellent HF-band & X-band electromagnetic interference shielding efficiency for electronic packaging. Chemical Engineering Journal, 2022, 448, 137599.	6.6	32
135	4D-printed light-responsive structures. , 2022, , 55-105.		0
136	The thermal energy storage capacity and fire risk of phase change material based on the framework of modified melamine sponge. Polymers for Advanced Technologies, 0, , .	1.6	0
137	Thermal performance of modified melamine foam/graphene/paraffin wax composite phase change materials for solar-thermal energy conversion and storage. Journal of Cleaner Production, 2022, 367, 133031.	4.6	75
138	All lignin-based sponge encapsulated phase change composites with enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. Journal of Energy Storage, 2022, 54, 105338.	3.9	24
139	Dual-functional polyethylene glycol/graphene aerogel phase change composites with ultrahigh loading for thermal energy storage. Journal of Energy Storage, 2022, 54, 105337.	3.9	5
140	A brief review on different hybrid methods of enhancement within latent heat storage systems. Journal of Energy Storage, 2022, 54, 105362.	3.9	39
141	Preparation and Characterization of Phase Change Polyester Fiber. Integrated Ferroelectrics, 2022, 228, 238-248.	0.3	4
142	Preparation of Three-Dimensional MF/Ti3C2Tx/PmPD by Interfacial Polymerization for Efficient Hexavalent Chromium Removal. Nanomaterials, 2022, 12, 2838.	1.9	0
143	Thermally-induced flexible and thermally conductive enhanced phase change material with 1-hexadecanol as phase change component. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107205.	3.8	14
144	Ni@rGO into nickel foam for composite polyethylene glycol and erythritol phase change materials. Chemical Engineering Journal, 2023, 451, 138900.	6.6	39
145	Review on organic phase change materials for sustainable energy storage. Sustainable Energy and Fuels, 2022, 6, 5045-5071.	2.5	19

#	Article	IF	CITATIONS
146	Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar–thermal–electric energy conversion. Journal of Materials Chemistry A, 2022, 10, 22488-22499.	5.2	25
147	Emerging surface strategies for porous materials-based phase change composites. Matter, 2022, 5, 3225-3259.	5.0	21
148	Double-skeleton based shape-stabilized phase change materials with excellent solar-thermal energy conversion and shape memory performance. Thermochimica Acta, 2022, 717, 179360.	1.2	3
149	A Lightweight, Elastic, and Thermally Insulating Stealth Foam With High Infraredâ€Radar Compatibility. Advanced Science, 2022, 9, .	5.6	101
150	Shape-stable MXene/sodium alginate/carbon nanotubes hybrid phase change material composites for efficient solar energy conversion and storage. Composites Science and Technology, 2022, 230, 109794.	3.8	17
151	Directional chitosan/carbon fiber powder aerogel supported phase change composites for effective solar thermal energy conversion and hot compression. Journal of Energy Storage, 2022, 56, 105980.	3.9	10
152	Scalable synthesis of paraffin@MoS2-melamine foam composite phase change materials with superior photo-thermal conversion and storage. Journal of Energy Storage, 2022, 56, 105954.	3.9	10
153	Self-healed inorganic phase change materials for thermal energy harvesting and management. Applied Thermal Engineering, 2023, 219, 119423.	3.0	23
155	Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage. Chinese Journal of Chemical Engineering, 2023, 58, 282-290.	1.7	3
156	3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management. Construction and Building Materials, 2023, 362, 129768.	3.2	9
157	Novel composite phase change material of high heat storage with photothermal and self-cleaning function. Industrial Crops and Products, 2023, 192, 116103.	2.5	7
158	Design of a stable and porous MF/Ti3C2Tx/PEG composite for the integration of electromagnetic interference shielding and thermal management. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107333.	3.8	9
159	Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications. Progress in Materials Science, 2023, 133, 101054.	16.0	42
160	Porous carbon-based thermally conductive materials: Fabrication, functions and applications. , 2023, 42, 100006.		3
161	Porous recyclable sponges with controllable and durable shape memory. Materials Advances, 2023, 4, 1075-1080.	2.6	1
162	Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage. Solar Energy Materials and Solar Cells, 2023, 252, 112176.	3.0	15
163	A combined multi-criteria decision-making approach for the selection of carbon-based nanomaterials in phase change materials. Journal of Energy Storage, 2023, 60, 106619.	3.9	4
164	Shape stabilized three-dimensional porous SiC-based phase change materials for thermal management of electronic components. Chemical Engineering Journal, 2023, 462, 142168.	6.6	10

CITATION REPORT

#	Article	IF	CITATIONS
165	Shape Memory Graphene Nanocomposites—Fundamentals, Properties, and Significance. Processes, 2023, 11, 1171.	1.3	5
166	Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions. Applied Thermal Engineering, 2023, 227, 120287.	3.0	14
167	Phytic acid–decorated κ-carrageenan/melanin hybrid aerogels supported phase change composites with excellent photothermal conversion efficiency and flame retardancy. Renewable Energy, 2023, 206, 148-156.	4.3	5
168	MoS2-decorated carbonized melamine foam/reduced graphene oxide network for constructing polyethylene-glycol-based multifunctional phase change materials toward multiple energy harvesting and microwave absorbing applications. Chemical Engineering Journal, 2023, 461, 141923.	6.6	9
169	Anisotropically conductive phase change composites enabled by aligned continuous carbon fibers for full-spectrum solar thermal energy harvesting. Chemical Engineering Journal, 2023, 461, 141940.	6.6	14
170	Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, 2023, 123, 6953-7024.	23.0	79
171	Shape memory behavior of novel <scp>Ethylene Propylene Diene Monomer (EPDM)</scp> /paraffin foams. Polymer Engineering and Science, 0, , .	1.5	0
197	Epoxy-based nanocomposites as emerging stimuli-responsive materials. , 2024, , 63-85.		ο